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Introduction and the Su-Schrieffer-Heeger
(SSH) model

Simplest one-dimensional case
Su-Schrieffer-Heeger model for polyacetylene
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Insulator in the bulk but conduction at the surface via

conducting edge states
Nontrivial topology of occupied bands is crucial

Dimensionality and basic symmetries of an insulator
determine if it can be a topological insulator



SSH Hamiltonian

* Noninteracting model, single-particle lattice
Hamiltonian, zero of energy corresponding to the
Fermi energy, i =1

Fig. 1.1 Geometry of the SSH model. Filled (empty) circles are sites on sublattice A (B), each
hosting a single state. They are grouped into unit cells: the n = 6th cell is circled by a dotted
line. Hopping amplitudes are staggered: intracell hopping v (thin lines) is different from intercell
hopping w (thick lines). The left and right edge regions are indicated by blue and red shaded
background.

* SSH-Model describes spinless fermions
(electrons) hopping on a one-dimensional lattice
with staggered hopping amplitudes
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SSH Hamiltonian

 The dynamics of each electron is described by a single

particle Hamiltonian
N N—1

H=v Y (|m,B) (m.Al+h.c.)+w) (|m+1,A)(mB|l+hc.)

m=1 m=1

e Study dynamics around ground state of SSH model at
zero temperature and zero chemical poential

* For a chain consisting of N=4 unit cells
the matrix of the Hamiltonian reads

/0 1’000000\
yOw 00000
OwOv0O0OOO
O0OvOw0O0O
O00OwO v 0O
O000vOwoO

00000w0v
\00 0000 V0



SSH Hamiltonian

 To emphasize the separation of external degrees of freedom
(unit cell index m) and internal degrees of freedom (sublattice
index) the following representation can be chosen:
Use tensor product basis: |m.a) — |m) ®@|a) € Hiiemna @ Hnemal

and the Pauli matrices: o, = ((1) ?) G. — ((1) (1)) o, (({) o’)‘- o ((1) —01)
This leads to the Hamiltonian

N—1

J'\'r ~ . A
3 oA Oy + 10y
H=v Z im) (m| @ 6y +w Z (m + 1) (m| @ —= 5 Y 4 l;,(;.)

m=1 m=1

Intracell hopping represented by intracell operator

Intercell hopping represented by intercell operator



Bulk Hamiltonian

Bulk: central part of the chain,
Boudaries: the two ends or ,edges” of the chain

In the thermodynamic limit N—>e< the bulk determines the
most important properties

Bulk should not depend on definition of the edges, therefore
for simplicity periodic boundary conditions (Born-von

Karman)
N
Hpuk = Z (v|m.B) (m.A|+w|(mmodN)+1,A) (m,B|) + h.c.

m=1

with Eigenstates  Hyux |, (k) = E, (k) |¥, (k))



Bulk Hamiltonian

Derivation of the bulk momentum-space Hamiltonian

e Start with plane wave basis states for external degree of
freedom

: : 2n
\/7 Z (””R |m for k € {5&25{ ..... N(SA} with 5;( = —JT

* Bloch eigenstates can be found:

|le(,”\’)> = |k) @ |un(k)) ‘”n(k > = an(k ‘A> + by (k ‘B>

where |u,(k)) € #ema are the eigenstates of the bulk
momentum-space Hamiltonian

F[(!’\): <k|ﬁhulk|k>: Z <k-a|Hhu]k‘k-ﬁ>'|a> <ﬁ‘
o.pe{A.B}
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Bulk Hamiltonian

Periodicity in wavenumber:

Fourier transform above acts only on the external degree of
freedom —>periodicity in the Brillouin zone

H(k+2m) =H (k) 14, (k +27)) = |un(k))
For a system consisting of N=4 unit cells with the bulk
Hamiltonian and the Bloch eigenstates the matrix eigenvalue

equationreads:  /0v 0000 0w\ [akje" [ ak)e \
vOw00000 b(k)e* b(k)e™
OwOv0O0OO0O a(k)e** a(k)e**
0O00vOw0OOO b(k)e*™* — E(K) b(k)e**
000wOvOoOl|]|ake™ | ~7| alk)e™*
0000vOwoO b(k)e* b(k)e>*
00000wOvV a(k)eN a(k)eN*
\w00000v 0/ \b(k)eNik ) \b(k)e“’“’)
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Bulk Hamiltonian

* For the bulk momentum-space Hamiltonian one can find:

0 vi+we ™ L falk)\ .., (al(k)
H (k) = (L'—l—n-'(:“;k 0 ) H (k) (b(k)) =E(k) (b(k))

* With this equation one can find the dispersion relation

E(k) = [v+ e w| = \/v2 + w2 + 2vwcosk
2 2
(a) (
3 g w=0 v >u, 0
=
.1 -1 1
ol . _2_ _2_

T 0 T = =
wavenumber
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Bulk Hamiltonian

For staggered hopping amplitudes a gap of 2A seperates the
lower filled band from the upper empty band

If not staggered - conductor A =miyE(k) = |[v—w|
Staggering is energetically favourable

Internal structure of stationary states given by conponents of
H(k):  d.(k)=v+wcosk: d, (k) = wsink: d-(k) =0

Endpoint of vector for k=0—->2m : closed loop, here circle,
avoids origin for insulators. Topology of loop characterised by
bulk winding number, number of times the loop winds around

the origin of the xy-plane
A Ad,




Edge states

Distinguish edge and bulk states by their localised/delocalised
behaviour in the thermodynamic limit

Fully dimerised limits: Intercell hopping vanishes, intracell
hopping set to 1 or vice versa

et RSN -
. . . . o
. + N
-
-
Mt

The bulk has flat bands here, A set of energy eigenstates
restricted to one dimer each.

Consist of even and odd superpositions of the two sites
forming a dimer
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Edge States

JTrivial” Case: v=1, w=0: H(|m,A) £ |m,B)) = £(|m,A) £ |m,B))
- H(k) =6, independent of wavefunction k

,,'[opological” Case: v=0, w=1:

H(|m,B) £|m+1,A)) = &(|m,B) £ |m+1,A))

> H(k) = Gy cosk + Gysink

Energy eigenvalues independent of wavenumber k E(k) =1
Group velocity zero

Edges can host zero energy states in this limit: In the
topological case each end hosts an eigenstate at energy zero

H|1,A)=H|N,B)=0
Support on one side only, E=0 because no onsite pot. allowed



Move away from fully dimerised limit by turning on v

continuously

Edge States

(b) 0.8
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cell index m
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Chiral symmetry

« Definition: I'AI'" = —H where [ it unitary and Hermitian
further requirements:
— Local: for m # H’gJ is <”?.G\f‘f ‘”'I!.Off> — 0
—> consists of F=9aie.. . er=@7

— Robust: Independent of variation of local parameters

* Conseqguences:

— Sublattice symmetry: By defining Py = % (]1 +f) , ﬁB = % (H —f)
and requiring no transitions from site to site on the same sublattice
are induced by H: p AP, = P,HP; =0
2 H=PHPy+PzHP,



Chiral Symmetry

Consequences:

— Symmetric spectrum:
H|W;r> — En ‘WN) — ﬁfﬂl”’n) — _fﬁ |'4'fn> — _fEn ‘W:‘I) — _Eurf ‘WH)
— If E,#0 then 0= (Wu|I" |Wu) = (Wu| Pr|Wn) — (Wul| P5|W0)
If E, = 0 zero energy eigenstates can be chosen to have support
only on one sublattice.
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Chiral Symmetry

* Bulk winding number

— Recall vector d(k), restricted to xy-plane due to chiral
symmetry o:H(k)o,=0 - d,=0

— Endpoint curve direct closed loop on plane, well defined
integer winding number, has to avoid origin (insulator)

— Integral definition of winding number:
- d - d -~ 0 h(k)
= = — () x —d(k . Hk)y={,, ~
T V= (d(k)xdkd(k))”dk (k) (,?x(k) 0 )

hik)=d.(k)—id,(k) | T d
S . - 1k o h(k
V= - _R(H‘—dk logh(k)



Winding Number of SSH model

* Trivial case with dominant intracell hopping winding number O
* Topological case: winding number 1
* To change the winding number of the SSH model eiter close

(a) d. (0) d. (c) d.
A A A
"d.&f "d.u
%
0 d

bulk gap or break chiral symmetry.
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Number of edge states as topological
Invariant

* Definition of adiabatic deformation of insulating Hamiltonian
— Continous change of parameters
— Maintaining important symmetries
— Keeping the gap around zero energy open

e Definition of adiabatic 2.0 | |
equivalence of Hamiltonians topological v <w

— Two insulating Hamiltonians 1.5 (adiabatically connected
are adiabatically connected if
they are connected by 310 trivial o o
adiabatic transformation

— Path can be drawn that does 0.5
not cross gapless phase
boundary W=V 0'8.0 0.5 1.0 1.5 2.0

v



Number of edge states as topological
Invariant

* Topological invariant

— Integer number characterising insulating Hamiltonian if it cannot
change under adiabatic deformations

— Only well defined in thermodynamic limit,
— Depends on Symmetries that need to be respected
— Winding Number of SSH model is topological invariant

 Number of edge states as topological invariant
— Gapped chiral symmetric one-dimensional Hamiltonian
— Energy window —€ <E <€ where € isthe bulk gap
— Zero and nonzero edge states possible

— Nonzero energy state has chiral symmetric parnter occupying same
unit cell



Number of edge states as topological
Invariant

Finite number of zero energy states (bulk gap)

Restriction to single sublattice: Na states on sublattice A and
Np states on sublattice B

Consider effect of adiabatic deformation with continuous
parameterd: 0 - 1 on Na —Np
— Nonzero energy edge state can be brought to zero energy for d > d'
— Chiral symmetric partner moves simultaneously to zero energy

[Ho(d = 0)) I [¥(d)) Eo(d)=0

Py|W(d")) By W (d"))
— Ny — N unchanged



Number of edge states as topological
Invariant

Timereverse process also possible, bring zero energy state to nonzero
energy at time d=d’

— Both sublattice numbers decrease by one so difference unchanged

Bringing nonzero energy states out of the energy range of above does not
change difference

Zero energy eigenstate can change, extending deeper into the bulk; due to
gap condition exponential decay of wavefunction

— Cannot move states away from the edge, thus no change of the numbers
N4 — Np is net number of edge states on sublattice A at the left edge
— This is a topological invariant.

Winding number (bulk) allows predictions about low energy physics at the
edge: trivial case both zero, topological case both one
— Example for bulk-boundary correspondence



Number of edge states as topological
Invariant

* Consider interfaces between different insulating domains

- N . -
. + + +
B
- . .
. .. ‘
. L . .
. .
. s
-, . .

m==3 m==6 m=

7

* H(|6,B)—|7,B)) =0 zero energy eigenstate
e Consider SSH system that is not in the fully dimerized limit

Edge state wave functions at domain walls penetrate into the bulk

Hybridization of two edge states at domainwalls with distance M
forming bonding and anti-bonding states

Only negative energy eigenstate will be occupied at half filling
Each domain wall carries half an electronic charge: fractionalisation
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Number of edge states as topological
Invariant

Zero energy edge states can be calculated without
translational invariance

N N—1
H= Z (Vi |m, B) (m,A|+h.c.) + Z (Wi [m+1,A) (m,B| +h.c.)
m=1 m=1

N
H Z (am |;;1_A> + bm |”I'B>) =0
m— 1

m=1,..., N—1: Vil + Wiy = 05 Wb + Vi 1bpy1 =0
boundaries : vyay = 0; viby =0
m=72 N: a ml:Il Y ap:
=2,..., : n= ¥
m=1,.... N—1 - W by

Wi =1 H'J,'
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Number of edge states as topological
Invariant

* In general no zero energy state but approximately in the
thermodynamic limit for strong intercell hopping

N—1 ] N—-I
logpy| = —— Z log [vin| ; log|w| = — log |w|

[

m=1 m=1

)
lay| = |a;|e" VD6, |b1|—|bh|( v—1)/e v |
V1

— Localisation length 5=

log\u-\—log\ |

— for & >0 solutions

N
— Z A |m,A): Z by |m. B)

m=1 m=



Number of edge states as topological
Invariant

Exponentially small hybridisation of states above under H

Y y
aje=N=D/S v by e

Overlap central quantity (r|A|L) =

This leads to approximated energy eigenstates and energies

e—9/2 L)+ 0'9/2 R)

‘N /
‘0_> — E_|_ = (Ilf.’_['f\_])’fé'l"f\.fbf\.f .
V2
/2| 1) — /2 |R .
0—) = : | )\/56 | > E_—=— alf?_[-f\'_])”fg VDN

Energy exponentially small in the system size (N)



This is the end!

Thank you for your attention!



