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A little frog (alive !) and a water ball

levitate inside a Ø32mm vertical bore

of a Bitter solenoid in a magnetic field

of about 16 Tesla at the Nijmegen

High Field Magnet Laboratory.

http://www.ru.nl/hfml/research/levitation/diamagnetic/
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Basic definitions: Berry connection

Consider the Schrödinger equation

H(R)|Ψn(R)〉 = En(R)|Ψn(R)〉
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H(R)|Ψn(R)〉 = En(R)|Ψn(R)〉

R: set of parameters, e.g., v and w from the SSH model

non-degenerate state |Ψn(R)〉 for any value of R

The phase difference between two states that are “close” in the parameter
space:

e−i∆γn =
〈Ψn(R)|Ψn(R+ dR)〉

|〈Ψn(R)|Ψn(R+ dR)〉|
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Consider the Schrödinger equation

H(R)|Ψn(R)〉 = En(R)|Ψn(R)〉

R: set of parameters, e.g., v and w from the SSH model

non-degenerate state |Ψn(R)〉 for any value of R

The phase difference between two states that are “close” in the parameter
space:

e−i∆γn =
〈Ψn(R)|Ψn(R+ dR)〉

|〈Ψn(R)|Ψn(R+ dR)〉|

In leading order

−i∆γn ≃ 〈Ψn(R)|∇RΨn(R)〉 · dR
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Basic definitions: Berry connection

This equation defines the Berry connection (vector field):

An = i〈Ψn(R)|∇RΨn(R)〉 = −Im[〈Ψn(R)|∇RΨn(R)〉]

(here we used ∇R〈Ψn(R)|Ψn(R)〉 = 0).

∆γn = An · dR (1)
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Basic definitions: Berry connection

This equation defines the Berry connection (vector field):

An = i〈Ψn(R)|∇RΨn(R)〉 = −Im[〈Ψn(R)|∇RΨn(R)〉]

(here we used ∇R〈Ψn(R)|Ψn(R)〉 = 0).

∆γn = An · dR (1)

Note, that the Berry connection is not gauge invariant:

|Ψn(R)〉 → e iα(R)|Ψn(R)〉 : An(R) → An(R) +∇Rα(R).
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Berry phase

Consider a closed directed curve C in parameter space R.
The Berry phase along C is defined in the following way:

γn(C) =

∮

C

dγn =

∮

C

An(R)dR
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Berry phase

Consider a closed directed curve C in parameter space R.
The Berry phase along C is defined in the following way:

γn(C) =

∮

C

dγn =

∮

C

An(R)dR

Important: The Berry phase is gauge invariant: the integral of ∇Rα(R)
depends only on the start and end points of C → for a closed curve it is
zero.

10/11/2016 8 / 32



Berry phase

Consider a closed directed curve C in parameter space R.
The Berry phase along C is defined in the following way:

γn(C) =

∮

C

dγn =

∮

C

An(R)dR

Important: The Berry phase is gauge invariant: the integral of ∇Rα(R)
depends only on the start and end points of C → for a closed curve it is
zero.

Berry phase is gauge invariant → potentially observable.
An observable which cannot be cast as the expectation values of any
operator !

10/11/2016 8 / 32



Berry curvature

In analogy to electrodynamics → express the gauge invariant Berry phase
in terms of a surface integral of a gauge invariant quantity Berry

curvature.
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Berry curvature

In analogy to electrodynamics → express the gauge invariant Berry phase
in terms of a surface integral of a gauge invariant quantity Berry

curvature.

Consider a simply connected region F in a two-dimensional parameter
space, with the oriented boundary curve of this surface denoted by ∂F ,
and calculate the continuum Berry phase corresponding to the ∂F .
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Berry curvature

In two dimensions: let R = (x , y). We are looking for a function B(x , y)
such that

∮

∂F
An(R)dR =

∫

F

Bn(x , y)dxdy

Here Bn(x , y) is the Berry curvature.
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such that

∮

∂F
An(R)dR =

∫

F

Bn(x , y)dxdy

Here Bn(x , y) is the Berry curvature.

In case |Ψ(R)〉 is a smooth function of R in F then we can use the Stokes
theorem:

∮

∂F
An(R)dR =

∫

F

(∂xA
(n)
y − ∂yA

(n)
x )dxdy =

∫

F
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Berry curvature

In two dimensions: let R = (x , y). We are looking for a function B(x , y)
such that

∮

∂F
An(R)dR =

∫

F

Bn(x , y)dxdy

Here Bn(x , y) is the Berry curvature.

In case |Ψ(R)〉 is a smooth function of R in F then we can use the Stokes
theorem:

∮

∂F
An(R)dR =

∫

F

(∂xA
(n)
y − ∂yA

(n)
x )dxdy =

∫

F

Bn(x , y)dxdy

Generalization to higher dimensions is also possible.
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Berry curvature

Taking the explicit form of An

B(n)
µν (R) =

∂

∂Rµ
A(n)
ν (R)−

∂

∂Rν
A(n)
µ (R)

= −2Im

〈

∂

∂Rµ
Ψn(R)

∣

∣

∣

∣

∂

∂Rν
Ψn(R)

〉
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Berry curvature

Taking the explicit form of An

B(n)
µν (R) =

∂

∂Rµ
A(n)
ν (R)−

∂

∂Rν
A(n)
µ (R)

= −2Im

〈

∂

∂Rµ
Ψn(R)

∣

∣

∣

∣

∂

∂Rν
Ψn(R)

〉

The curvature is gauge invariant; hence in principle it is physically
observable.
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Berry curvature

B(n)
µν (R) =

∂

∂Rµ
A(n)
ν (R)−

∂

∂Rν
A(n)
µ (R)

= −2Im

〈

∂

∂Rµ
Ψn(R)

∣

∣

∣

∣

∂

∂Rν
Ψn(R)

〉

If the wavefunction can be taken as real, the curvature B(n) vanishes.
Non-trivial Berry’s phase may only occur if the R-domain is not
simply connected.

If the wavefunction is unavoidably complex, then in general the
curvature does not vanish. A non-trivial Berry’s phase may exist even
in a simply connected domain of R.
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Useful formulas for the Berry curvature

Berry phase corresponding to an eigenstate |n(R)〉 of some Hamiltonian:

B
(n)
j = −Im[εjkl∂k〈n|∂ln〉] = −Im[εjkl 〈∂kn|∂ln〉]

summation over repeated indeces, and ∂l = ∂Rl
.
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B
(n)
j = −Im[εjkl∂k〈n|∂ln〉] = −Im[εjkl 〈∂kn|∂ln〉]

summation over repeated indeces, and ∂l = ∂Rl
.

Inserting 1 =
∑

n′ |n
′〉〈n′|:

Bn = −Im





∑

n′ 6=n

〈∇Rn|n
′〉 × 〈n′|∇Rn〉




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(n)
j = −Im[εjkl∂k〈n|∂ln〉] = −Im[εjkl 〈∂kn|∂ln〉]

summation over repeated indeces, and ∂l = ∂Rl
.

Inserting 1 =
∑

n′ |n
′〉〈n′|:

Bn = −Im





∑

n′ 6=n

〈∇Rn|n
′〉 × 〈n′|∇Rn〉





Calculate 〈n′|∇Rn〉 (both the Hamiltonian Ĥ and the eigenstates |n〉
depend on R! )

Ĥ |n〉 = En|n〉

∇RĤ|n〉+ Ĥ |∇Rn〉 = (∇REn)|n〉+ En|∇Rn〉

〈n′|∇RĤ |n〉+ 〈n′|Ĥ |∇Rn〉 = En〈n
′|∇Rn〉
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Useful formulas for the Berry curvature

Since 〈n′|Ĥ = En′〈n
′|

〈n′|∇RĤ|n〉+ En′〈n
′|∇Rn〉 = En〈n

′|∇Rn〉

〈n′|∇RĤ |n〉 = (En − En′)〈n
′|∇Rn〉
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Useful formulas for the Berry curvature

Since 〈n′|Ĥ = En′〈n
′|

〈n′|∇RĤ|n〉+ En′〈n
′|∇Rn〉 = En〈n

′|∇Rn〉

〈n′|∇RĤ |n〉 = (En − En′)〈n
′|∇Rn〉

Substituting this into

Bn = −Im





∑

n′ 6=n

〈∇Rn|n
′〉 × 〈n′|∇Rn〉





one finds:

Bn = −Im





∑

n′ 6=n

〈n|∇RH|n′〉 × 〈n′|∇RH|n〉

(En − En′)2





Gauge invariant!
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Berry curvature

Bn = −Im





∑

n′ 6=n

〈n|∇RH|n′〉 × 〈n′|∇RH|n〉

(En − En′)2





Remarks

i) The sum of the Berry curvatures of all eigenstates of a Hamiltonian is
zero

ii) Berry curvature is often the larges at near-degeneracies of the
spectrum

iii) The Berry curvature is singular for such R0 values, where |n(R0)〉 is
degenerate with one of |n′(R0)〉. However, if the integration curve ∂F
encircles the degeneracy point, the Berry phase can be finite.
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Berry phase: the discrete version

Previously, we assumed that the phase of |Ψn(R)〉 varies continuously as a
function of R.
In practical applications this is usually not the case.
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Berry phase: the discrete version

Previously, we assumed that the phase of |Ψn(R)〉 varies continuously as a
function of R.
In practical applications this is usually not the case.

Phase difference between two different R points:

e−iφ
(n)
12 =

〈Ψn(R1)|Ψn(R2)〉

|〈Ψn(R1)|Ψn(R2)〉|

φ
(n)
12 = −Im log [〈Ψn(R1)|Ψn(R2)〉]
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Berry phase: the discrete version

Previously, we assumed that the phase of |Ψn(R)〉 varies continuously as a
function of R.
In practical applications this is usually not the case.

Phase difference between two different R points:

e−iφ
(n)
12 =

〈Ψn(R1)|Ψn(R2)〉

|〈Ψn(R1)|Ψn(R2)〉|

φ
(n)
12 = −Im log [〈Ψn(R1)|Ψn(R2)〉]

Consider the path in parameter space:

| �(R  ) >  3

| �(R  ) > 1

| �(R  ) >  2
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Berry phase: the discrete version

| Ψ(R  ) >  3

| Ψ(R  ) > 1

| Ψ(R  ) >  2

The total phase difference along a closed path which joins the points Ri in
a given order:

γ = φ12 + φ23 + φ31

= −Im log [〈Ψn(R1)|Ψn(R2)〉〈Ψn(R2)|Ψn(R3)〉〈Ψn(R3)|Ψn(R1)〉]

The gauge-arbitrary phases cancel in pairs → overall phase γ is a
gauge-invariant quantity.
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| Ψ(R  ) >  3

| Ψ(R  ) > 1

| Ψ(R  ) >  2

The total phase difference along a closed path which joins the points Ri in
a given order:

γ = φ12 + φ23 + φ31

= −Im log [〈Ψn(R1)|Ψn(R2)〉〈Ψn(R2)|Ψn(R3)〉〈Ψn(R3)|Ψn(R1)〉]

The gauge-arbitrary phases cancel in pairs → overall phase γ is a
gauge-invariant quantity.
In general:

γ =

M
∑

s=1

φs,s+1 = −Im log

M
∏

s=1

〈Ψn(Rs)|Ψn(Rs+1)〉

10/11/2016 17 / 32



Example: two level system

Consider the following Hamiltonian:

HR = Rxσx + Ryσy + Rzσz = R · σ

where d = (Rx ,Ry ,Rz) = R
3 \ {0}, to avoid degeneracy

Eigenvalues, eigenstates:

H(R)|±〉 = ±|R||±〉
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Example: two level system

Consider the following Hamiltonian:

HR = Rxσx + Ryσy + Rzσz = R · σ

where d = (Rx ,Ry ,Rz) = R
3 \ {0}, to avoid degeneracy

Eigenvalues, eigenstates:

H(R)|±〉 = ±|R||±〉

The |+〉 eigenstate can be represented in the following form:

|+〉 = e iα(θ,φ)
(

e−iφ/2 cos(θ/2)

e iφ/2 sin(θ/2)

)

where

cos θ =
Rz

|R|
, e iφ =

Rx + iRy
√

R2
x + R2

y
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Example: two level system

Figure: The reprentation of the parameter space on a Bloch sphere
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Example: two level system

The choice of phase α(θ, φ) corresponds to fixing a gauge.
Several choices are possible:
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Example: two level system

The choice of phase α(θ, φ) corresponds to fixing a gauge.
Several choices are possible:

1) α(θ, φ) = 0 for all θ, φ.

|+〉0 =

(

e−iφ/2 cos(θ/2)

e iφ/2 sin(θ/2)

)

We expect that φ = 0 and φ = 2π should correspond to the same state
in the Hilbert space state. However,
|+ (θ, φ = 0)〉 = −|+ (θ, φ = 2π)〉.
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Example: two level system

2) α(θ, φ) = φ/2. Then we have

|+〉S =

(

cos(θ/2)
e iφ sin(θ/2)

)

10/11/2016 21 / 32



Example: two level system

2) α(θ, φ) = φ/2. Then we have

|+〉S =

(

cos(θ/2)
e iφ sin(θ/2)

)

There are two interesting points: the north (θ = 0) and the south
(θ = π) points.
For θ = 0 |+〉S = (1, 0) but for θ = π |+〉S = (0, e iφ), i.e., the value of
the wave function depends on the direction one approaches the south
pole.
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Example: two level system

2) α(θ, φ) = φ/2. Then we have

|+〉S =

(

cos(θ/2)
e iφ sin(θ/2)

)

There are two interesting points: the north (θ = 0) and the south
(θ = π) points.
For θ = 0 |+〉S = (1, 0) but for θ = π |+〉S = (0, e iφ), i.e., the value of
the wave function depends on the direction one approaches the south
pole.

A couple of other choices are possible. It turns out, there is no such gauge
where the wavefunction is well behaved everywhere on the Bloch sphere.
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Example: Berry phase for a two-level system

Let us take a closed curve C in the parameter space R
3 \ {0} and calculate

the Berry phase for the state |−〉 or |+〉 .

γ± =

∮

C

A(R)dR, A±(R) = i〈±|∇R|±〉

The calculation is easier if one uses the Berry curvature.
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Calculating the Berry phase for a two level system

B±(R) = −Im
〈±|∇RĤ |∓〉 × 〈∓|∇RĤ |±〉

4|R|2
, ∇RĤ = σ

This can be evaluated in any of the gauges.

B±(R) = ∓
1

2

R

|R|3

This is the field of a pointlike monopole source in the origin.
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Calculating the Berry phase for a two level system

The Berry phase of the closed loop C in parameter space is the flux of the
monopole field through a surface F whose boundary is C.
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Calculating the Berry phase for a two level system

The Berry phase of the closed loop C in parameter space is the flux of the
monopole field through a surface F whose boundary is C.
This is half of the solid angle subtended by the curve:

γ− =
1

2
ΩC , γ+ = −γ−
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Berry phase: a physical interpretation

The Berry phase can be interpreted as a phase acquired by the
wavefunction as the parameters appearing in the Hamiltonian are changing
slowly in time.

Ĥ(R)|n(R)〉 = En(R)|n(R)〉

where we have fixed the gauge of |n(R)〉.
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Berry phase: a physical interpretation

The Berry phase can be interpreted as a phase acquired by the
wavefunction as the parameters appearing in the Hamiltonian are changing
slowly in time.

Ĥ(R)|n(R)〉 = En(R)|n(R)〉

where we have fixed the gauge of |n(R)〉.

Assume that the parameters of the Hamiltonian at t = 0 are R = R0 and
there are no degeneracies in the spectrum. The system is in an eigenstate
|n(R0)〉 for t = 0.

R(t = 0) = R0, |Ψ(t = 0)〉 = |n(R0)〉
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Berry phase: a physical interpretation

The Berry phase can be interpreted as a phase acquired by the
wavefunction as the parameters appearing in the Hamiltonian are changing
slowly in time.

Ĥ(R)|n(R)〉 = En(R)|n(R)〉

where we have fixed the gauge of |n(R)〉.

Assume that the parameters of the Hamiltonian at t = 0 are R = R0 and
there are no degeneracies in the spectrum. The system is in an eigenstate
|n(R0)〉 for t = 0.

R(t = 0) = R0, |Ψ(t = 0)〉 = |n(R0)〉

Now consider that R(t) is slowly changed in time and the values of R(t)
define a continuous curve C. Also, assume that |n(R(t))〉 is smooth along
C.
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Berry phase: physical interpretation

The wavefunction evolves according to the time-dependent Schrödinger
equation:

i~
∂

∂t
|Ψ(t)〉 = Ĥ(R(t))|Ψ(t)〉
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The wavefunction evolves according to the time-dependent Schrödinger
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i~
∂

∂t
|Ψ(t)〉 = Ĥ(R(t))|Ψ(t)〉

Assumption: starting from the initial state |n(R0)〉 the state |n(R(t))〉
remains non-degenerate for all times.
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Berry phase: physical interpretation

The wavefunction evolves according to the time-dependent Schrödinger
equation:

i~
∂

∂t
|Ψ(t)〉 = Ĥ(R(t))|Ψ(t)〉

Assumption: starting from the initial state |n(R0)〉 the state |n(R(t))〉
remains non-degenerate for all times.
If the rate of change of R(t) along C slow enough, i.e.,
≪ (En(R)− En±1(R))/~ → the system remains in the eigenstate
|n(R(t))〉 (adiabatic approximation).
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Berry phase: physical interpretation

The wavefunction evolves according to the time-dependent Schrödinger
equation:

i~
∂

∂t
|Ψ(t)〉 = Ĥ(R(t))|Ψ(t)〉

Assumption: starting from the initial state |n(R0)〉 the state |n(R(t))〉
remains non-degenerate for all times.
If the rate of change of R(t) along C slow enough, i.e.,
≪ (En(R)− En±1(R))/~ → the system remains in the eigenstate
|n(R(t))〉 (adiabatic approximation).

The parameter vector R(t) traces out a curve C in the parameter space.
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Berry phase: physical interpretation

Ansatz:
|Ψ(t)〉 = e iγ(t)e−i/~

∫ t
0 En(R(t′))dt′ |n(R(t))〉

Substituting the above Ansatz into the Schrödinger equation, one can
show that

γn(C) = i

∫

C

〈n(R)|∇Rn(R)〉dR
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|Ψ(t)〉 = e iγ(t)e−i/~

∫ t
0 En(R(t′))dt′ |n(R(t))〉

Substituting the above Ansatz into the Schrödinger equation, one can
show that

γn(C) = i

∫

C

〈n(R)|∇Rn(R)〉dR

Consider now an adiabatic and cyclic change of the Hamiltonian, such
that R(t = 0) = R(t = T ). In this case the adiabatic phase reads

γn(C) = i

∮

C

〈n(R)|∇Rn(R)〉dR

The phase that a state acquires during a cyclic and adiabatic change of
the Hamiltonian is equivalent to the Berry phase corresponding to the
closed curve representing the Hamiltonian’s path in the parameter space.
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Berry phase: physical interpretation

Considering the Berry curvature:

Bn = −Im





∑

n′ 6=n

〈n|∇RH|n′〉 × 〈n′|∇RH|n〉

(En − En′)2




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Berry phase: physical interpretation

Considering the Berry curvature:

Bn = −Im





∑

n′ 6=n

〈n|∇RH|n′〉 × 〈n′|∇RH|n〉

(En − En′)2





Although the system remains in the same state |n(R)〉 during the
adiabatic evolution, other states of the system |n′(R)〉, n 6= n′

nevertheless affect the state |n(R)〉.

This influence is manifested in the Berry curvature, which, in turn,
determines the Berry phase picked up by |n(R)〉.
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Chern number

Let us now consider Berry phase effects in crystalline solids.
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Chern number

Let us now consider Berry phase effects in crystalline solids.
In the non-interacting limit the Hamiltonian:

Ĥ =
p̂2

2me
+ V (r)

where V (r) = V (r+ Rn) is periodic, Rn is a lattice vector.
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Chern number

Let us now consider Berry phase effects in crystalline solids.
In the non-interacting limit the Hamiltonian:

Ĥ =
p̂2

2me
+ V (r)

where V (r) = V (r+ Rn) is periodic, Rn is a lattice vector.
Generally, the solutions of the Schrödinger equations are Bloch
wavefunctions.
They satisfy the following boundary condition (Bloch’s theorem):

Ψmk(r + Rn) = e ikRnΨmk(r)

Here Ψmk is the eigenstate corresponding to the mth band and k is the
wave number which is defined in the Brillouin zone.
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+ V (r)

where V (r) = V (r+ Rn) is periodic, Rn is a lattice vector.
Generally, the solutions of the Schrödinger equations are Bloch
wavefunctions.
They satisfy the following boundary condition (Bloch’s theorem):

Ψmk(r + Rn) = e ikRnΨmk(r)

Here Ψmk is the eigenstate corresponding to the mth band and k is the
wave number which is defined in the Brillouin zone.
The Brillouin zone has a topology of a torus: wave numbers k which differ
by a reciprocal wave vector G describe the same state.
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Chern number

The Bloch wavefunctions can be written in the following form:
Ψmk = e ikrumk(r), where umk(r) is lattice periodic: umk(r) = umk(r + Rn).
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The Bloch wavefunctions can be written in the following form:
Ψmk = e ikrumk(r), where umk(r) is lattice periodic: umk(r) = umk(r + Rn).

The functions umk(r) satisfy the following Schrödinger equation:

[

(p̂ + ~k)2

2me
+ V (r)

]

umk(r) = Emkumk(r)

This can be written as

Ĥ(k)|um(k)〉 = Em(k)|um(k)〉

=⇒ the Brillouin zone is the parameter space for the Ĥ(k) and |um(k)〉
Various Berry phase effects can be expected, if k is varied in the
wavenumber space.
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Chern number

Consider a two-dimensional crystalline system.
Then the Berry connection of the mth band :

A(m)(k) = i〈um(k)|∇kum(k)〉 k = (kx , ky ).

10/11/2016 31 / 32



Chern number

Consider a two-dimensional crystalline system.
Then the Berry connection of the mth band :

A(m)(k) = i〈um(k)|∇kum(k)〉 k = (kx , ky ).

and the Berry curvature

Ω(m)(k) = ∇k × i〈um(k)|∇kum(k)〉

10/11/2016 31 / 32



Chern number

Consider a two-dimensional crystalline system.
Then the Berry connection of the mth band :

A(m)(k) = i〈um(k)|∇kum(k)〉 k = (kx , ky ).

and the Berry curvature

Ω(m)(k) = ∇k × i〈um(k)|∇kum(k)〉

Finally, the Chern number of the mth band is defined as

Q(m) = −
1

2π

∫

BZ

Ω(m)(k)dk

integration is taken over the Brillouin zone (BZ).
The Chern number is an intrinsic property of the band structure and has
various effects on the transport properties of the system.
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Zak’s phase

One can apply an electric field to cause a linear variation of q.
In one-dimensional systems the Berry phase calculated as q sweeps the
Brillouin zone is called the Zak’s phase (Phys Rev Lett 62, 2747):

γn =

∫

BZ

idq〈un(q)|∇q |un(q)〉
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