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Dimensional Extension and 
Reduction

• Foundation of QWZ model is the adiabatic smooth 
pump sequence of the Rice-Mele model 

• Transformed from a 1D time dependant 
Hamiltonian to a 2D in bulk momentum space 

• Cyclic parameter in a continuous ensemble is 
Promoted to a momentum parameter 
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QWZ Model

• Gained from the transformations of the adiabatic pumping RM 
model: 

• Dimensional promotion of time 

• Average intercell hopping to a staggered onsite potential 

• Unitary rotation of the internal Hilbert space
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Bulk Dispersion Relation
• Spectrum has two bands and may be determined as 

follows from the algebraic properties of the Pauli 
matrices  

• Tuneable energy gap in spectrum 

• Bands touch at Dirac Points when 

• Spectrum gapped at all other values, giving the 
topological properties we will be discussing   
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Chern Number of the QWZ 
Model

• May be counted graphically as the number of times 
the torus of the image of the BZ in contains the 
origin 

• This is dependant on the onsite potential 
parameter such that 
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Spatial Hamiltonian
• Inverse Fourier transfer of the bulk momentum 

space hamiltonian gives the real-spatial 
hamiltonian

Ĥ =
N

x

�1X

m

x

=1

N

yX

m

y

=1

✓
|m

x

+ 1,m
y

i hm
x

,m
y

|⌦ �̂
z

+ i�̂
x

2
+ h.c.

◆

+
N

xX

m

x

=1

N

y

�1X

m

y

=1

✓
|m

x

,m
y

+ 1i hm
x

,m
y

|⌦ �̂
z

+ i�̂
y

2
+ h.c.

◆

+u

N

xX

m

x

=1

N

yX

m

y

=1

|m
x

,m
y

i hm
x

,m
y

|⌦ �̂
z

9



10



Edge States
• Since the QWZ model is a transformed adiabatic 

charge pump, edge states are present and seen 
by dimensional reduction 
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Edge States
• In this notation bulk and edge states are present  

• All states are delocalised in y but bulk states are 
also delocalised in x 

• Similar definitions of edge states in etc RM model 
may be used in the QWZ model 

• Left Edge: 

• Right Edge:
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Edge States

• Edge States connect lower and upper band across the band gap 

• Corresponds to unidirectional particle group velocity along the edge 

• Implicitly, time reversal symmetry is broken when the Chern number is non 
zero 
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Edge State Perturbation
• Robustness argument treats the modified edge Hamiltonian 

with translational invariance along the edges 

• Introduce state independent next nearest neighbour 
hopping and onsite edge potentials 

• Onsite potential shifts states on the right edge and 
hopping introduces warping on the left

ˆH(k
y

) =

N

x

�1X

m

x

=1

✓
|m

x

+ 1i hm
x

|⌦ �̂
z

+ i�̂
x

2

+ h.c.

◆

N

xX

m

x

=1

|m
x

i hm
x

|⌦ (cos k
y

�̂
z

+ sin k
y

�̂
y

u⌦ �̂
z

)

X

m

x

2{1,N}

|m
x

i hm
x

|⌦ ˆI2
⇣
µ(m

x

)
+ h

(m
x

)
2 cos 2k

y

⌘

14



Edge State Perturbation
• Edge states move into 

the gap when 
perturbations are added 

• Deformations may add 
edge states, but only in 
pairs 

• The Chern number 
remains a topological 
invariant 
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Edge State Robustness
• Before only translationally 

invariant edges 
considered  

• Without it ky is no longer a 
good quantum number 

• Edge states must still be 
present, edge disorder 
will not close bulk gap 
only decrease
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Edge State Robustness
• Smoothy remove disorder 

• Consider a small sample containing some edge 

• Big enough to be considered translationally 
invariant “Bulk” 

• Here the Hamiltonian can be adiabatically 
smoothed to an ordered edge 

• Unitary group velocity 

• Edge modes are chiral and unitary and so cannot 
“stop”  

• Particle must complete the loop 

• Describes a zero field quantum Hall effect like 
behaviour of the edge states referred to as the 
Anomalous Quantum Hall effect (AQHE) 
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Models with Higher Chern 
Numbers

• Layer sheets of 2D Chern 
insulators, single particle Hilbert 
space then becomes the sum of 
the layer Hilbert spaces 

• Given some state independent  
coupling between the layers the 
total Hamiltonian may be deduced 

• Coupling of co-propagating edge 
states lifts degeneracy but only 
opens a gap when strongly 
coupled 

• Coupling of counter-propagating 
edge states opens a gap
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Haldane Model Set Up
• Graphene (“2D Graphite”) honeycomb 

net structure of two interpolating 
triangular sublattices A and B 

• Semi-metal unless there is the addition of 
an inversion symmetry breaking on site 
energy term added, then semiconductor 

• Next nearest neighbour hopping 
included 

• Eliminates a particle-hole symmetry  

• Period local magnetic flux density added 
out of plane 

• zero net flux through unit cell 

• Breaks time-reversal symmetry 
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Breaking Time Reversal 
Symmetry

• No net flux means the vector potential 
may be chosen to be periodic 

• Multiplies the matrix element for 
hopping between sites by a phase 
factor 

• This wont affect the nearest 
neighbour hopping but the next 
neighbour terms pick up a phase 
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Hamiltonian

• Energy bands only touch at valleys K (K’) points if: 

• Assuming the Fermi level lies between the band gap the hall 
conductance is quantised at 0 temperature 
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Energy Solutions
• For some weak external field landau levels are 

obtained 

• Zero mode is not symmetric under magnetic flux 
reversal 
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Parity Anomaly Quantum 
Hall effect

• Term m is set, such that the 
sign of the parameter is 
different in different valleys  

• Comparison between landau 
level occupation of this system 
under external field and a time 
reversal invariant system 
shows a difference of 1 level 
filling 

• This system also shows an 
extra field dependant ground 
state charge density which 
may be eliminated at 0 net flux
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The Chern Number and Hall 
Conductivity 

• Starting from the Linear Response Formalism and using an 
Interpolated Hamiltonian, the Hall conductivity may be 
calculated 

• The Greens functions of the linear response system may be 
replaced with Projectors given by the interpolation  

• Results are only eigenstate and not eigenvalue dependant, 
indicative of a topological property 
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The Chern Number and Hall 
Conductivity 

• Hall conductivity shown to be an integral over the filled bands of the Berry 
Curvature 

• Chern number is also defined as the surface integral of the Berry 
Curvature 

• Inversion and time reversal symmetry influence the parity of the Berry 
Curvature
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Haldane Experiment
• Jotzu, Gregor, et al. Nature 

515.7526 (2014): 237-240 

• Ultracold fermionic atoms in a 
periodically modulated optical 
honeycomb lattice 

• Time reversal symmetry broken 
by complex next-nearest-
neighbour tunnelling induced 
through circular modulation of 
the lattice position  

• Inversion symmetry broken by 
an energy offset between 
neighbouring sites 
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AQHE Experimental 
Realisation

• Chang, Cui-Zu, et al. Science 
340.6129 (2013): 167-170 

• Films of Cr0.15(Bi0.1Sb0.9)1.85Te3 
on an SrTiO3 dielectric 
substrate with tuneable 
chemical potential and 
ferromagnetic ordering  

• Film mobility of these samples 
are too low for ordinary QHE 
to be observed
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Thank You for Listening, Any Questions?
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