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Ever since its discovery the notion of Berry phase has permeated through all branches of physics.
Over the past three decades it was gradually realized that the Berry phase of the electronic wave
function can have a profound effect on material properties and is responsible for a spectrum of
phenomena, such as polarization, orbital magnetism, various (quantum, anomalous, or spin) Hall
effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this
review. A brief summary of necessary background is given and a detailed discussion of the Berry
phase effect in a variety of solid-state applications. A common thread of the review is the semiclassical
formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the
presence of electromagnetic fields and more general perturbations. Finally, a requantization method is
demonstrated that converts a semiclassical theory to an effective quantum theory. It is clear that the
Berry phase should be added as an essential ingredient to our understanding of basic material

properties.
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I. INTRODUCTION
A. Topical overview

In 1984, Michael Berry wrote a paper that has gener-
ated immense interest throughout the different fields of
physics including quantum chemistry (Berry, 1984). This
paper is about the adiabatic evolution of an eigenenergy
state when the external parameters of a quantum system
change slowly and make up a loop in the parameter
space. In the absence of degeneracy, the eigenstate will
surely come back to itself when finishing the loop, but
there will be a phase difference equal to the time inte-
gral of the energy (divided by #) plus an extra, which is
now commonly known as the Berry phase.

The Berry phase has three key properties that make
the concept important (Shapere and Wilczek, 1989;
Bohm et al., 2003). First, it is gauge invariant. The eigen-
wave function is defined by a homogeneous linear equa-
tion (the eigenvalue equation), so one has the gauge
freedom of multiplying it with an overall phase factor
which can be parameter dependent. The Berry phase is
unchanged (up to integer multiple of 27) by such a
phase factor, provided the eigenwave function is kept to
be single valued over the loop. This property makes the
Berry phase physical, and the early experimental studies
were focused on measuring it directly through interfer-
ence phenomena.

Second, the Berry phase is geometrical. It can be writ-
ten as a line integral over the loop in the parameter
space and does not depend on the exact rate of change
along the loop. This property makes it possible to ex-
press the Berry phase in terms of local geometrical
quantities in the parameter space. Indeed, Berry himself
showed that one can write the Berry phase as an integral
of a field, which we now call the Berry curvature, over a
surface suspending the loop. A large class of applica-
tions of the Berry phase concept occur when the param-
eters themselves are actually dynamical variables of slow
degrees of freedom. The Berry curvature plays an essen-
tial role in the effective dynamics of these slow vari-
ables. The vast majority of applications considered in
this review are of this nature.

Third, the Berry phase has close analogies to gauge
field theories and differential geometry (Simon, 1983).
This makes the Berry phase a beautiful, intuitive, and
powerful unifying concept, especially valuable in today’s
ever specializing physical science. In primitive terms, the
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Berry phase is like the Aharonov-Bohm phase of a
charged particle traversing a loop including a magnetic
flux, while the Berry curvature is like the magnetic field.
The integral of the Berry curvature over closed surfaces,
such as a sphere or torus, is known to be topological and
quantized as integers (Chern numbers). This is analo-
gous to the Dirac monopoles of magnetic charges that
must be quantized in order to have a consistent
quantum-mechanical theory for charged particles in
magnetic fields. Interestingly, while the magnetic mono-
poles are yet to be detected in the real world, the topo-
logical Chern numbers have already found correspon-
dence with the quantized Hall conductance plateaus in
the spectacular quantum Hall phenomenon (Thouless ef
al., 1982).

This review concerns applications of the Berry phase
concept in solid-state physics. In this field, we are typi-
cally interested in macroscopic phenomena which is slow
in time and smooth in space in comparison with the
atomic scales. Not surprisingly, the vast majority of ap-
plications of the Berry phase concept are discussed here.
This field of physics is also extremely diverse, and we
have many layers of theoretical frameworks with differ-
ent degrees of transparency and validity (Ashcroft and
Mermin, 1976; Marder, 2000). Therefore, a unifying or-
ganizing principle such as the Berry phase concept is
particularly valuable.

We focus our attention on electronic properties, which
play a dominant role in various aspects of material prop-
erties. The electrons are the glue of materials and they
are also the agents responding swiftly to external fields
and giving rise to strong and useful signals. A basic para-
digm of the theoretical framework is based on the as-
sumption that electrons are in Bloch waves traveling
more or less independently in periodic potentials of the
lattice, except that the Pauli exclusion principle has to
be satisfied and electron-electron interactions are taken
care of in some self-consistent manner. Much of our in-
tuition on electron transport is derived from the semi-
classical picture that electrons behave almost as free par-
ticles in response to external fields provided one uses the
band energy in place of the free-particle dispersion. Be-
cause of this, first-principles studies of electronic prop-
erties tend to document only the energy band structures
and various density profiles.

There has been overwhelming evidence that such a
simple picture cannot give complete account of effects
to first order in electromagnetic fields. A prime example
is the anomalous velocity, a correction to the usual qua-
siparticle group velocity from the band energy disper-
sion. This correction can be understood from a linear
response analysis: the velocity operator has off-diagonal
elements and electric field mixes the bands so that the
expectation value of the velocity acquires an additional
term to first order in the field (Karplus and Luttinger,
1954; Kohn and Luttinger, 1957). The anomalous veloc-
ity can also be understood as due to the Berry curvature
of the Bloch states, which exist in the absence of the
external fields and manifest in the quasiparticle velocity
when the crystal momentum is moved by external forces
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(Chang and Niu, 1995, 1996; Sundaram and Niu, 1999).
This understanding enabled us to make a direct connec-
tion with the topological Chern number formulation of
the quantum Hall effect (Thouless e al., 1982; Kohmoto,
1985), providing motivation as well as confidence in our
pursuit of the eventually successful intrinsic explanation
of the anomalous Hall effect (Jungwirth et al., 2002; Na-
gaosa et al., 2010).

Interestingly enough, the traditional view cannot even
explain some basic effects to zeroth order of the fields.
The two basic electromagnetic properties of solids as a
medium are the electric polarization and magnetization,
which can exist in the absence of electric and magnetic
fields in ferroelectric and ferromagnetic materials. Their
classical definitions were based on the picture of bound
charges and currents, but these are clearly inadequate
for the electronic contribution and it was known that the
polarization and orbital magnetization cannot be deter-
mined from the charge and current densities in the bulk
of a crystal at all. A breakthrough on electric polariza-
tion was made in the early 1990s by linking it with the
phenomenon of adiabatic charge transport and express-
ing it in terms of the Berry phase' across the entire Bril-
louin zone (Resta, 1992; King-Smith and Vanderbilt,
1993). Based on the Berry phase formula, one can now
routinely calculate polarization related properties using
first-principles methods, with a typical precision of the
density functional theory. The breakthrough on orbital
magnetization came only recently, showing that it not
only consists of the orbital moments of quasiparticles
but also contains a Berry curvature contribution of to-
pological origin (Thonhauser et al, 2005; Xiao et al.,
2005; Shi et al., 2007).

In this article, we follow the traditional semiclassical
formalism of quasiparticle dynamics, only to make it
more rigorous by including the Berry curvatures in the
various facets of the phase space including the adiabatic
time parameter. All of the above-mentioned effects are
transparently revealed with complete precision of the
full quantum theory. A number of new and related ef-
fects, such as anomalous thermoelectric, valley Hall, and
magnetotransport, are easily predicted, and other effects
due to crystal deformation and order parameter inho-
mogeneity can also be explored without difficulty. More-
over, by including Berry phase induced anomalous trans-
port between collisions and “side jumps” during
collisions (which is itself a kind of Berry phase effect),
the semiclassical Boltzmann transport theory can give
complete account of linear response phenomena in
weakly disordered systems (Sinitsyn, 2008). On a micro-
scopic level, although the electron wave-packet dynam-
ics is yet to be directly observed in solids, the formalism
has been replicated for light transport in photonic crys-
tals, where the associated Berry phase effects are vividly
exhibited in experiments (Bliokh ef al., 2008). Finally, it

'Also called Zak’s phase, it is independent of the Berry cur-
vature which only characterizes Berry phases over loops con-
tinuously shrinkable to zero (Zak, 1989).
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is possible to generalize the semiclassical dynamics in a
single band into one with degenerate or nearly degener-
ate bands (Culcer et al., 2005; Shindou and Imura, 2005),
and one can study transport phenomena where inter-
band coherence effects as in spin transport, only to real-
ize that the Berry curvatures and quasiparticle magnetic
moments become non-Abelian (i.e., matrices).

The semiclassical formalism is certainly amendable to
include quantization effects. For integrable dynamics,
such as Bloch oscillations and cyclotron orbits, one can
use the Bohr-Sommerfeld or Einstein-Brillouin-Keller
quantization rule. The Berry phase enters naturally as a
shift to the classical action, affecting the energies of the
quantized levels, e.g., the Wannier-Stark ladders and the
Landau levels. A high point of this kind of application is
the explanation of the intricate fractal-like Hofstadter
spectrum (Chang and Niu, 1995, 1996). A recent break-
through has also enabled us to find the density of quan-
tum states in the phase space for the general case (in-
cluding nonintegrable systems) (Xiao et al, 2005),
revealing Berry curvature corrections which should have
broad impacts on calculations of equilibrium as well as
transport properties. Finally, one can execute a general-
ized Peierls substitution relating the physical variables to
the canonical variables, turning the semiclassical dynam-
ics into a full quantum theory valid to first order in the
fields (Chang and Niu, 2008). Spin-orbit coupling and
anomalous corrections to the velocity and magnetic mo-
ment are all found from a simple explanation of this
generalized Peierls substitution.

Therefore, it is clear that Berry phase effects in solid-
state physics are not something just nice to be found
here and there; the concept is essential for a coherent
understanding of all the basic phenomena. It is the pur-
pose of this review to summarize a theoretical frame-
work which continues the traditional semiclassical point
of view but with a much broader range of validity. It is
necessary and sufficient to include the Berry phases and
gradient energy corrections in addition to the energy
dispersions in order to account for all phenomena up to
first order in the fields.

B. Organization of the review

This review can be divided into three main parts. In
Sec. II we consider the simplest example of Berry phase
in crystals: the adiabatic transport in a band insulator. In
particular, we show that induced adiabatic current due
to a time-dependent perturbation can be written as a
Berry phase of the electronic wave functions. Based on
this understanding, the modern theory of electric polar-
ization is reviewed. In Sec. III the electron dynamics in
the presence of an electric field is discussed as a specific
example of the time-dependent problem, and the basic
formula developed in Sec. II can be directly applied. In
this case, the Berry phase is made manifest as transverse
velocity of the electrons, which gives rise to a Hall cur-
rent. We then apply this formula to study the quantum,
anomalous, and valley Hall effect.
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To study the electron dynamics under spatial-
dependent perturbations, we turn to the semiclassical
formalism of Bloch electron dynamics, which has proven
to be a powerful tool to investigate the influence of
slowly varying perturbations on the electron dynamics.
In Sec. IV we discuss the construction of the electron
wave packet and show that the wave packet carries an
orbital magnetic moment. Two applications of the wave-
packet approach, the orbital magnetization and anoma-
lous thermoelectric transport in ferromagnet, are dis-
cussed. In Sec. V the wave-packet dynamics in the
presence of electromagnetic fields is studied. We show
that the Berry phase not only affects the equations of
motion but also modifies the electron density of states in
the phase space, which can be changed by applying a
magnetic field. The formula for orbital magnetization is
rederived using the modified density of states. We also
present a comprehensive study of the magnetotransport
in the presence of the Berry phase. The electron dynam-
ics under more general perturbations is discussed in Sec.
VI. We also present two applications: electron dynamics
in deformed crystals and polarization induced by inho-
mogeneity.

In the remaining part of the review we focus on the
requantization of the semiclassical formulation. In Sec.
VII the Bohr-Sommerfeld quantization is reviewed in
detail. With its help, one can incorporate the Berry
phase effect into the Wannier-Stark ladders and the Lan-
dau levels very easily. In Sec. VIII we show that the
same semiclassical approach can be applied to systems
subject to a very strong magnetic field. One only has to
separate the field into a quantization part and a pertur-
bation. The former should be treated quantum mechani-
cally to obtain the magnetic Bloch band spectrum while
the latter is treated perturbatively. Using this formalism,
the cyclotron motion, the splitting into magnetic sub-
bands, and the quantum Hall effect are discussed. In
Sec. IX we review recent advances on the non-Abelian
Berry phase in degenerate bands. The Berry connection
now plays an explicit role in spin dynamics and is deeply
related to the spin-orbit interaction. The relativistic
Dirac electrons and the Kane model in semiconductors
are cited as two applied examples. Finally, we discuss the
requantization of the semiclassical theory and the hier-
archy of effective quantum theories.

We do not attempt to cover all of the Berry phase
effects in this review. Interested readers can consult the
following: Shapere and Wilczek (1989); Nenciu (1991);
Resta (1994, 2000); Thouless (1998); Bohm et al. (2003);
Teufel (2003); Chang and Niu (2008). In this review, we
focus on a pedagogical and self-contained approach,
with the main focus on the semiclassical formalism of
Bloch electron dynamics (Chang and Niu, 1995, 1996;
Sundaram and Niu, 1999). We start with the simplest
case, then gradually expand the formalism as more com-
plicated physical situations are considered. Whenever a
new ingredient is added, a few applications are provided
to demonstrate the basic ideas. The vast number of ap-
plications we discuss is a reflection of the universality of
the Berry phase effect.
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C. Basic concepts of the Berry phase

In this section we introduce the basic concepts of the
Berry phase. Following Berry’s original paper (Berry,
1984), we first discuss how the Berry phase arises during
the adiabatic evolution of a quantum state. We then in-
troduce the local description of the Berry phase in terms
of the Berry curvature. A two-level model is used to
demonstrate these concepts as well as some important
properties, such as the quantization of the Berry phase.
Our aim is to provide a minimal but self-contained in-
troduction. For a detailed account of the Berry phase,
including its mathematical foundation and applications
in a wide range of fields in physics, see Shapere and
Wilczek (1989) and Bohm et al. (2003), and references
therein.

1. Cyclic adiabatic evolution

Consider a physical system described by a Hamil-
tonian that depends on time through a set of param-
eters, denoted by R=(R{,R;,...), i.e.,

H=H(R), R=R(). (1.1)

We are interested in the adiabatic evolution of the sys-
tem as R(f) moves slowly along a path C in the param-
eter space. For this purpose, it is useful to introduce an
instantaneous orthonormal basis from the eigenstates of
H(R) at each value of the parameter R, i.e.,

H(R)|n(R)) = &,(R)[n(R)). (1.2)

However, Eq. (1.2) alone does not completely determine
the basis function |[n(R)); it still allows an arbitrary
R-dependent phase factor of [n(R)). One can make a
phase choice, also known as a gauge, to remove this
arbitrariness. Here we require that the phase of the basis
function is smooth and single valued along the path C in
the parameter space.”

According to the quantum adiabatic theorem (Kato,
1950; Messiah, 1962), a system initially in one of its
eigenstates |[n(R(0))) will stay as an instantaneous eigen-
state of the Hamiltonian H(R(f)) throughout the pro-
cess. (A derivation can be found in the Appendix.)
Therefore the only degree of freedom we have is the
phase of the quantum state. We write the state at time ¢
as

2S‘urictly speaking, such a phase choice is guaranteed only in
finite neighborhoods of the parameter space. In the general
case, one can proceed by dividing the path into several such
neighborhoods overlapping with each other, then use the fact
that in the overlapping region the wave functions are related
by a gauge transformation of form (1.7).
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AGE ei’"(”eXpl— éj dt’sn(R(t’))] [n(R(1))),
0

(1.3)

where the second exponential is known as the dynamical
phase factor. Inserting Eq. (1.3) into the time-dependent
Schrodinger equation

L d

lﬁgldfn(t» = HR)|1,(1)) (1.4)
and multiplying it from the left by (n(R())|, one finds
that 7y, can be expressed as a path integral in the param-
eter space

Yo = f dR - A,(R), (1.5)
c
where A,(R) is a vector-valued function
. J
A,(R) = i{n(R)| aRln(R)% (1.6)

This vector A, (R) is called the Berry connection or the
Berry vector potential. Equation (1.5) shows that, in ad-
dition to the dynamical phase, the quantum state will
acquire an additional phase v, during the adiabatic evo-
lution.

Obviously, A, (R) is gauge dependent. If we make a
gauge transformation

n(R)) — e“®ln(R)), (1.7)

with {(R) an arbitrary smooth function and A, (R) trans-
forms according to

ALR) — AR) - = ((R). (1.8)
JdR

Consequently, the phase v, given by Eq. (1.5) will be
changed by {(R(0))-{(R(T)) after the transformation,
where R(0) and R(7) are the initial and final points of
the path C. This observation has led Fock (1928) to con-
clude that one can always choose a suitable {(R) such
that 7y, accumulated along the path C is canceled out,
leaving Eq. (1.3) with only the dynamical phase. Because
of this, the phase 7, has long been deemed unimportant
and it was usually neglected in the theoretical treatment
of time-dependent problems.

This conclusion remained unchallenged until Berry
(1984) reconsidered the cyclic evolution of the system
along a closed path C with R(T)=R(0). The phase choice
we made earlier on the basis function |n(R)) requires
¢“® in the gauge transformation [Eq. (1.7)] to be single
valued, which implies

L(R(0)) — {(R(T)) =27 X integer. (1.9)

This shows that vy, can be only changed by an integer
multiple of 27 under the gauge transformation [Eq.
(1.7)] and it cannot be removed. Therefore for a closed
path, v, becomes a gauge-invariant physical quantity,
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now known as the Berry phase or geometric phase in
general; it is given by

Yn= % dR - A, (R). (1.10)
c

From the above definition, we can see that the Berry
phase only depends on the geometric aspect of the
closed path and is independent of how R(¢) varies in
time. The explicit time dependence is thus not essential

in the description of the Berry phase and will be
dropped in the following discussion.

2. Berry curvature

It is useful to define, in analogy to electrodynamics, a
gauge-field tensor derived from the Berry vector poten-
tial:

J J
—AYR)- —A"(R
&R“A”( ) aR,,A”( )

on(R)

|/ n(R)
:lK = | 2r7 >—(VH,L)}. (1.11)

This field is called the Berry curvature. Then according
to Stokes’s theorem the Berry phase can be written as a
surface integral

QL(R) =

Y = L dR* A dR"5CV. (R), (1.12)

where S is an arbitrary surface enclosed by the path C. It
can be verified from Eq. (1.11) that, unlike the Berry
vector potential, the Berry curvature is gauge invariant
and thus observable.

If the parameter space is three dimensional, Egs.
(1.11) and (1.12) can be recast into a vector form

Q,(R)=Vip X A,(R), (1.11")

7n=f as-Q,(R). (1.12)
S

The Berry curvature tensor (), and vector €, are re-
lated by ) ,=€,,:{€,); with €,,. the Levi-Civita anti-
symmetry tensor. The vector form gives us an intuitive
picture of the Berry curvature: it can be viewed as the
magnetic field in the parameter space.

Besides the differential formula given in Eq. (1.11),
the Berry curvature can be also written as a summation
over the eigenstates:

JdHIRM|n"Y(n'|0H/IR"|\n) — (v <
()i S, SIPHIRA o [HIOR )~ 2 )

n'#n (‘("I‘I_":‘:n’)2

(1.13)

The curvature can be obtained from Eq. (1.11) using
(n|oH/oR|n"y=(on/ IR |n')(e,—e, ) for n' #n. The sum-
mation formula has the advantage that no differentia-
tion on the wave function is involved, therefore it can be
evaluated under any gauge choice. This property is par-
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ticularly useful for numerical calculations, in which the
condition of a smooth phase choice of the eigenstates is
not guaranteed in standard diagonalization algorithms.
It has been used to evaluate the Berry curvature in crys-
tals with the -eigenfunctions supplied from first-
principles calculations (Fang et al, 2003; Yao et al.,
2004).

Equation (1.13) offers further insight on the origin of
the Berry curvature. The adiabatic approximation
adopted earlier is essentially a projection operation, i.e.,
the dynamics of the system is restricted to the nth en-
ergy level. In view of Eq. (1.13), the Berry curvature can
be regarded as the result of the “residual” interaction of
those projected-out energy levels. In fact, if all energy
levels are included, it follows from Eq. (1.13) that the
total Berry curvature vanishes for each value of R,

> Q8 (R)=0. (1.14)

This is the local conservation law for the Berry
curvature.’ Equation (1.13) also shows that QZV(R) be-
comes singular if two energy levels ¢,(R) and ¢,/ (R) are
brought together at certain value of R. This degeneracy
point corresponds to a monopole in the parameter
space; an explicit example is given below.

So far we have discussed the situation where a single
energy level can be separated out in the adiabatic evo-
lution. However, if the energy levels are degenerate,
then the dynamics must be projected to a subspace
spanned by those degenerate eigenstates. Wilczek and
Zee (1984) showed that in this situation non-Abelian
Berry curvature naturally arises. Culcer et al. (2005) and
Shindou and Imura (2005) discussed the non-Abelian
Berry curvature in the context of degenerate Bloch
bands. In the following we focus on the Abelian formu-
lation and defer the discussion of the non-Abelian Berry
curvature to Sec. IX.

Compared to the Berry phase which is always associ-
ated with a closed path, the Berry curvature is truly a
local quantity. It provides a local description of the geo-
metric properties of the parameter space. Moreover, so
far we have treated the adiabatic parameters as passive
quantities in the adiabatic process, i.e., their time evolu-
tion is given from the outset. Later we will show that the
parameters can be regarded as dynamical variables and
the Berry curvature will directly participate in the dy-
namics of the adiabatic parameters (Kuratsuji and lida,
1985). In this sense, the Berry curvature is a more fun-
damental quantity than the Berry phase.

>The conservation law is obtained under the condition that
the full Hamiltonian is known. However, in practice one usu-
ally deals with effective Hamiltonians which are obtained
through some projection process of the full Hamiltonian.
Therefore there will always be some “residual” Berry curva-
ture accompanying the effective Hamiltonian [see Chang and
Niu (2008) and discussions in Sec. IX].
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3. Example: The two-level system

Consider a concrete example: a two-level system. The
purpose to study this system is twofold. First, as a simple
model, it demonstrates the basic concepts as well as sev-
eral important properties of the Berry phase. Second, it
will be repeatedly used later in this article, although in
different physical context. It is therefore useful to go
through the basis of this model.

The generic Hamiltonian of a two-level system takes
the following form:

H=h(R)- o, (1.15)

where o are the Pauli matrices. Despite its simple form,
the above Hamiltonian describes a number of physical
systems in condensed-matter physics for which the Berry
phase effect has been discussed. Examples include spin-
orbit coupled systems (Culcer et al, 2003; Liu et al.,
2008), linearly conjugated diatomic polymers (Su et al.,
1979; Rice and Mele, 1982), one-dimensional ferroelec-
trics (Vanderbilt and King-Smith, 1993; Onoda et al.,
2004b), graphene (Semenoff, 1984; Haldane, 1988), and
Bogoliubov quasiparticles (Zhang et al., 2006).

Parametrize h by its polar angle 6 and azimuthal angle
¢, h=h(sin 6 cos ¢,sin Osin ¢p,cos #), the two eigen-
states, with energies +h, are

sin Zei¢ cos Je7¢
|L£,> = 0 | |u+> = .0 .
—cos 3 sin 5

We are, of course, free to add an arbitrary phase to these
wave functions. Consider the lower energy level. The
Berry connection is given by

(1.16)

A9:<u|io79u>20, (1173)
. ., 0
Ay = (ulid ) = sin > (1.17b)
and the Berry curvature is
Qyp= Ay~ dpAg=75 sin 6. (1.18)

However, the phase of |u_) is not defined at the south
pole (#=1). We can choose another gauge by multiply-
ing |u_) by €% so that the wave function is smooth and
single valued everywhere except at the north pole. Un-
der this gauge we find A4,=0 and A,=—cos” 6/2, and the
same expression for the Berry curvature as in Eq. (1.18).
This is not surprising because the Berry curvature is a
gau%e-independent quantity and the Berry connection is
not.

*One can verify that |u)=(sin(6/2)e %, —cos(6/2)eB-DHT js
also an eigenstate. The phase accumulated by such a state
along the loop defined by =/2 is I'=27(B- %), which seems
to imply that the Berry phase is gauge dependent. This is be-
cause for an arbitrary B the basis function |u) is not single
valued; one must also trace the phase change in the basis func-
tion. For integer value of B the function |u) is single valued
along the loop and the Berry phase is well defined up to an
integer multiple of 2.
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If h(R) depends on a set of parameters R, then

1 (¢p,cos 6)

- . 1.19
B2 (R, Ry) (1.19)

Several important properties of the Berry curvature
can be revealed by considering the specific case of h
=(x,y,z). Using Eq. (1.19), we find the Berry curvature
in its vector form

1h

Q=-——.
2K

(1.20)

One recognizes that Eq. (1.20) is the field generated by a
monopole at the origin A=0 (Dirac, 1931; Wu and Yang,
1975; Sakurai, 1993), where the two energy levels be-
come degenerate. Therefore the degeneracy points act
as sources and drains of the Berry curvature flux. Inte-
grate the Berry curvature over a sphere containing the
monopole, which is the Berry phase on the sphere; we
find

1

In general, the Berry curvature integrated over a closed
manifold is quantized in the units of 27 and equals to
the net number of monopoles inside. This number is
called the Chern number and is responsible for a num-
ber of quantization effects discussed below.

D. Berry phase in Bloch bands

Above we introduced the basic concepts of the Berry
phase for a generic system described by a parameter-
dependent Hamiltonian. We now consider its realization
in crystalline solids. As we shall see, the band structure
of crystals provides a natural platform to investigate the
occurrence of the Berry phase effect.

Within the independent electron approximation, the
band structure of a crystal is determined by the follow-
ing Hamiltonian for a single electron:

ﬁz

H=—+V(r),

- (1.22)

where V(r+a)=V(r) is the periodic potential with a the
Bravais lattice vector. According to Bloch’s theorem, the
eigenstates of a periodic Hamiltonian satisfy the follow-
ing boundary condition:’

lpnq(r + a) = eiqlalpnq(r) s

where n is the band index and #gq is the crystal momen-
tum, which resides in the Brillouin zone. Thus the sys-
tem is described by a g-independent Hamiltonian with a
g-dependent boundary condition [Eq. (1.23)]. To comply
with the general formalism of the Berry phase, we make

(1.23)

5Through out this article, g refers to the canonical momen-
tum and k is reserved for mechanical momentum.
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the following unitary transformation to obtain a
g-dependent Hamiltonian:

H(q)=e 9"He9" = V(r). (1.24)

- 2

p+hq)”
2m

The transformed eigenstate u,,q(r)=e”"”1//nq(r) is just the

cell-periodic part of the Bloch function. It satisfies the

strict periodic boundary condition

Upg(r+ @) = u,,4(r). (1.25)

This boundary condition ensures that all the eigenstates
live in the same Hilbert space. We can thus identify the
Brillouin zone as the parameter space of the trans-
formed Hamiltonian H(q) and |u,(q)) as the basis func-
tion.

Since the g dependence of the basis function is inher-
ent to the Bloch problem, various Berry phase effects
are expected in crystals. For example, if g is forced to
vary in the momentum space, then the Bloch state will
pick up a Berry phase:

Vo= jg dq - (u,(@)|iV glu,(q)). (1.26)
C

We emphasize that the path C must be closed to make v,
a gauge-invariant quantity with physical significance.

Generally speaking, there are two ways to generate a
closed path in the momentum space. One can apply a
magnetic field, which induces a cyclotron motion along a
closed orbit in the g space. This way the Berry phase can
manifest in various magneto-oscillatory effects (Mikitik
and Sharlai, 1999, 2004, 2007), which have been ob-
served in metallic compound LaRhIns (Goodrich et al.,
2002), and most recently graphene systems (Novoselov
et al., 2005, 2006; Zhang et al., 2005). Such a closed orbit
is possible only in two- or three-dimensional (3D) sys-
tems (see Sec. VIL.A). Following our discussion in Sec.
I.C, we define the Berry curvature of the energy bands
by

Qn(q) = Vq X <Mn(‘I)|qu|un(‘I)>

The Berry curvature Q,(q) is an intrinsic property of the
band structure because it only depends on the wave
function. It is nonzero in a wide range of materials, in
particular, crystals with broken time-reversal or inver-
sion symmetry. In fact, once we have introduced the con-
cept of the Berry curvature, a closed loop is not neces-
sary because the Berry curvature itself is a local gauge-
invariant quantity. It is now well recognized that
information on the Berry curvature is essential in a
proper description of the dynamics of Bloch electrons,
which has various effects on transport and thermody-
namic properties of crystals.

One can also apply an electric field to cause a linear
variation in ¢. In this case, a closed path is realized when
q sweeps the entire Brillouin zone. To see this, we note
that the Brillouin zone has the topology of a torus: the
two points ¢ and g+G can be identified as the same
point, where G is the reciprocal lattice vector. This can

(1.27)
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be seen by noting that |¢,(q)) and |#,(g+G)) satisfy the
same boundary condition in Eq. (1.23); therefore, they
can at most differ by a phase factor. The torus topology
is realized by making the phase choice |i,(q))=|#,(q
+G)). Consequently, |u,(q)) and |u,(g+G)) satisfy the
following phase relation:

unq(r) = eiG.runq-*—G(r) . (128)

This gauge choice is called the periodic gauge (Resta,
2000).

In this case, the Berry phase across the Brillouin zone
is called Zak’s phase (Zak, 1989)

7n=f dq - (u,(@)iV glu,(q)). (1.29)
BZ

This phase plays an important role in the formation of
Wannier-Stark ladders (Wannier, 1962); see Sec. VILB.
We note that this phase is entirely due to the torus to-
pology of the Brillouin zone, and it is the only way to
realize a closed path in a one-dimensional parameter
space. By analyzing the symmetry properties of Wannier
functions (Kohn, 1959) of a one-dimensional crystal, Zak
(1989) showed that v, is either 0 or 7 in the presence of
inversion symmetry; a simple argument is given in Sec.
II.C. If the crystal lacks inversion symmetry, v, can as-
sume any value. Zak’s phase is also related to macro-
scopic polarization of an insulator (King-Smith and
Vanderbilt, 1993; Resta, 1994; Sipe and Zak, 1999); see
Sec. II.C.

II. ADIABATIC TRANSPORT AND ELECTRIC
POLARIZATION

One of the earlier examples of the Berry phase effect
in crystals is the adiabatic transport in a one-
dimensional band insulator, first considered by Thouless
(1983). He found that if the potential varies slowly in
time and returns to itself after some time, the particle
transport during the time cycle can be expressed as a
Berry phase and it is an integer. This idea was later gen-
eralized to many-body systems with interactions and dis-
order provided that the Fermi energy always lies in a
bulk energy gap during the cycle (Niu and Thouless,
1984). Avron and Seiler (1985) studied the adiabatic
transport in multiply connected systems. The scheme of
adiabatic transport under one or several controlling pa-
rameters has proven very powerful and opened the door
to the field of parametric charge pumping (Niu, 1990;
Talyanskii et al., 1997; Brouwer, 1998; Switkes et al.,
1999; Zhou et al., 1999). It also provides a firm founda-
tion to the modern theory of polarization developed in
the early 1990s (King-Smith and Vanderbilt, 1993; Ortiz
and Martin, 1994; Resta, 1994).

A. Adiabatic current

Consider a one-dimensional band insulator under a
slowly varying time-dependent perturbation. We assume
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the perturbation is periodic in time, i.e., the Hamiltonian
satisfies

H(it+T)=H(@). (2.1)
Since the time-dependent Hamiltonian still has the
translational symmetry of the crystal, its instantaneous
eigenstates have the Bloch form e'@|u,(q,?)). It is con-
venient to work with the g-space representation of the
Hamiltonian H(q,t) [see Eq. (1.24)] with eigenstates
lu,(q,t)). We note that under this parametrization the
wave vector ¢ and time ¢ are put on an equal footing as
both are independent coordinates of the parameter
space.

We are interested in the adiabatic current induced by
the variation in external potentials. Apart from an un-
important overall phase factor and up to first order in
the rate of the change in the Hamiltonian, the wave
function is given by (see the Appendix)

un,><un/ z?u,/&t)
i S, P k020

n'#n

(2.2)

Ey — &y

The velocity operator in the g representation has the
form v(q,t):é'H(q,t)/a(fiq).6 Hence, the average veloc-
ity in a state of given ¢ is found to first order as

0.(q) = 9e,(q)
" hagq
{(un|&H/aq|un,><un,|6un/&t> }
i —c.c.(,
' £n Ep— Eyr

(2.3)

where c.c. denotes the complex conjugate. Using the fact
that (u,|0H/dq|u, )= (g,— &, ){du,/ dq|u, ) and the iden-

tity 2,/ |, Xu,/|=1, we find
o\ [ oy | aw, ]
ot at | aq | |

v,(q) = 9e,(q) —i[ Ay
" haq aq
(2.4)
The second term is exactly the Berry curvature (), de-
fined in the parameter space (q,f) [see Eq. (1.11)].
Therefore Eq. (2.4) can be recast into a compact form

den(q)  n
valg) = Thig Q-

(2.5)

Upon integration over the Brillouin zone, the zeroth-
order term given by the derivative of the band energy
vanishes, and only the first-order term survives. The in-
duced adiabatic current is given by

*The velocity operator is defined by v=i=(i/A)[H,r]. In
the ¢ representation, it becomes wv(q)=e '4"(i/h)[r,H]eT"
=0H(q,1)/(fq).
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D=(0,1) C=(1,1)

4=(0,0)
(@ (b)

B=(1,0) x

FIG. 1. Brillouin zone as a torus. (a) A torus with its surface
parametrized by (q,?). The control parameter R(¢) is periodic
in t. (b) The equivalence of a torus: a rectangle with periodic
boundary conditions: AB=DC and AD=BC. To make use of
Stokes’s theorem, we relax the boundary condition and allow
the wave functions on parallel sides to have different phases.

-3

n

d—qQZl, (2.6)
BZ 27T
where the sum is over filled bands. We have thus derived
the result that the adiabatic current induced by a time-
dependent perturbation in a band is equal to the g inte-
gral of the Berry curvature QZ, (Thouless, 1983).

B. Quantized adiabatic particle transport

Next we consider the particle transport for the nth
band over a time cycle given by

T
d
cn:—f dtf —ngt.
0 Bz 27

Since the Hamiltonian H(q,?) is periodic in both ¢ and ¢,
the parameter space of H(q,?) is a torus, schematically
shown in Fig. 1(a). By definition (1.12), 2mc,, is nothing
but the Berry phase over the torus.

In Sec. I.C.3 we showed that the Berry phase over a
closed manifold, the surface of a sphere S? in that case,
is quantized in the unit of 277. Here we prove that it is
also true in the case of a torus. Our strategy is to evalu-
ate the surface integral (2.7) using Stokes’s theorem,
which requires the surface to be simply connected. To do
that, we cut the torus open and transform it into a rect-
angle, as shown in Fig. 1(b). The basis function along the
contour of the rectangle is assumed to be single valued.
We introduce x=t/T and y=q/2m. According to Eq.
(1.10), the Berry phase in Eq. (2.7) can be written into a
contour integral of the Berry vector potential, i.e.,

c=—
2

D A
+f dxAx(x,1)+J dyA,(0,y)

C D

_1
T 2m
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(2.7)

B c
fdxAx(x,O)+J dyA,(1,y)

A B

1
f dx[ A (x,0) — A (x,1)]
0

1
—f dY[Ay(O,y)—Ay(l,y)]}, (2.8)
0
where the band index # is dropped for simplicity. Now
consider the integration over x. By definition 4,(x,y)
=(u(x,y)|iV Ju(x,y)). Recall that |u(x,0)) and |u(x,1))
describe physically equivalent states, therefore they can
only differ by a phase factor, ie. e%®u(x,1))
=|u(x,0)). We thus have

fol dx[A(x,0) — A (x,1)] = 6,(1) — 6,(0). (2.9)
Similarly,

J: dy[A,(0,y) = A,(1,y)]= 6,(1) - 6,(0), (2.10)
where e/»W|u(y,1))=|u(y,0)). The total integral is

c= %T[Hx(l) - 6,(0) + 6,(0) - 6,(1)]. (2.11)

On the other hand, using the phase matching relations at
the four corners A, B, C, and D,

¢%)14(0,1)) = [u(0,0)),
¢ M)u(1,1)) = |u(1,0)),
e %Ou(1,0)) = [u(0,0)),

B O)(1,1)) = [w(0,1)),
we obtain
11(0,0)) = el D-6:0+6,0-0,1)1 () ). (2.12)

The single valuedness of |u) requires that the exponent
must be an integer multiple of 2. Therefore the trans-
ported particle number ¢, given in Eq. (2.11), must be
quantized. This integer is called the first Chern number,
which characterizes the topological structure of the map-
ping from the parameter space (q,?) to the Bloch states
|u(q,1)). Note that in our proof we made no reference to
the original physical system; the quantization of the
Chern number is always true as long as the Hamiltonian
is periodic in both parameters.

For a particular case in which the entire periodic po-
tential is sliding, an intuitive picture of the quantized
particle transport is the following. If the periodic poten-
tial slides its position without changing its shape, we ex-
pect that the electrons simply follow the potential. If the
potential shifts one spatial period in the time cycle, the
particle transport should be equal to the number of filled
Bloch bands (double if the spin degeneracy is counted).
This follows from the fact that there is on average one
state per unit cell in each filled band.

1. Conditions for nonzero particle transport in cyclic motion

We have shown that the adiabatic particle transport
over a time period takes the form of the Chern number
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and it is quantized. However, the exact quantization
does not guarantee that the electrons will be transported
at the end of the cycle because zero is also an integer.
According to the discussion in Sec. I.C.3, the Chern
number counts the net number of monopoles enclosed
by the surface. Therefore the number of transported
electrons can be related to the number of monopoles,
which are degeneracy points in the parameter space.

To formulate this problem, we let the Hamiltonian
depend on time through a set of control parameters
R(), ie.,

H(q,t)=H(q,R(t)), R(t+T)=R(1). (2.13)

The particle transport is now given by, in terms of R,

1
=—®dR dg Q' p .
Cy 27T§ HJBZ q qRa

If R(r) is a smooth function of ¢, as it is usually the case
for physical quantities, then R must have at least two
components, say R; and R,. Otherwise, the trajectory of
R(t) cannot trace out a circle on the torus [see Fig. 1(a)].
To find the monopoles inside the torus, we now relax the
constraint that R; and R, can only move on the surface
and extend their domains inside the torus such that the
parameter space of (¢,R;,R,) becomes a toroid. Thus,
the criterion for ¢, to be nonzero is that a degeneracy
point must occur somewhere inside the torus as one var-
ies g, Ry, and R,. In the context of quasi-one-
dimensional ferroelectrics, Onoda et al. (2004b) dis-
cussed the situation where R has three components and
showed how the topological structure in the R space
affects the particle transport.

(2.14)

2. Many-body interactions and disorder

Above we considered only band insulators of nonin-
teracting electrons. However, in real materials both
many-body interactions and disorder are ubiquitous. Niu
and Thouless (1984) studied this problem and showed
that in the general case the quantization of particle
transport is still valid as long as the system remains an
insulator during the whole process.

Consider a time-dependent Hamiltonian of an
N-particle system

N AD N
H=3 B—m + U(x,-,t)} + 3 V(- x), (2.15)

i>j
where the one-particle potential U(x;,t) varies slowly in
time and repeats itself in period 7. Note that we have
not assumed any specific periodicity of the potential
U(x;,t). The trick is to use the so-called twisted bound-
ary condition by requiring that the many-body wave
function satisfies

D(xq, ... x;+ L, xy) = ED(xq, X LX),

(2.16)

where L is the size of the system. This is equivalent to
solving a x-dependent Hamiltonian
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H(r,1) = explin X x;) Htexp(- ix 2 x;) (2.17)
with the strict periodic boundary condition
(IN)(K;Xl, e Xi+ Ly o xy) = CISK(K;Xl, oo Xy ey XN
(2.18)

The Hamiltonian H(k,f) together with the boundary
condition (2.18) describes a one-dimensional system
placed on a ring of length L and threaded by a magnetic
flux of (Z/e)xL (Kohn, 1964). We note that the above
transformation (2.17) with the boundary condition (2.18)
is similar to that of the one-particle case, given by Egs.
(1.24) and (1.25).

One can verify that the current operator is given by
JdH(k,t)/ d(hk). For each «, we can repeat the same steps
in Sec. II.A by identifying |u,) in Eq. (2.2) as the many-

body ground-state |®,) and |u,,/) as the excited state. We

have
, de(k) | [ oD, | oD, oD, | oD,
j(k) = o U\ N\ T | e
oK ok | ot ot oK
de(k)  ~
= -Q.. 2.19
Py «t (2.19)

So far the derivation is formal and we still cannot see
why the particle transport should be quantized. The key
step is achieved by realizing that if the Fermi energy lies
in a gap, then the current j(x) should be insensitive to
the boundary condition specified by « (Thouless, 1981;
Niu and Thouless, 1984). Consequently, we can take the
thermodynamic limit and average j(x) over different
boundary conditions. Note that « and x+2/L describe
the same boundary condition in Eq. (2.16). Therefore
the parameter space for « and ¢ is a torus 72:{0<«
<2/ L,0<t<T}. The particle transport is given by

1 T 2m/L B
c=——| ar f dxQ,,
27T 0 0

(2.20)
which, according to the previous discussion, is quan-
tized.

We emphasize that the quantization of the particle
transport only depends on two conditions:

(1) The ground state is separated from the excited
states in the bulk by a finite energy gap.

(2) The ground state is nondegenerate.

The exact quantization of the Chern number in the
presence of many-body interactions and disorder is re-
markable. Usually, small perturbations to the Hamil-
tonian result in small changes of physical quantities.
However, the fact that the Chern number must be an
integer means that it can only be changed in a discon-
tinuous way and does not change at all if the perturba-
tion is small. This is a general outcome of the topological
invariance.
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Later we show that the same quantity also appears in
the quantum Hall effect. Equation (2.19), the induced
current, also provides a many-body formulation for
adiabatic transport.

3. Adiabatic pumping

The phenomenon of adiabatic transport is sometimes
called adiabatic pumping because it can generate a dc
current / via periodic variations of some parameters of
the system, i.e.,

(2.21)

where c is the Chern number and v is the frequency of
the variation. Niu (1990) suggested that the exact quan-
tization of the adiabatic transport can be used as a stan-
dard for charge current and proposed an experimental
realization in nanodevices, which could serve as a charge
pump. Later a similar device was realized in the experi-
mental study of acoustoelectric current induced by a sur-
face acoustic wave in a one-dimensional channel in a
GaAs-Al,Ga,_, heterostructure (Talyanskii et al., 1997).
The same idea has led to the proposal of a quantum spin
pump in an antiferromagnetic chain (Shindou, 2005).

Recently much effort has focused on adiabatic pump-
ing in mesoscopic systems (Brouwer, 1998; Zhou et al.,
1999; Avron et al., 2001, 2004; Sharma and Chamon,
2001; Mucciolo et al., 2002; Zheng et al., 2003). Experi-
mentally both charge and spin pumping have been ob-
served in a quantum dot system (Switkes et al., 1999;
Watson et al., 2003). Instead of the wave function, the
central quantity in a mesoscopic system is the scattering
matrix. Brouwer (1998) showed that the pumped charge
over a time period is given by

EAYAY
Q(m) == f dX,dX,>, > J—2L—oE
TJ A B aem &Xl ’9X2

I=ecv,

(2.22)

where m labels the contact, X; and X, are two external
parameters whose trace encloses the area A in the pa-
rameter space, « and S label the conducting channels,
and S,4 is the scattering matrix. Although the physical
descriptions of these open systems are dramatically dif-
ferent from the closed ones, the concepts of gauge field
and geometric phase can still be applied. The integrand
in Eq. (2.22) can be thought as the Berry curvature
Qy, X2=—23<(9X1u|(9)(2u) if we identify the inner product
of the state vector with the matrix product. Zhou et al.
(2003) showed the pumped charge (spin) is essentially
the Abelian (non-Abelian) geometric phase associated
with scattering matrix S,g.

C. Electric polarization of crystalline solids

Electric polarization is one of the fundamental quan-
tities in condensed-matter physics, essential to any
proper description of dielectric phenomena of matter.
Despite its importance, the theory of polarization in
crystals had been plagued by the lack of a proper micro-
scopic understanding. The main difficulty lies in the fact
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that in crystals the charge distribution is periodic in
space, for which the electric dipole operator is not well
defined. This difficulty is most exemplified in covalent
solids, where the electron charges are continuously dis-
tributed between atoms. In this case, simple integration
over charge density would give arbitrary values depend-
ing on the choice of the unit cell (Martin, 1972, 1974). It
has prompted the question whether the electric polariza-
tion can be defined as a bulk property. These problems
are eventually solved by the modern theory of polariza-
tion (King-Smith and Vanderbilt, 1993; Resta, 1994),
where it is shown that only the change in polarization
has physical meaning and it can be quantified using the
Berry phase of the electronic wave function. The result-
ing Berry phase formula has been very successful in
first-principles studies of dielectric and ferroelectric ma-
terials. Resta and Vanderbilt (2007) reviewed recent
progress in this field.

Here we discuss the theory of polarization based on
the concept of adiabatic transport. Their relation is re-
vealed by elementary arguments from macroscopic elec-

trostatics (Ortiz and Martin, 1994). We begin with
V- P(r)=-p(r), (2.23)

where P(r) is the polarization density and p(r) is the
charge density. Coupled with the continuity equation

p(r)
—+V-j=0, 2.24
o TV (2.24)
Eq. (2.23) leads to
\% <£ ) =0 (2.25)
P jl=0. .

Therefore up to a divergence-free part,” the change in
the polarization density is given by

T
AP, = f dtj,.
0

(2.26)

Equation (2.26) can be interpreted in the following way:
The polarization difference between two states is given
by the integrated bulk current as the system adiabati-
cally evolves from the initial state at =0 to the final
state at t=T7. This description implies a time-dependent
Hamiltonian H(f), and the electric polarization can be
regarded as “unquantized” adiabatic particle transport.
The above interpretation is also consistent with experi-
ments, as it is always the change in the polarization that
has been measured (Resta and Vanderbilt, 2007).
Obviously, the time ¢ in the Hamiltonian can be re-
placed by any scalar that describes the adiabatic process.
For example, if the process corresponds to a deforma-
tion of the crystal, then it makes sense to use the param-

"The divergence-free part of the current is usually given by
the magnetization current. In a uniform system, such current
vanishes identically in the bulk. Hirst (1997) gave an in-depth
discussion on the separation between polarization and magne-
tization current.



1970 Xiao, Chang, and Niu: Berry phase effects on electronic properties

eter that characterizes the atomic displacement within a
unit cell. For general purpose, we assume the adiabatic
transformation is parametrized by a scalar \(f) with
N(0)=0 and N(7)=1. It follows from Egs. (2.6) and (2.26)
that

AP _eEJ d)\fgz@ i 9

where d is the dimensionality of the system. This is the
Berry phase formula obtained by King-Smith and
Vanderbilt (1993).

In numerical calculations, a two-point version of Eq.
(2.27) that involves only the initial and final states of the
system is commonly used to reduce the computational
load. This Vers10n is obtained under the periodic gauge
[see Eq. (1. 28)].% The Berry curvature (), A is written as
g Ar— A, . Under the periodic gauge ‘A, is periodic
in q,, and 1ntegrat10n of J, A\ over g, vanishes. Hence

(2.27)

1
=e > 2mi . (2.28)

BZ (277

\=0

In view of Eq. (2.28), both the adiabatic transport and
the electric polarization can be regarded as the manifes-
tation of Zak’s phase, given in Eq. (1.29).

A price must be paid, however, to use the two-point
formula, namely, the polarization in Eq. (2.28) is deter-
mined up to an uncertainty quantum. Since the integral
(2.28) does not track the history of A, there is no infor-
mation on how many cycles A has gone through. Accord-
ing to our discussion on quantized particle transport in
Sec. I1.B, for each cycle an integer number of electrons
are transported across the sample, hence the polariza-
tion is changed by multiple of the quantum

ea
W (2.29)
where a is the Bravais lattice vector and V), is the volume
of the unit cell.

Because of this uncertainty quantum, the polarization
may be regarded as a multivalued quantity with each
value differed by the quantum. With this in mind, con-
sider Zak’s phase in a one-dimensional system with in-
version symmetry. Now we know that Zak’s phase is just
27r/e times the polarization density P. Under spatial in-
version, P transforms to —P. On the other hand, inver-
sion symmetry requires that P and —P describes the
same state, which is only possible if P and —P differ by
multiple of the polarization quantum ea. Therefore P is
either 0 or ea/2 (modulo ea). Any other value of P will
break the inversion symmetry. Consequently, Zak’s
phase can only take the value 0 or 7 (modulo 2m7).

8A more general phase choice is given by the path-
independent gauge |u,(q,\))=el%D*C 7y (g+G,\)), where
6(q) is an arbitrary phase (Ortiz and Martin, 1994).
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King-Smith and Vanderbilt (1993) further showed
that, based on Eq. (2.28), the polarization per unit cell
can be defined as the dipole moment of the Wannier
charge density,

P=-eX J drr|W,(r),

(2.30)

where W, (r) is the Wannier function of the nth band,

dg
W, (r— R) = NV, f 1 _jge-Ry ().  (231)

BZ (277)36

In this definition, one effectively maps a band insulator
into a periodic array of localized distributions with truly
quantized charges. This resembles an ideal ionic crystal
where the polarization can be understood in the classical
picture of localized charges. The quantum uncertainty
found in Eq. (2.29) is reflected by the fact that the Wan-
nier center position is defined only up to a lattice vector.

Before concluding, we point out that the polarization
defined above is clearly a bulk quantity as it is given by
the Berry phase of the ground-state wave function. A
many-body formulation was developed by Ortiz and
Martin (1994) based on the work of Niu and Thouless
(1984).

Recent development in this field falls into two catego-
ries. On the computational side, calculating polarization
in finite electric fields has been addressed, which has a
strong influence on density functional theory in ex-
tended systems (Nunes and Vanderbilt, 1994; Nunes and
Gonze, 2001; Souza et al., 2002). On the theory side,
Resta (1998) proposed a quantum-mechanical position
operator for extended systems. It was shown that the
expectation value of such an operator can be used to
characterize the phase transition between the metallic
and insulating states (Resta and Sorella, 1999; Souza et
al., 2000) and is closely related to the phenomenon of
electron localization (Kohn, 1964).

1. The Rice-Mele model

So far our discussion of the adiabatic transport and
electric polarization has been rather abstract. We now
consider a concrete example: a one-dimensional dimer-
ized lattice model described by the following Hamil-
tonian:

H:2(§+(—1y‘ )(c ¢+ Hee) + A 1)c]
j
(2.32)

where ¢ is the uniform hopping amplitude, & is the
dimerization order, and A is a staggered sublattice po-
tential. It is the prototype Hamiltonian for a class of
one-dimensional ferroelectrics. At half filling, the system
is a metal for A=6=0, and an insulator otherwise. Rice
and Mele (1982) considered this model in the study of
solitons in polyenes. It was later used to study ferroelec-
tricity (Vanderbilt and King-Smith, 1993; Onoda et al.,
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FIG. 2. (Color online) Polarization as a function of A and & in
the Rice-Mele model. The unit is ea with a the lattice constant.
The line of discontinuity can be chosen anywhere depending
on the particular phase choice of the eigenstate.

2004b). If A=0, it reduces to the celebrated Su-Shrieffer-
Heeger model (Su et al., 1979).

Assuming periodic boundary conditions, the Bloch
representation of the above Hamiltonian is given by
H(q)=h(q)- o, where

h= (t cos qz_a’_ dsin ﬂ,A). (2.33)

2

This is the two-level model discussed in Sec. I.C.3. Its
energy spectrum consists of two bands with eigenener-
gies g,=+(A%+ & sin® ga/2+1* cos® ga/2)"?. The degen-
eracy point occurs at

A=0, 6=0, g=la. (2.34)
The polarization is calculated using the two-point for-
mula (2.28) with the Berry connection given by

0
Aq = (7q¢./4¢, + (7q0A0: Sin2 an(]s, (235)

where 6 and ¢ are the spherical angles of A.

Consider the case of A=0. In the parameter space of
h, it lies in the x-y plane with §=7/2. As g varies from 0
to 2m/a, ¢ changes from 0 to = if 6§<0 and 0 to — if
6>0. Therefore the polarization difference between
P(6) and P(-9) is ea/2. This is consistent with the obser-
vation that the state with P(—6) can be obtained by shift-
ing the state with P(5) by half of the unit cell length a.

Figure 2 shows the calculated polarization for arbi-
trary A and 6. If the system adiabatically evolves along a
loop enclosing the degeneracy point (0,0) in the (A, d)
space, then the polarization will be changed by ea, which
means that if we allow (A, 8) to change in time along this
loop, for example, A(f)=Agsin(¢f) and &(¢) =&, cos(t), a
quantized charge of e is pumped out of the system after
one cycle. On the other hand, if the loop does not con-
tain the degeneracy point, then the pumped charge is
Zero.
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III. ELECTRON DYNAMICS IN AN ELECTRIC FIELD

The dynamics of Bloch electrons under the perturba-
tion of an electric field is one of the oldest problems in
solid-state physics. It is usually understood that while
the electric field can drive electron motion in momen-
tum space, it does not appear in the electron velocity;
the latter is simply given by [see, for example, Chap. 12
of Ashcroft and Mermin (1976)]

0, (q) = de (q).

(3.1)

Through recent progress on the semiclassical dynamics
of Bloch electrons it has been made increasingly clear
that this description is incomplete. In the presence of an
electric field, an electron can acquire an anomalous ve-
locity proportional to the Berry curvature of the band
(Chang and Niu, 1995, 1996; Sundaram and Niu, 1999).
This anomalous velocity is responsible for a number of
transport phenomena, in particular various Hall effects,
which we study in this section.

A. Anomalous velocity

Consider a crystal under the perturbation of a weak
electric field E, which enters into the Hamiltonian
through the coupling to the electrostatic potential ¢(r).
A uniform E means that ¢(r) varies linearly in space and
breaks the translational symmetry of the crystal so that
Bloch’s theorem cannot be applied. To avoid this diffi-
culty, one can let the electric field enter through a uni-
form vector potential A(#) that changes in time. Using
the Peierls substitution, the Hamiltonian is written as

2
iy = 2+ AOT

+V(r). (3.2)
This is the time-dependent problem studied in last sec-

tion. Transforming to the g-space representation, we
have

}H%0=}4q+%AUO. (3.3)
Introduce the gauge-invariant crystal momentum
e
k:q+%A(t). (3.4)

The parameter-dependent Hamiltonian can be simply
written as H(k(q,t)). Hence the eigenstates of the time-
dependent Hamiltonian can be labeled by a single pa-
rameter k. Moreover, because A(f) preserves the trans-
lational symmetry, ¢ is still a good quantum number and
is a constant of motion ¢=0. It then follows from Eq.
(3.4) that k satisfies the following equation of motion:

k=--E. (3.3)
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Using d/dq =/ dk, and 9/ dt=—(e/h)E ,d/ Ik, the gen-
eral formula (2.5) for the velocity in a given state k be-
comes
e, (k) e

-—EX
nok 7 Qalk),

where Q, (k) is the Berry curvature of the nth band:
Q,(k) = iV, (k)| X |V, (). (3.7

We can see that, in addition to the usual band dispersion
contribution, an extra term previously known as an
anomalous velocity also contributes to v,,(k). This veloc-
ity is always transverse to the electric field, which will
give rise to a Hall current. Historically the anomalous
velocity was obtained by Karplus and Luttinger (1954),
Kohn and Luttinger (1957), and Adams and Blount
(1959); its relation to the Berry phase was realized much
later. In Sec. V we rederive this term using a wave-
packet approach.

Un(k) =

(3.6)

B. Berry curvature: Symmetry considerations

The velocity formula (3.6) reveals that, in addition to
the band energy, the Berry curvature of the Bloch bands
is also required for a complete description of the elec-
tron dynamics. However, the conventional formula [Eq.
(3.1)] has much success in describing various electronic
properties in the past. It is thus important to know under
what conditions the Berry curvature term cannot be ne-
glected.

The general form of the Berry curvature Q,,(k) can be
obtained via symmetry analysis. The velocity formula
(3.6) should be invariant under time-reversal and spatial
inversion operations if the unperturbed system has these
symmetries. Under time reversal, v, and k change sign
while FE is fixed. Under spatial inversion, v,, k, and E
change sign. If the system has time-reversal symmetry,
the symmetry condition on Eq. (3.6) requires that

Q,(-k)=-Q,(k).
If the system has spatial inversion symmetry, then
Q,(- k) =Q,(k). (3.9)

Therefore, for crystals with simultaneous time-reversal
and spatial inversion symmetry the Berry curvature van-
ishes identically throughout the Brillouin zone. In this
case Eq. (3.6) reduces to the simple expression (3.1).
However, in systems with broken either time-reversal or
inversion symmetries, their proper description requires
the use of the full velocity formula (3.6).

There are many important physical systems where
both symmetries are not simultaneously present. For ex-
ample, in the presence of ferromagnetic or antiferro-
magnetic ordering the crystal breaks the time-reversal
symmetry. Figure 3 shows the Berry curvature on the
Fermi surface of fcc Fe. As shown the Berry curvature is
negligible in most areas in the momentum space and
displays sharp and pronounced peaks in regions where
the Fermi lines [intersection of the Fermi surface with

(3.8)
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FIG. 3. (Color online) Fermi surface in (010) plane (solid lines)
and the integrated Berry curvature —(),(k) in atomic units
(color map) of fcc Fe. From Yao et al., 2004.

(010) plane] have avoided crossings due to spin-orbit
coupling. Such a structure has been identified in other
materials as well (Fang et al., 2003). Another example is
provided by single-layered graphene sheet with stag-
gered sublattice potential, which breaks inversion sym-
metry (Zhou et al., 2007). Figure 4 shows the energy
band and Berry curvature of this system. The Berry cur-
vature at valley K; and K, have opposite signs due to
time-reversal symmetry. We note that as the gap ap-
proaches zero, the Berry phase acquired by an electron
during one circle around the valley becomes exactly +r.
This Berry phase of 7 has been observed in intrinsic
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FIG. 4. (Color online) Energy bands (top panel) and Berry
curvature of the conduction band (bottom panel) of a
graphene sheet with broken inversion symmetry. The first Bril-
louin zone is outlined by the dashed lines, and two inequiva-
lent valleys are labeled as K; and K,. Details are presented in
Xiao, Yao, and Niu (2007).
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graphene sheet (Novoselov et al., 2005; Zhang et al.,
2005).

C. The quantum Hall effect

The quantum Hall effect was discovered by Klitzing et
al. (1980). They found that in a strong magnetic field the
Hall conductivity of a two-dimensional (2D) electron gas
is exactly quantized in the units of e?/h. The exact quan-
tization was subsequently explained by Laughlin (1981)
based on gauge invariance and was later related to a
topological invariance of the energy bands (Thouless et
al., 1982; Avron et al., 1983; Niu et al., 1985). Since then
it has blossomed into an important research field in
condensed-matter physics. In this section we focus only
on the quantization aspect of the quantum Hall effect
using the formulation developed so far.

Consider a two-dimensional band insulator. It follows
from Eq. (3.6) that the Hall conductivity of the system is
given by

e’ d*k
O'xy = P 7 (277)2Qkxky’ (310)
where the integration is over the entire Brillouin. Once
again we encounter the situation where the Berry curva-
ture is integrated over a closed manifold. Here o, is the
Chern number in the units of ¢2/h, i.e.,

62

Ty =n . (3.11)
Therefore the Hall conductivity is quantized for a two-
dimensional band insulator of noninteracting electrons.

Historically the quantization of the Hall conductivity
in a crystal was first shown by Thouless et al. (1982) for
magnetic Bloch bands (see also Sec. VIII). It was shown
that, due to the magnetic translational symmetry, the
phase of the wave function in the magnetic Brillouin
zone carries a vortex and leads to a nonzero quantized
Hall conductivity (Kohmoto, 1985). However, it is clear
from the above derivation that for the quantum Hall
effect to occur the only condition is that the Chern num-
ber of the bands must be nonzero. It is possible that in
some materials the Chern number can be nonzero even
in the absence of an external magnetic field. Haldane
(1988) constructed a tight-binding model on a honey-
comb lattice which displays the quantum Hall effect with
zero net flux per unit cell. Another model is proposed
for semiconductor quantum well where the spin-orbit
interaction plays the role of the magnetic field (Qi et al.,
2006; Liu et al., 2008) and leads to a quantized Hall con-
ductance. The possibility of realizing the quantum Hall
effect without a magnetic field is attractive in device de-
sign.

Niu et al. (1985) further showed that the quantized
Hall conductivity in two-dimensions is robust against
many-body interactions and disorder [see also Avron
and Seiler (1985)]. Their derivation involves the same
technique discussed in Sec. II.B.2. A two-dimensional
many-body system is placed on a torus by assuming pe-
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FIG. 5. Magnetic flux going through the holes of the torus.

riodic boundary conditions in both directions. One can
then thread the torus with magnetic flux through its
holes (Fig. 5) and make the Hamiltonian H(¢;,¢,) de-
pend on the flux ¢, and ¢,. The Hall conductivity is
calculated using the Kubo formula

o= iezh E <(I)0|v1|q)n><q)n|v2|q)0> B (1 — 2)

2
n>0 (80 - Sn)

. (3.12)

where @, is the many-body wave function with |®,) the
ground state. In the presence of flux, the velocity opera-
tor is given by v;=dH(k;,k,)/ dfik;) with k;=(e/h)d;/ L;
and L; the dimensions of the system. We recognize that
Eq. (3.12) is the summation formula (1.13) for the Berry
curvature QK] X, of the state |®,). The existence of a bulk
energy gap guarantees that the Hall conductivity re-
mains unchanged after thermodynamic averaging, which
is given by

62 27/Lq 2Ly
o= %f dKlf dK2QK1K2.
0 0

(3.13)

Note that the Hamiltonian H(k;,k,) is periodic in «;
with period 2m/L; because the system returns to its
original state after the flux is changed by a flux quantum
hle (and «; changed by 27/ L;). Therefore the Hall con-
ductivity is quantized even in the presence of many-
body interaction and disorder. Due to the high precision
of the measurement and the robustness of the quantiza-
tion, the quantum Hall resistance is now used as the
primary standard of resistance.

The geometric and topological ideas developed in the
study of the quantum Hall effect has a far-reaching im-
pact on modern condensed-matter physics. The robust-
ness of the Hall conductivity suggests that it can be used
as a topological invariance to classify many-body phases
of electronic states with a bulk energy gap (Avron et al.,
1983): states with different topological orders (Hall con-
ductivities in the quantum Hall effect) cannot be adia-
batically transformed into each other; if that happens, a
phase transition must occur. The Hall conductivity has
important applications in strongly correlated electron
systems, such as the fractional quantum Hall effect (Wen
and Niu, 1990), and most recently the topological quan-
tum computing [for a review, see Nayak et al. (2008)].
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D. The anomalous Hall effect

Next we discuss the anomalous Hall effect, which re-
fers to the appearance of a large spontaneous Hall cur-
rent in a ferromagnet in response to an electric field
alone [for early works in this field see Chien and West-
gate (1980)]. Despite its century-long history and impor-
tance in sample characterization, the microscopic
mechanism of the anomalous Hall effect has been a con-
troversial subject and it comes to light only recently [for
a recent review see Nagaosa et al. (2010)]. In the past,
three mechanisms have been identified: the intrinsic
contribution (Karplus and Luttinger, 1954; Luttinger,
1958), the extrinsic contributions from the skew (Smit,
1958), and side-jump scattering (Berger, 1970). The latter
two describe the asymmetric scattering amplitudes for
spin-up and spin-down electrons. It was later realized
that the scattering-independent intrinsic contribution
comes from the Berry phase supported anomalous ve-
locity. This will be our primary interest here.

The intrinsic contribution to the anomalous Hall ef-
fect can be regarded as an “unquantized” version of the
quantum Hall effect. The Hall conductivity is given by

é? dk
Tay = f mf(sk)ﬂkxky, (3.14)

(

where f(g;) is the Fermi-Dirac distribution function.
However, unlike the quantum Hall effect, the anoma-
lous Hall effect does not require a nonzero Chern num-
ber of the band; for a band with zero Chern number, the
local Berry curvature can be nonzero and give rise to a
nonzero anomalous Hall conductivity.

Consider a generic Hamiltonian with spin-orbit (SO)
split bands (Onoda, Sugimoto, and Nagaosa, 2006),

27,2

hk
H=—+NkX o) -e,- Ao, (3.15)
2m

where 2A is the SO split gap in the energy spectrum &,
=h2k?/2m+\\?k*+A? and \ gives a linear dispersion in
the absence of A. This model also describes spin-
polarized two-dimensional electron gas with Rashba SO
coupling, with A the SO coupling strength and A the
exchange field (Culcer et al., 2003). Obviously the A term
breaks time-reversal symmetry and the system is ferro-
magnetic. However, the A term alone will not lead to a
Hall current as it only breaks the time-reversal symme-
try in the spin space. The SO interaction is needed to
couple the spin and orbital part together. The Berry cur-
vature is given by, using Eq. (1.19),

MA
O,=% 20K+ AR (3.16)
The Berry curvatures of the two energy bands have op-
posite sign and are highly concentrated around the gap.
(In fact, the Berry curvature has the same form of the
Berry curvature in one valley of the graphene, shown in
Fig. 4.) One can verify that the integration of the Berry
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FIG. 6. Anomalous Hall effect in a simple two-band model. (a)
Energy dispersion of spin-split bands. (b) The Hall conductiv-
ity —oy, in the units of e’/h as a function of Fermi energy.

curvature of a full band, 27[qdq()., is £ for the upper
and lower bands, respectively.

Figure 6 shows the band dispersion, and the intrinsic
Hall conductivity [Eq. (3.14)] as the Fermi energy
sweeps across the SO split gap. As shown when the
Fermi energy er is in the gap region, the Hall conduc-
tivity reaches its maximum value (about —e?/2h). If &
<-A, the states with energies just below —A, which con-
tribute most to the Hall conductivity, are empty. If e
> A, contributions from upper and lower bands cancel
each other, and the Hall conductivity decreases quickly
as ep moves away from the band gap. It is only when
—A<ep<A, the Hall conductivity is resonantly en-
hanced (Onoda, Sugimoto, and Nagaosa, 2006).

1. Intrinsic versus extrinsic contributions

The above discussion does not take into account the
fact that, unlike insulators, in metallic systems electron
scattering can be important in transport phenomena.
Two contributions to the anomalous Hall effect arises
due to scattering: (i) the skew scattering that refers to
the asymmetric scattering amplitude with respect to the
scattering angle between the incoming and outgoing
electron waves (Smit, 1958) and (ii) the side jump which
is a sudden shift of the electron coordinates during scat-
tering (Berger, 1970). In a more careful analysis, a sys-

%Since the integration is performed in an infinite momentum
space, the result is not quantized in the unit of 2.
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tematic study of the anomalous Hall effect based on the
semiclassical Boltzmann transport theory has been car-
ried out (Sinitsyn, 2008). The basic idea is to solve the
following Boltzmann equation:

J de J
Bk _ . % I

of
N = ’ - r— E'5 s
it hok de Ewkk 8k — 8k (983 T'kk

k/
(3.17)

where g is the nonequilibrium distribution function, wg
represents the asymmetric skew scattering, and dry: de-
scribes the side-jump of the scattered electrons. The
Hall conductivity is the sum of different contributions

0'H=0'113+0'§_11(+0'?1,

(3.18)
where 0“;} is the intrinsic contribution given by Eq.
(3.14), oi',‘ is the skew scattering contribution, which is
proportional to the relaxation time 7, and o, is the side
jump contribution, which is independent of 7. Note that,
in addition to Berger’s original proposal, o*?, also in-
cludes two other contributions: the intrinsic skew-
scattering and anomalous distribution function (Sinitsyn,
2008).

An important question is how to identify the domi-
nant contribution to the anomalous Hall effect (AHE)
among these mechanisms. If the sample is clean and the
temperature is low, the relaxation time 7 can be ex-
tremely large, and the skew scattering is expected to
dominate. On the other hand, in dirty samples and at
high temperatures %% becomes small compared to both
o}y and o). Because the Berry phase contribution oy is
independent of scattering, it can be readily evaluated
using first-principles methods or effective Hamiltonians.
Excellent agreement with experiments has been demon-
strated in ferromagnetic transition metals and semicon-
ductors (Jungwirth et al., 2002; Fang et al., 2003; Yao et
al., 2004, 2007; Xiao, Yao, et al., 2006), which leaves little
room for the side-jump contribution.

In addition, a number of experimental results also
gave favorable evidence for the dominance of the intrin-
sic contribution (Lee et al., 2004b; Mathieu et al., 2004;
Sales et al., 2006; Zeng et al., 2006; Chun et al., 2007). In
particular, Tian et al. (2009) recently measured the
anomalous Hall conductivity in Fe thin films. By varying
the film thickness and the temperature, they are able to
control various scattering process such as the impurity
scattering and the phonon scattering. Figure 7 shows
their measured o, as a function of &,,(7)%. One can see
that although o, in different thin films and at different
temperatures shows a large variation at finite o, they
converge to a single point as o, approaches zero, where
the impurity-scattering-induced contribution should be
washed out by the phonon scattering and only the intrin-
sic contribution survives. It turns out that this converged
value is very close to the bulk ¢,, of Fe, which confirms
the dominance of the intrinsic contribution in Fe.

In addition to the semiclassical approach (Sinitsyn et
al., 2005; Sinitsyn, 2008), there are a number of works
based on a full quantum-mechanical approach (Nozieres
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FIG. 7. (Color online) o,;, vs o, (T)? in Fe thin films with
different film thickness over the temperature range of
5-300 K. From Tian et al., 2009.

and Lewiner, 1973; Onoda and Nagaosa, 2002; Dugaev et
al., 2005; Inoue et al., 2006; Onoda, Sugimoto, and Na-
gaosa, 2006; Kato et al., 2007; Sinitsyn et al., 2007; Onoda
et al., 2008). In both approaches, the Berry phase sup-
ported intrinsic contribution to the anomalous Hall ef-
fect has been firmly established.

2. Anomalous Hall conductivity as a Fermi surface property

An interesting aspect of the intrinsic contribution to
the anomalous Hall effect is that the Hall conductivity
[Eq. (3.14)] is given as an integration over all occupied
states below the Fermi energy. It seems to be against the
spirit of the Landau Fermi-liquid theory, which states
that the transport property of an electron system is de-
termined by quasiparticles at the Fermi energy. This is-
sue was first raised by Haldane (2004), and he showed
that the Hall conductivity can be written, in the units of
e*/2mh, as the Berry phase of quasiparticles on the
Fermi surface, up to a multiple of 2. Therefore the
intrinsic Hall conductivity is also a Fermi surface prop-
erty. This observation suggests that the Berry phase on
the Fermi surface should be added as a topological in-
gredient to the Landau Fermi-liquid theory.

For simplicity, consider a two-dimensional system. We
assume there is only one partially filled band. If we write
the Berry curvature in terms of the Berry vector poten-
tial and integrate Eq. (3.14) by part, one finds

2 2
b_¢ M(ﬂ_f 4 )
% =5 f 2m akyA"x ok, )

Note that the Fermi distribution function f'is a step func-
tion at the Fermi energy. If we assume the Fermi surface
is a closed loop in the Brillouin zone, then

(3.19)

2
oD _ €
T dk - Ay. (3.20)

The integral is nothing but the Berry phase along the
Fermi circle in the Brillouin zone. The three-
dimensional case is more complicated; Haldane (2004)
showed that the same conclusion can be reached.
Wang et al. (2007) implemented Haldane’s idea in
first-principles calculations of the anomalous Hall con-
ductivity. From a computational point of view, the ad-
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vantage lies in that the integral over the Fermi sea is
converted to a more efficient integral on the Fermi sur-
face. On the theory side, Shindou and Balents (2006,
2008) derived an effective Boltzmann equation for qua-
siparticles on the Fermi surface using the Keldysh for-
malism, where the Berry phase of the Fermi surface is
defined in terms of the quasiparticle Green’s functions,
which nicely fits into the Landau Fermi-liquid theory.

E. The valley Hall effect

A necessary condition for the charge Hall effect to
manifest is the broken time-reversal symmetry of the
system. In this section we discuss another type of Hall
effect which relies on inversion symmetry breaking and
survives in time-reversal invariant systems.

We use graphene as our prototype system. The band
structure of intrinsic graphene has two degenerate and
inequivalent Dirac points at the corners of the Brillouin
zone, where the conduction and valance bands touch
each other, forming a valley structure. Because of their
large separation in momentum space, the intervalley
scattering is strongly suppressed (Morozov et al., 2006;
Morpurgo and Guinea, 2006; Gorbachev et al., 2007),
which makes the valley index a good quantum number.
Interesting valley-dependent phenomena, which con-
cerns about the detection and generation of valley po-
larization, are currently being explored (Akhmerov and
Beenakker, 2007; Rycerz et al., 2007; Xiao, Yao, and Niu,
2007; Yao et al., 2008).

The system we are interested in is graphene with bro-
ken inversion symmetry. Zhou et al. (2007) recently re-
ported the observation of a band-gap opening in epitax-
ial graphene, attributed to the inversion symmetry
breaking by the substrate potential. In addition, in bi-
ased graphene bilayer inversion symmetry can be explic-
itly broken by the applied interlayer voltage (McCann
and Fal’ko, 2006; Ohta et al., 2006; Min et al., 2007). It is
this broken inversion symmetry that allows a valley Hall
effect. Introducing the valley index 7,=+1 which labels
the two valleys, we can write the valley Hall effect as

j'=0% X E, (3.21)

where o7, is the valley Hall conductivity, and the valley
current j*=(7,v) is defined as the average of the valley
index 7, times the velocity operator v. Under time rever-
sal, both the valley current and electric field are invari-
ant (7, changes sign because the two valleys switch when
the crystal momentum changes sign). Under spatial in-
version, the valley current is still invariant but the elec-
tric field changes sign. Therefore, the valley Hall con-
ductivity can be nonzero when the inversion symmetry is
broken even if time-reversal symmetry remains.

In the tight-binding approximation, the Hamiltonian
of a single graphene sheet can be modeled with a
nearest-neighbor hopping energy ¢ and a site energy dif-
ference A between sublattices. For relatively low doping,
we can resort to the low-energy description near the
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Dirac points. The Hamiltonian is given by (Semenoff,
1984)

—_
/

3
H= \Eat(qxrzax +q,0y) + 50‘1, (3.22)

where o is the Pauli matrix accounting for the sublattice
index and ¢q is measured from the valley center K,
=(x4m/3a)x with a the lattice constant. The Berry cur-
vature of the conduction band is given by

3a°PA
TZZ(AZ + 3q2aztz)3/2-

Q(g) = (3.23)

Note that the Berry curvatures in two valleys have op-
posite sign as required by time-reversal symmetry. The
energy spectrum and the Berry curvature are shown in
Fig. 4. Once the structure of the Berry curvature is re-
vealed, the valley Hall effect becomes transparent: upon
the application of an electric field, electrons in different
valleys will flow to opposite directions transverse to the
electric field, giving rise to a net valley Hall current in
the bulk.

We remark that as A goes to zero, the Berry curvature
vanishes everywhere except at the Dirac points where it
diverges. Meanwhile, the Berry phase around the Dirac
points becomes exactly +r (see also Sec. VII.C).

As shown the valley transport in systems with broken
inversion symmetry is a very general phenomenon. It
provides a new and standard pathway to potential appli-
cations of valleytronics or valley-based electronic appli-
cations in a broad class of semiconductors (Gunawan et
al., 2006; Xiao, Yao, and Niu, 2007; Yao et al., 2008).

IV. WAVE PACKET: CONSTRUCTION AND
PROPERTIES

Our discussion so far has focused on crystals under
time-dependent perturbations, and we have shown that
the Berry phase will manifest itself as an anomalous
term in the electron velocity. However, in general situa-
tions the electron dynamics can be also driven by pertur-
bations that vary in space. In this case, the most useful
description is provided by the semiclassical theory of
Bloch electron dynamics, which describes the motion of
a narrow wave packet obtained by superposing the
Bloch states of a band [see, for example, Chap. 12 of
Ashcroft and Mermin (1976)]. The current and next sec-
tions are devoted to the study of the wave-packet dy-
namics, where the Berry curvature naturally appears in
the equations of motion.

In this section we discuss the construction and the
general properties of the wave packet. Two quantities
emerge in the wave-packet approach, i.e., the orbital
magnetic moment of the wave packet and the dipole
moment of a physical observable. For their applications,
we consider the problems of orbital magnetization and
anomalous thermoelectric transport in ferromagnets.
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A. Construction of the wave packet and its orbital moment

We assume the perturbations are sufficiently weak
that transitions between different bands can be ne-
glected; i.e., the electron dynamics is confined within a
single band. Under this assumption, we construct a wave
packet using the Bloch functions |¢,(g)) from the nth
band,

IWo>=quW(q,t)|</fn(q)>- (4.1)
There are two requirements on the envelope function
w(q,t). First, w(q,t) must have a sharp distribution in
the Brillouin zone such that it makes sense to speak of
the wave vector ¢, of the wave packet given by

q.= J dqqlw(gq.0f. (4.2)
To first order, |w(q,?)|> can be approximated by &g
—q,.) and one has

f dqfiq)lw(q.0* = fiq.). (4.3)
where f(q) is an arbitrary function of q. Equation (4.3) is
useful in evaluating various quantities related to the
wave packet. Second, the wave packet has to be nar-
rowly localized around its center of mass, denoted by r.,
in the real space, i.e.,

r. = (Wo|r|Wp). (4.4)
Using Eq. (4.3) we obtain
J
Fo=—_—arg W(qcst) + AZ(‘IC)» (45)

9q.

where AZ:i(un(q)|Vq|u,,(q)) is the Berry connection of
the nth band defined using |u,(q))=e"*"|,(g)). A more
rigorous consideration of the wave-packet construction
is given by Hagedorn (1980).

In principle, more dynamical variables, such as the
width of the wave packet in both the real space and
momentum space, can be added to allow a more elabo-
rate description of the time evolution of the wave
packet. However, in short period the dynamics is domi-
nated by the motion of the wave-packet center, and Egs.
(4.2) and (4.5) are sufficient requirements.

When more than one band come close to each other
or even become degenerate, the single-band approxima-
tion breaks down and the wave packet must be con-
structed using Bloch functions from multiple bands. Cul-
cer et al. (2005) and Shindou and Imura (2005)
developed the multiband formalism for electron dynam-
ics, which will be presented in Sec. IX. For now, we fo-
cus on the single-band formulation and drop the band
index n for simplicity.

The wave packet, unlike a classical point particle, has
a finite spread in real space. In fact, since it is con-
structed using an incomplete basis of the Bloch func-
tions, the size of the wave packet has a nonzero lower
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bound (Marzari and Vanderbilt, 1997). Therefore, a
wave packet may possess a self-rotation around its cen-
ter of mass, which will in turn give rise to an orbital
magnetic moment. By calculating the angular momen-

tum of a wave packet directly, one finds (Chang and Niu,
1996)

m(q) == >(Wal(r—r) X jWo)

e
= =i Voul X [H(g) - @]V u), (4.6)
where H(q)=e 1 "He'9" is the g-dependent Hamiltonian.
Equation (4.3) is used to obtain this result. This shows
that the wave packet of a Bloch electron generally ro-
tates around its mass center and carries an orbital mag-
netic moment in addition to its spin moment.

We emphasize that the orbital moment is an intrinsic
property of the band. Its final expression [Eq. (4.6)] does
not depend on the actual shape and size of the wave
packet and only depends on the Bloch functions. Under
symmetry operations, the orbital moment transforms ex-
actly like the Berry curvature. Therefore unless the sys-
tem has both time-reversal and inversion symmetry,
m(q) is in general nonzero. Information of the orbital
moment can be obtained by measuring magnetic circular
dichroism (MCD) spectrum of a crystal (Souza and
Vanderbilt, 2008; Yao et al., 2008). In the single-band
case, MCD directly measures the magnetic moment.

This orbital moment behaves exactly like the electron
spin. For example, upon the application of a magnetic
field, the orbital moment will couple to the field through
a Zeeman-like term —m(q)-B. If one can construct a
wave packet using only the positive energy states (the
electron branch) of the Dirac Hamiltonian, its orbital
moment in the nonrelativistic limit is exactly the Bohr
magneton (Sec. IX). For Bloch electrons, the orbital mo-
ment can be related to the electron g factor (Yafet,
1963). Consider a specific example. For the graphene
model with broken-inversion symmetry, discussed in
Sec. III.E, the orbital moment of the conduction band is
given by (Xiao, Yao, and Niu, 2007)

3ea’Ar

e 4.7
" 4h(A + 3¢%%0) @7

m(,,q) =
So orbital moments in different valleys have opposite
signs, as required by time-reversal symmetry. Interest-
ingly, the orbital moment at exactly the band bottom
takes the following form:

eh

=, 4.8
Mp om* ( )

m(Tz) = TZM*B7
where m™ is the effective mass at the band bottom. The
close analogy with the Bohr magneton for the electron
spin is transparent. In realistic situations, the moment
can be 30 times larger than the spin moment and can be
used as an effective way to detect and generate the val-
ley polarization (Xiao, Yao, and Niu, 2007; Yao et al.,
2008).
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e(k)
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FIG. 8. Electron energy ¢ in a slowly varying confining poten-
tial V(r). In addition to the self-rotation, wave packets near the
boundary will also move along the boundary due to the poten-
tial V. Level spacings between different bulk g states are ex-
aggerated; they are continuous in the semiclassical limit. The
inset shows directions of the Berry curvature, the effective
force, and the current carried by a wave packet on the left
boundary.

B. Orbital magnetization

A closely related quantity to the orbital magnetic mo-
ment is the orbital magnetization in a crystal. Although
this phenomenon has been known for a long time, our
understanding of orbital magnetization in crystals has
remained in a primitive stage. In fact, there was no
proper way to calculate this quantity until recently when
the Berry phase theory of orbital magnetization is devel-
oped (Thonhauser et al., 2005; Xiao et al., 2005; Shi et al.,
2007). Here we provide a pictorial derivation of the or-
bital magnetization based on the wave-packet approach.
This derivation gives an intuitive picture of different
contributions to the total orbital magnetization.

The main difficulty of calculating the orbital magneti-
zation is exactly the same as when calculating the elec-
tric polarization: the magnetic dipole erXp is not de-
fined in a periodic system. For a wave packet this is not
a problem because it is localized in space. As shown in
the previous section, each wave packet carries an orbital
moment. Thus, it is tempting to conclude that the orbital
magnetization is simply the thermodynamic average of
the orbital moment. As it turns out, this is only part of
the contribution. There is another contribution due to
the center-of-mass motion of the wave packet.

For simplicity, consider a finite system of electrons in
a two-dimensional lattice with a confining potential V(r).
We further assume that the potential V(r) varies slowly
at atomic length scale such that the wave-packet descrip-
tion of the electron is still valid on the boundary. In the
bulk where V(r) vanishes, the electron energy is just the
bulk band energy; near the boundary, it will be tilted up
due to the increase in V(r). Thus to a good approxima-
tion, we can write the electron energy as

&(r,q)=e(q)+ V(r). (4.9)

The energy spectrum in real space is shown in Fig. 8.
Before proceeding further, we need to generalize the

velocity formula (3.6), which is derived in the presence

of an electric field. In our derivation the electric field
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enters through a time-dependent vector potential A(f)
so that we can avoid the technical difficulty of calculat-
ing the matrix element of the position operator. How-
ever, the electric field may be also given by the gradient
of the electrostatic potential. In both cases, the velocity
formula should stay the same because it should be gauge
invariant. Therefore, in general a scalar potential V(r)
will induce a transverse velocity of the following form:

% VV(r) X Q(q). (4.10)
This generalization will be justified in Sec. VI.

Now consider a wave packet in the boundary region
of the finite system (Fig. 8). It will feel a force VV/(r) due
to the presence of the confining potential. Consequently,
according to Eq. (4.10) the electron acquires a transverse
velocity, whose direction is parallel with the boundary
(Fig. 8). This transverse velocity will lead to a boundary
current (of the dimension current density X width in two
dimensions) given by

e dg dV

1= P f dxf o dxf[s(q) +V1Q.(g), (4.11)
where x is in the direction perpendicular to the bound-
ary, and the integration range is taken from deep into
the bulk to outside the sample. Recall that for a current
I flowing in a closed circuit enclosing a sufficiently small
area A, the circuit carries a magnetic moment given by
IA. Therefore the magnetization (magnetic moment per
unit area) has the magnitude of the current /. Integrating
Eq. (4.11) by part, we obtain

1
M= " f def(e)oy,(e), (4.12)
where o,,(¢) is the zero-temperature Hall conductivity
for a system with Fermi energy &:

e’ d
oyy(e) = 7 f (z:rl)d(s -&(9)Q.(q).
Since the boundary current corresponds to the global
movement of the wave-packet center, we call this contri-
bution the “free current” contribution, whereas the or-
bital moment are due to “localized” current. Thus the
total magnetization is

(4.13)

d 1
MZ:J o (q)mz(q”Ef def(2)o(2).  (4.14)

The orbital magnetization has two different contribu-
tions: one is from the self-rotation of the wave packet,
and the other is due to the center-of-mass motion. Gat
and Avron obtained an equivalent result for the special
case of the Hofstadter model (Gat and Avron, 2003a,
2003b).

The above derivation relies on the existence of a con-
fining potential, which seems to contradict the fact that
the orbital magnetization is a bulk property. This is a
wrong assertion as the final expression [Eq. (4.14)] is
given in terms of the bulk Bloch functions and does not
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FIG. 9. Sampling function and a wave packet at r.. The width
L of the sampling function is sufficiently small so that it can be
treated as a ¢ function at the macroscopic level and is suffi-
ciently large so that it contains a large number of wave packets
of width / inside its range. Equation (4.15) is indeed a micro-
scopic average over the distance L around the point r. See Sec.
6.6 in Jackson (1998) for an analogy in macroscopic electro-
magnetism.

depend on the boundary condition. Here the boundary
is merely a tool to expose the “free current” contribu-
tion because in a uniform system, the magnetization cur-
rent always vanishes in the bulk. Finally, in more rigor-
ous approaches (Xiao et al., 2005; Shi et al., 2007) the
boundary is not needed and the derivation is based on a
pure bulk picture. It is similar to the quantum Hall ef-
fect, which can be understood in terms of either the bulk
states (Thouless et al., 1982) or the edge states (Halperin,
1982).

C. Dipole moment

The finite size of the wave packet not only allows an
orbital magnetic moment but also leads to the concept
of the dipole moment associated with an operator.

The dipole moment appears naturally when we con-
sider the thermodynamic average of a physical quantity,

with its operator denoted by O. In the wave-packet ap-
proach, the operator is given by

dr.d A
o) = J e g WO W),

(o (4.15)

where g(r,q) is the distribution function, (W/|---|W) de-
notes the expectation in the wave-packet state, and (r
—F) plays the role as a sampling function, as shown in
Fig. 9. An intuitive way to view Eq. (4.15) is to think of
the wave packets as small molecules, then Eq. (4.15) is
the quantum-mechanical version of the familiar coarse
graining process which averages over the length scale
larger than the size of the wave packet. A multipole
expansion can be carried out. But for most purposes the
dipole term is enough. Expand the & function to first
order of F—r,.:

Sr—#)=o8r-r)—(F-r) - Vor-r,). (4.16)

Inserting the function into Eq. (4.15) yields
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FIG. 10. The wave-packet description of a charge carrier
whose center is (r,,q.). A wave packet generally possesses two

kinds of motion: the center-of-mass motion and the self-
rotation around its center. From Xiao, Yao, et al., 2006.

d ; A
O(I’) :f ﬁg(anW'O'W)'rC:r

d R
V[ g WO - W
(4.17)

The first term is obtained if the wave packet is treated as
a point particle. The second term is due to the finite size
of the wave packet. We can see that the bracket in the
second integral has the form of a dipole of the operator
O defined by
P5=(W|O®F—r)|W). (4.18)
The dipole moment of an observable is a general conse-
quence of the wave-packet approach and must be in-
cluded in the semiclassical theory. Its contribution ap-

pears only when the system is inhomogeneous.
In particular, we find the following:

1) It @:e, then P,=0. This is consistent with the fact
that the charge center coincides with the mass cen-
ter of the electron.

2) If @zﬁ, one finds the expression for the local cur-
rent,

e
jL:f (2;1)3g(r,q)i'+V><f

d
(2;1)3g(r,q)m(q)-

(4.19)

We explain the meaning of local later. Interestingly,
this is the second time we encounter the quantity
m(q) but in an entirely different context. The physi-
cal meaning of the second term becomes transparent
if we make reference to the self-rotation of the wave
packet. The self-rotation can be thought as localized
circuit. Therefore if the distribution is not uniform,
the localized circuit will contribute to the local cur-
rent j© (see Fig. 10).

3) If O is the spin operator §, then Eq. (4.18) gives the
spin dipole

PS:<u|s<i£ —Aq>|u>. (4.20)

The spin dipole shows that in general the spin center
and the mass center do not coincide, which is usually
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due to the spin-orbit interaction. The time derivative of
the spin dipole contributes to the total spin current (Cul-
cer et al., 2004).

D. Anomalous thermoelectric transport

In applying the above concepts, we consider the prob-
lem of anomalous thermoelectric transport in ferromag-
nets, which refers to the appearance of a Hall current
driven by statistical forces, such as the gradient of tem-
perature and chemical potential (Chien and Westgate,
1980). Similar to the anomalous Hall effect, there are
also intrinsic and extrinsic contributions, and we focus
on the former.

A question immediately arises when one tries to for-
mulate this problem. Recall that in the presence of an
electric field the electron acquires an anomalous velocity
proportional to the Berry curvature, which gives rise to
a Hall current. In this case, the driving force is of me-
chanical nature: it exists on the microscopic level and
can be described by a perturbation to the Hamiltonian
for the carriers. On the other hand, transport can be also
driven by the statistical force. However, the statistical
force manifests on the macroscopic level and makes
sense only through the statistical distribution of the car-
riers. Since there is no force acting directly on individual
particles, the obvious cause for the Berry phase assisted
transport is eliminated. This conclusion would introduce
a number of basic contradictions to the standard trans-
port theory. First, a chemical potential gradient would
be distinct from the electric force, violating the basis for
the Einstein relation. Second, a temperature gradient
would not induce an intrinsic charge Hall current, vio-
lating the Mott relation. Finally, it is also unclear
whether the Onsager relation is satisfied or not.

It turns out the correct description of anomalous ther-
moelectric transport in ferromagnets requires knowl-
edge of both the magnetic moment and orbital magneti-
zation. First, as shown in Eq. (4.19), the local current is
given by

d
jL:f (Z;dg(r,q)i'+v><f

d
ol ram@),
(4.21)

where in the second term we have replaced the distribu-
tion function g(r,q) with the local Fermi-Dirac function
f(r,q), which is sufficient for a first order calculation.
Second, in ferromagnetic systems, it is important to dis-
count the contribution from the magnetization current.
It was argued that the magnetization current cannot
be measured by conventional transport experiments
(Cooper et al., 1997). Therefore the transport current is
given by

j=jt -V xX M(r).
Using Eq. (4.14), one finds

(4.22)

j:f dng(r,q)'r—lv X fdsf(s)trAH(S)- (4.23)
(2m) e
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Equation (4.23) is the most general expression for the
transport current. We notice that the contribution from
the orbital magnetic moment m(q) cancels out. This
agrees with the intuitive picture developed in Sec. IV.B,
i.e., the orbital moment is due to the self-rotation of the
wave packet, therefore it is localized and cannot contrib-
ute to transport (see Fig. 10).

In the presence of a statistical force, there are two
ways for a Hall current to occur. The asymmetric scat-
tering will have an effect on the distribution g(r,q),
which is obtained from the Boltzmann equation (Berger,
1972). This results in a transverse current in the first
term of Eq. (4.23). In addition, there is an intrinsic con-
tribution comes from the orbital magnetization, which is
the second term of Eq. (4.23). Note that the spatial de-
pendence enters through 7(r) and wu(r) in the distribu-
tion function. It is straightforward to verify that for the
intrinsic contribution to the anomalous thermoelectric
transport both the Einstein relation and Mott relation
still hold (Xiao, Yao, et al., 2006; Onoda et al., 2008).
Hence, the measurement of this type of transport, such
as the anomalous Nernst effect, can give further insight
into the intrinsic mechanism of the anomalous Hall ef-
fect. Much experimental efforts have been put along this
line. The intrinsic contribution has been verified in
CuCr,Se,_,Br, (Lee et al., 2004a, 2004b), La;_,Sr,CoO;
(Miyasato et al., 2007), Nd,Mo,0; and Sm,Mo0,0, (Ha-
nasaki et al., 2008), and Ga,_Mn, (Pu et al., 2008).

Equation (4.23) is not limited to transport driven by
statistical forces. As shown later, at the microscopic level
the mechanical force generally has two effects: it can
drive the electron motion directly and appears in the
expression for 7; it can also make the electron energy
and the Berry curvature spatially dependent, hence also
manifest in the second term in Eq. (4.23). The latter pro-
vides another route for the Berry phase to enter the
transport problems in inhomogeneous situations, which
can be caused by a nonuniform distribution function or a
spatially dependent perturbation, or both. One example
is the electrochemical potential —ed(r)+ u(r)/e, which
can induce an anomalous velocity term in the equation
of motion through —e¢(r) and also affect the distribution
function through wu(r).

V. ELECTRON DYNAMICS IN ELECTROMAGNETIC
FIELDS

In the previous section we discussed the construction
and general properties of a wave packet. Now we are set
to study its dynamics under external perturbations. The
most common perturbations to a crystal are the electro-
magnetic fields. The study of the electron dynamics un-
der such perturbations dates back to Bloch, Peierls,
Jones, and Zener in the early 1930s and is continued by
Slater (1949), Luttinger (1951), Adams (1952), Karplus
and Luttinger (1954), Kohn and Luttinger (1957), Adams
and Blount (1959), Blount (1962a), Brown (1968), Zak
(1977), Rammal and Bellissard (1990), and Wilkinson
and Kay (1996). In this section we present the semiclas-
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sical theory based on the wave-packet approach (Chang
and Niu, 1995, 1996).

A. Equations of motion

In the presence of electromagnetic fields, the Hamil-
tonian is given by
[p+eA)]
2m

H-= + V(r) —ed(r), (5.1)
where V(r) is the periodic lattice potential and A(r) and
¢(r) are the electromagnetic potentials. If the length
scale of the perturbations is much larger than the spatial
spread of the wave packet, the approximate Hamil-
tonian that the wave packet “feels” may be obtained by
linearizing the perturbations about the wave-packet cen-

ter r, as

H=~H.+AH, (5.2)
2
H, = preAw)l o) ed(r,), (5.3)
2m
AH=——{A() - A(r).p} - eE- (r—r,), (5.4)
2m

where {,} is the anticommutator. Naturally, we can then
construct the wave packet using the eigenstates of the
local Hamiltonian H,. The effect of a uniform A(r,) is to
add a phase to the eigenstates of the unperturbed
Hamiltonian. Therefore the wave packet can be written
as

(Wike,r.)) = e AW (K, 1)), (5.5)

where |W,)) is the wave packet constructed using the un-
perturbed Bloch functions.

The wave-packet dynamics can be obtained from the
time-dependent variational principles (Kramer and Sa-
raceno, 1981). The basic recipe is to first obtain the La-
grangian from the following equation:

L=<W|iﬁ§—H|W), (5.6)
then obtain the equations of motion using the Euler
equations. Using Eq. (4.5) we find that (W|ikd/ W)
=eA-R,-1(3/drarg w(k,,1). For the wave-packet en-
ergy, we have (W|AH|W)=-m(k)-B. This is expected as
we already showed that the wave packet carries an or-
bital magnetic moment m(k) that will couple to the mag-
netic field. Using Eq. (4.5), we find that the Lagrangian
is given by, up to some unimportant total time-derivative
terms (dropping the subscript ¢ on r, and k),

L=hk-i—eyk)+edr)—er- A(rt) + ik - A, k),
(5.7)
where ¢,,(k)=¢eq(k)—B-m(k) with gy(k) the unperturbed

band energy. The equations of motion are given by
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dep(k)
hok

= —kx Q(k), (5.8a)

hk=—¢eE —eir X B. (5.8b)
Compared to the conventional equations of motion for
Bloch electrons (Ashcroft and Mermin, 1976), there are
two differences: (1) the electron energy is modified by
the orbital magnetic moment and (2) the electron veloc-
ity gains an extra velocity term proportional to the Berry
curvature. As shown, in the case of only an electric field,
Eq. (5.8a) reduces to the anomalous velocity formula
(3.6) we derived before.

B. Modified density of states

The Berry curvature not only modifies the electron
dynamics but also has a profound effect on the electron
density of states in the phase space (Xiao ef al., 2005)."

Recall that in solid-state physics the expectation value
of an observable, in the Bloch representation, is given by

Ekfnk<¢nk|é|¢nk>’ (59)

where f,; is the distribution function. In the semiclassi-
cal limit, the sum is converted to an integral in k space,

1 dk
% — Vf amt (5.10)
where V is the volume and (277)? is the density of states,
i.e., number of states per unit k volume. From a classical
point of view, the constant density of states is guaran-
teed by the Liouville theorem, which states that the vol-
ume element is a conserved quantity during the time
evolution of the system.“ However, as shown below, this
is no longer the case for the Berry phase modified dy-
namics.
The time evolution of a volume element AV=ArAk is
given by

1 oAV . .
v SV Vek

(5.11)
Insert the equations of motion (5.8) into Eq. (5.11). Af-
ter some algebra, we find

The phase space is spanned by k and r. Although the La-
grangian depends on both (k,r) and their velocities, the depen-
dence on the latter is only to linear order. This means that the
momenta, defined as the derivative of the Lagrangian with re-
spect to these velocities, are functions of (k,r) only and are
independent of their velocities. Therefore, (k,r) also span the
phase space of the Hamiltonian dynamics.

The actual value of this constant volume for a quantum
state, however, can be determined only from the quantization
conditions in quantum mechanics.
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I
“1+(e/h)B-Q°

The fact that the Berry curvature is generally k depen-
dent and the magnetic field is r dependent implies that
the phase-space volume AV changes during time evolu-
tion of the state variables (r,k).

Although the phase-space volume is no longer con-
served, it is a local function of the state variables and has
nothing to do with the history of time evolution. We can
thus introduce a modified density of states

(5.12)

D(r,k) = (5.13)
such that the number of states in the volume element
D, (r,k)AV remains constant in time. Therefore, the cor-
rect semiclassical limit of the sum in Eq. (5.9) is

O(R):fde(r,k)(O&(i'—R))W, (5.14)
where (--+)yy is the expectation value in a wave packet,
which could includes the dipole contribution due to the
finite size of the wave packet [see Eq. (4.18)]. In a uni-
form system it is given by

:fde(k)f(k)O(k). (5.15)

We emphasize that although the density of states is no
longer a constant, the dynamics itself is still Hamil-
tonian. The modification comes from the fact that the
dynamical variables r and k are no longer canonical vari-
ables, and the density of states can be regarded as the
phase-space measure (Bliokh, 2006b; Duval et al., 2006a,
2006b; Xiao, Shi, and Niu, 2006). The phase-space mea-
sure dkdr is true only when k and r form a canonical set.
However, the phase-space variables obtained from the
wave packet are generally not canonical as testified by
their equations of motion. A more profound reason for
this modification has its quantum-mechanical origin in
noncommutative quantum mechanics, discussed in Sec.
VIL

In the following we discuss two direct applications of
the modified density of states in metals and in insulators.

1. Fermi volume

We show that the Fermi volume can be changed lin-
early by a magnetic field when the Berry curvature is
nonzero. Assume zero temperature, the electron density
is given by

dk
Qmy!
We work in the canonical ensemble by requiring the

electron number fixed, therefore, to first order of B, the
Fermi volume must be changed by

dk e
Ve=— | —=-B- Q.
Ve Qmih

n,= (1 -B- Q)@(SF g). (5.16)

(5.17)
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It is particularly interesting to look at insulators,
where the integration is limited to the Brillouin zone.
Then the electron must populate a higher band if
szdkB-Q is negative. When this quantity is positive,
holes must appear at the top of the valance bands. Dis-
continuous behavior of physical properties in a magnetic
field is therefore expected for band insulators with a
nonzero integral of the Berry curvatures (Chern num-
bers).

2. Streda formula

In the context of the quantum Hall effect, Streda
(1982) derived a formula relating the Hall conductivity
to the field derivative of the electron density at a fixed
chemical potential

(&ne)
O, =—¢€ .
o :

There is a simple justification for this relation given by a
thermodynamic argument by considering the following
adiabatic process in two dimensions. A time-dependent
magnetic flux generates an electric field with an emf
around the boundary of some region, and the Hall cur-
rent leads to a net flow of electrons across the boundary
and thus a change in electron density inside. Note that
this argument is valid only for insulators because in met-
als the adiabaticity would break down. Using Eq. (5.16)
for an insulator, we obtain, in two dimensions,
e? dk

=0 )L, en)?

(5.18)

(5.19)

This is what Thouless et al. (1982) obtained using the
Kubo formula. The fact that the quantum Hall conduc-
tivity can be derived using the modified density of states
further confirms the necessity to introduce this concept.

C. Orbital magnetization: Revisit

We have discussed the orbital magnetization using a
rather pictorial derivation in Sec. IV.B. Here we derive
the formula again using the field-dependent density of
states [Eq. (5.13)].

The equilibrium magnetization density can be ob-
tained from the grand canonical potential, which, within
first order in the magnetic field, may be written as

F=-—E In(1 + e~ Plerry

:Bf (2 )d< _B Q)ln(l-',-e B(SM /_L)
(5.20)

where the electron energy ey,=e(k)—m(k)-B includes a
correction due to the orbital magnetic moment m(k).
The magnetization is then the field derivative at fixed
temperature and chemical potential, M=—(dF/dB),,
with the result



Xiao, Chang, and Niu: Berry phase effects on electronic properties 1983

dk
M(r) = f Wf (k)m(k)

L[ _dk
13 (2 )diﬂ’(k)ln(l + e Bl

Integration by parts of the second term will give us the
exact formula obtained in Eq. (4.14). We have thus de-
rived a general expression for the equilibrium orbital
magnetization density, valid at zero magnetic field but at
arbitrary temperatures. From this derivation we can
clearly see that the orbital magnetization is indeed a
bulk property. The center-of-mass contribution identi-
fied before comes from the Berry phase correction to
the electron density of states.

Following the discussions on band insulators in our
first example in Sec. V.B.1, there will be a discontinuity
of the orbital magnetization if the integral of the Berry
curvature over the Brillouin zone or the anomalous Hall
conductivity is nonzero and quantized. Depending on
the direction of the field, the chemical potential g, in
Eq. (5.21) should be taken at the top of the valence
bands or the bottom of the conduction bands. The size
of the discontinuity is given by the quantized anomalous
Hall conductivity times E,/e, where E, is the energy
gap.

A similar formula for insulators with zero Chern num-
ber has been obtained by Thonhauser et al. (2005) and
Ceresoli et al. (2006) using the Wannier function ap-
proach and by Gat and Avron (2003a, 2003b) for the
special case of the Hofstadter model. Recently Shi et al.
(2007) provided a full quantum-mechanical derivation of
the formula, and showed that it is valid in the presence
of electron-electron interaction, provided the one-
electron energies and wave functions are calculated self-
consistently within the framework of the exact current
and spin-density functional theory (Vignale and Rasolt,
1988).

The appearance of the Hall conductivity is not a coin-
cidence. Consider an insulator. The free energy is given
by

(5.21)

dF=-MdB —-ndu— SdT. (5.22)
Using the Maxwell relation, we have
ol oM
P ( ”) __ ( ) (5.23)
oB op g1

On the other hand, the zero-temperature formula of the
magnetization for an insulator is given by

dk
M—f 5 )3{m(k)+ (M—e)ﬂ}
BZ

Inserting this formula into Eq. (5.23) gives us once again
the quantized Hall conductivity.

(5.24)

D. Magnetotransport

The equations of motion (5.8) and the density of states
[Eq. (5.13)] gives us a complete description of the elec-
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tron dynamics in the presence of electromagnetic fields.
In this section we apply these results to the problem of
magnetotransport. For simplicity, we set e=%=1 and in-
troduce the shorthand [dk]=dk/(2m)".

1. Cyclotron period

Semiclassical motion of a Bloch electron in a uniform
magnetic field is important to understand various mag-
netoeffects in solids. In this case, the equations of mo-
tion reduce to

Dk)i=v+ (v-Q)B, (5.25a)

D(kk=-v X B, (5.25b)
where D(k)=D(k)/(2m)*=1+(e/h)B- Q.

We assume the field is along the z axis. From Eq.
(5.25b) we can see that motion in k space is confined in
the x-y plane and is completely determined once the
energy ¢ and the z component of the wave vector k, is
given. We now calculate the period of the cyclotron mo-
tion. The time for the wave vector to move from k; to k,
is

“2 ak
ty—t) = f dt—f (5.26)
b [l
From the equations of motion (5.25) we have
.. B B|(d=/ ok
= ol _ Bl(Geroh),| (5.27)
D(k) #D (k)

On the other hand, the quantity (de/dk), can be written
as Ae/Ak, where Ak denotes the vector in the plane
connecting points on neighboring orbits of energy ¢ and
e+Ae. Then

ka D(k)Akdk
t2 - tl B .

(5.28)
ky Aeg

Introducing the 2D electron density for given € and &k,

D(k)dk dk
k )
n2(8 ) JJ]( = (277)2

the period of a cyclotron motion can be written as

(5.29)

h &nz(s k )

2t
r= (2) de

(5.30)
We thus recovered the usual expression for the cyclotron
period, with the 2D electron density [Eq. (5.29)] defined
with the modified density of states.

In addition, we note that there is a velocity term pro-
portional to B in Eq. (5.25), which seems to suggest
there will be a current along the field direction. We show

that after averaging over the distribution function, this
current is actually zero. The current along B is given by
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J'B=—€Bf[dk]fv‘ﬂz—%Bf[dk]VkF-Q

:_%B< f [dk]V(FQ) - f [dk]FVk'Q)’ (5.31)

where F(e)=—[f(¢')de’ and f(e)=0F/de. The first term
vanishes'? and if there is no magnetic monopole in k
space, the second term also vanishes. In the above cal-
culation we did not consider the change in the Fermi
surface. Since it always comes in the form (df/du)du
=—(df/ de) Su, we can use the same technique to prove
that the corresponding current also vanishes.

2. The high-field limit

We now consider the magnetotransport at the so-
called high-field limit, i.e., w.7>1, where w.=27/T is
the cyclotron frequency and 7 is the relaxation time. We
consider a configuration where the electric and magnetic
fields are perpendicular to each other, i.e., E=EX, B
=Bz, and E-B=0.

In the high-field limit, w,7>1, the electron can finish
several turns between two successive collisions. We can
then assume all orbits are closed. According to the theo-
rem of adiabatic drifting (Niu and Sundaram, 2001), an
originally closed orbit remains closed for weak perturba-
tions so that

0= (k)=

E+(rXB (5.32)

or

EXB

(R, = (5.33)

The Hall current is simply the sum over (i}, of occupied
states,

Ju=-e

(5.34)

Therefore in the high-field limit we reach the following
conclusion: the total current in crossed electric and mag-
netic fields is the Hall current as if calculated from free
electron model

EXB

o, (5.35)

j=—e
and it has no dependence on the relaxation time 7. This
result ensures that even in the presence of anomalous

2For any periodic function F(k) with the periodicity of a re-
ciprocal Bravais lattice, the following identity holds for inte-
grals taken over a Brillouin zone, [g7dkVF(k)=0. To see this,
consider I(k')=[dkF(k+k’). Because F(k) is periodic in k,
I(k’) should not depend on k'. Therefore, V. I(k')
=[dk,V F(k+k')=[dkV F(k+k')=0. Setting k' =0 gives the
desired expression. This is also true if F(k) is a vector function.
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Hall effect, the high-field Hall current gives the “real”
electron density.

We now consider the holelike band. The Hall current
is obtained by subtracting the contribution of holes from
that of the filled band, which is given by —eE X [[dk]Q.
Therefore

jhole _

—eE X J [dk]. (5.36)
As a result for the holelike band there is an additional
term in the current expression proportional to the Chern
number (the second integral) of the band.

3. The low-field limit

Next we consider the magnetotransport at the low-
field limit, i.e., w,7<<1. In particular, we show that the
Berry phase induces a linear magnetoresistance. By
solving the Boltzmann equation, one finds that the diag-
onal element of the conductivity is given by

1%
J [d ] fo X
de D(k)
This is just the zeroth-order expansion based on w,7.
There are four places in this expression depending on B.
(1) There is an explicit B dependence in D(k). (2) The

electron velocity v, is modified by the orbital magnetic
moment:

(5.37)

Lom:p (5.38)
i ok, ’

_1deg-mB) o _

TRk,

(3) There is also a modification to the Fermi energy,
given by Eq. (5.17). (4) The relaxation time 7 can also
depend on B. In the presence of the Berry curvature, the
collision term in the Boltzmann equation is given by

f [dk'1D (k"W uo[fk) - fk)],  (5.39)

coll

where Wy, is the transition probability from k' to k
state. In the relaxation-time approximation we make the
assumption that a characteristic relaxation time exists so
that
f D(&’) ,
=D(k) | [dk ]TWkkf[f(k - flk")].

(5.40)

If we assume €(k) is smooth and Wy, is localized, the
relaxation time is given by

T:_E_z741_33-n>. (5.41)

D(k) h

More generally, we can always expand the relaxation
time to first order of (e/A)B-€),
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S Tl%g.ﬂ, (5.42)

where 7; should be regarded as a fitting parameter
within this theory.

Expanding Eq. (5.37) to first order of B and taking the
spherical band approximation, we obtain

afo [ 2e) 20
1)_8 TB|:f[dk] fo( eh zvz+ﬁ¢9’: )

where M is the effect mass tensor. The zero-field con-
ductivity takes the usual form

o= Tof[dk]‘% :

The ratio —o'!
toresistance.

(5.44)

'/0'% will then give us the linear magne-

VI. ELECTRON DYNAMICS UNDER GENERAL
PERTURBATIONS

In this section we present the general theory of elec-
tron dynamics in slowly perturbed crystals (Sundaram
and Niu, 1999; Panati et al., 2003; Shindou and Imura,
2005). As expected, the Berry curvature enters into the
equations of motion and modifies the density of states.
The difference is that one needs to introduce the Berry
curvature defined in the extended parameter space
(r,q,1). Two physical applications are considered: elec-
tron dynamics in deformed crystals and adiabatic cur-
rent induced by inhomogeneity.

A. Equations of motion

We consider a slowly perturbed crystal whose Hamil-
tonian can be expressed in the following form:

H[r’p;lgl(r’t)v -",Bg(r’t)]v (61)

where {B,(r,t)} are the modulation functions characteriz-
ing the perturbations. They may represent either gauge
potentials of electromagnetic fields, atomic displace-
ments, charge or spin density waves, helical magnetic
structures, or compositional gradients. Following the
same procedure as used in the previous section, we ex-
pand the Hamiltonian around the wave-packet center
and obtain

H=H.+AH, (6.2)
H.=H[r,p:{B(r.0}], (6.3)
AH = 2 V, Biren - {(r - rc),zi;} : (6.4)

Since the local Hamiltonian H, maintains periodicity of
the unperturbed crystal, its eigenstates take the Bloch
form

Rev. Mod. Phys., Vol. 82, No. 3, July—September 2010

H (1, 0|y (re,0) = e(re,q,0[ ¢y (re1)), (6.5)

where ¢ is the Bloch wave vector and e.(r.,q,?) is the
band energy. Here we have dropped the band index n
for simplicity.

Following the discussion in Sec. I.D, we switch to the
Bloch Hamiltonian H (q,r.,t)=e ¥ H (r.,t)e'?", whose
eigenstate is the periodic part of the Bloch function,
lu(q,r.,0))=e"4"ydq,r.,t)). The Berry vector potentials
can be defined for each of the coordinates of the param-
eter space (q,r.,t); for example,

A, =ulid|u). (6.6)

After constructing the wave packet using the local
Bloch functions |[,(r,,?)), one can apply the time-
dependent variational principle to find the Lagrangian

governing the dynamics of the wave packet:
L=-e+q. 1. +q. Ag+i.- A+ A, (6.7)

Note that the wave-packet energy e=¢.+Ae has a cor-
rection Ae from AH,
d
—”>. (6.8)
oq

From the Lagrangian (6.7) we obtain the following equa-
tions:

J
Ae = (W|AH|W) = — :f<—”
or,

Cc

: (80 _Hc)

9 -
i‘c:_s_(ﬂqr
oq

c

R O A R 0 Y (6.92)

. de g -~
qc:__+(er‘rc+9rq'qc)+ﬂrta

6.9b
or, ( )

where (s are the Berry curvatures. For example,

(6qr)a,3 = aqa-ArB - éer-Aka- (610)

In the following we also drop the subscript ¢ on r. and
q.

The form of the equations of motion is quite sym-
metrical with respect to r and ¢, and there are Berry
curvatures between every pair of phase-space variables
plus time. The term €, was identified as the adiabatic
velocity vector in Sec. II. In fact, if the perturbation is
uniform in space (has the same period as the unper-
turbed crystal) and only varies in time, all the spatial
derivatives vanish; we obtain

de

P=—-Q, ¢=0.

Py (6.11)

The first equation is the velocity formula (2.5) obtained

in Sec. II. The term ﬁqq was identified as the Hall con-
ductivity tensor. In the presence of electromagnetic per-
turbations, we have

H=Hjq+eA(r)]—ed(r1). (6.12)

Hence the local basis can be written as |u(r.,q))=|u(k)),
where k=qg+eA(r). One can verify that by using the
chain rule g, = 0k, and a,a:(&,aA B)&kg’ Ae given in Eq.
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(6.8) becomes —m(k)-B, and the equations of motion
(6.9) reduce to Eq. (5.8). The physics of quantum adia-
batic transport and the quantum and anomalous Hall
effect can be described from a unified point of view. The
Berry curvature €2, plays a role like the electric force.

The antisymmetric tensor (), is realized in terms of the
magnetic field in the Lorenz force and is also seen in the
singular form (&-function-like distribution) of disloca-
tions in a deformed crystal (Bird and Preston, 1988). Fi-
nally, the Berry curvature between r and g can be real-
ized in deformed crystals as a quantity proportional to
the strain and the electronic mass renormalization in the
crystal (Sundaram and Niu, 1999).

B. Modified density of states

The electron density of states is also modified by the
Berry curvature. Consider the time-independent case.
To better appreciate the origin of this modification, we
introduce the phase-space coordinates &=(r,q). The
equations of motion can be written as

Topés=Ve &, (6.13)
where T'=0 -7 is an antisymmetric matrix with
- [(Qn O - [0 T
Q:(e” J"), Jz( - ) (6.14)
Qgr Qyq -1 0

According to standard theory of Hamiltonian dynamics
(Arnold, 1978), the density of states, which is propor-
tional to the phase-space measure, is given by

D(r.q) = 1 den -,

)

One can show that in the time-dependent case D(r,q)
has the same form.

Consider the following situations. (i) If the perturba-
tion is electromagnetic field, by the variable substitution
k=qg+eA(r), Eq. (6.15) reduces to Eq. (5.13). (ii) In many
situations we are aiming at a first-order calculation in
the spatial gradient. In this case, the density of states is
given by

(6.15)

1 -
D= W(l +Tr Qq,). (6.16)

(

Note that if the Berry curvature vanishes, Eq. (6.13)
becomes the canonical equations of motion for Hamil-
tonian dynamics, and r and g are called canonical vari-
ables. The density of states is a constant in this case. The
presence of the Berry curvature renders the variables
noncanonical and, as a consequence, modifies the den-
sity of states. The noncanonical variables are a common
feature of Berry phase participated dynamics (Littlejohn
and Flynn, 1991). The modified density of states also
arises naturally from a nonequilibrium approach (Olson
and Ao, 2007).

To demonstrate the modified density of states, we
again consider the Rice-Mele model discussed in Sec.
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FIG. 11. (Color online) Electron density of the Rice-Mele
model with a spatial varying dimerization parameter. The pa-
rameters used are A=0.5, =2, and S=tanh(0.02x). Inset: The
profile of &(x). From Xiao, Clougherty, and Niu, 2007.

I1.C.1. Now we introduce the spatial dependence by let-
ting the dimerization parameter 8(x) vary in space. Us-
ing Eq. (1.19) we find
a - At sin*(g/2)d,6
T 4(A% + 7 cos? g/2 + & sin? q/2)¥*
At half filling, the system is an insulator and its electron
density is given by

= —Oy.
ne j 77.2’7T qx

(6.17)

(6.18)

We let 8(x) have a kink in its profile. Such a domain wall
is known to carry fractional charge (Su et al., 1979; Rice
and Mele, 1982). Figure 11 shows the calculated electron
density using Eq. (6.18) together with numerical result
obtained by direct diagonalization of the tight-binding
Hamiltonian. These two results are virtually indistin-
guishable in the plot, which confirms the Berry phase
modification to the density of states.

C. Deformed crystal

In this section we present a general theory of electron
dynamics in crystals with deformation (Sundaram and
Niu, 1999), which could be caused by external pressure,
defects in the lattice, or interfacial strain.

First we set up the basic notations for this problem.
Consider a deformation described by the atomic dis-
placement {u;}. We denote the deformed crystal poten-
tial as V(r;{R;+u;}), where R, is the atomic position with
[ labeling the atomic site. Introducing a smooth displace-
ment field u(r) such that u(R;+u;)=u,, the Hamiltonian
can be written as

2

H= ;; + VIr—u(r)] + 5,5V, 6lr — u(r)], (6.19)
m

where s,5=0du,/drg is the unsymmetrized strain and

Ve r—u(r)]=Z[R;+u(r)-rlg(dV/iR,,) is a gradient ex-

pansion of the crystal potential. The last term, being
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proportional to the strain, can be treated perturbatively.
The local Hamiltonian is given by

2
He=2—+ Vir-u(r)], (6.20)
2m
with its eigenstates |¢qu(r—u(rc))).

To write down the equations of motion, two pieces of
information are needed. One is the gradient correction
to the electron energy, given by Eq. (6.8). Sundaram and
Niu (1999) found that

AS :SaﬁDaﬁ(q)’ (621)
where
Daﬁ = m[vavﬁ - <§a6ﬁ>] + <Vaﬂ>5 (622)

with (- --) the expectation value of the enclosed operators
in the Bloch state and 0, is the velocity operator. Note
that in the free electron limit (V' —0) this quantity van-
ishes. This is expected since a wave packet should not
feel the effect of a deformation of the lattice in the ab-
sence of electron-phonon coupling. The other piece is
the Berry curvature, which is derived from the Berry
vector potentials. For deformed crystals, in addition to
Ay, there are two other vector potentials

ou ou
=f,— =f,—, 6.23
Ar fa or s At fa ot ( )
with
m de
=——-"hq. 6.24
fa) =7 g 4 (6.24)
This then leads to the following Berry curvatures:
__ Oy Uy _ gy
e orgoq, T ot aq,
(6.25)
Qrarﬂ = Qxal =0.

With the above information we plug in the electron en-
ergy as well as the Berry curvatures into Eq. (6.9) to
obtain the equations of motion.

We first consider a one-dimensional insulator with lat-
tice constant a. Suppose the system is under a uniform
strain with a new lattice constant a+ éa, i.e., du=dala.
Assuming one electron per unit cell, the electron density
goes from 1/a to

S
a+da a a)’

On the other hand, we can also directly calculate the
change in the electron density using the modified density
of states (6.16), which gives

27la

dq oa

—Q,,=——. 6.27
jo Q= (6.27)

(6.26)

From a physical point of view, this change says an insu-
lator under a uniform strain remains an insulator.
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The above formalism is also applicable to dislocation
strain fields, which are well defined except in a region of
a few atomic spacings around the line of dislocation.
Outside this region, the displacement field u(r) is a
smooth but multiple valued function. On account of this
multiple valuedness, a wave packet of incident wave vec-
tor g taken around the line of dislocation acquires a
Berry phase

yzédr-A,zjgdu-f(k)zb-f(k), (6.28)

where b=¢dr,du/dr, is known as the Burgers vector.
What we have here is a situation similar to the
Aharonov-Bohm effect (Aharonov and Bohm, 1959),
with the dislocation playing the role of the solenoid, and
the Berry curvature ,, the role of the magnetic field.
Bird and Preston (1988) showed that this Berry phase
can affect the electron diffraction pattern of a deformed
crystal.

The above discussion only touches a few general ideas
of the Berry phase effect in deformed crystals. With
complete information on the equations of motion, the
semiclassical theory provides a powerful tool to investi-
gate the effects of deformation on electron dynamics
and equilibrium properties.

D. Polarization induced by inhomogeneity

In Sec. II.C we discussed the Berry phase theory of
polarization in crystalline solids, based on the basic idea
that the polarization is identical to the integration of the
adiabatic current flow in the bulk. There the system is
assumed to be periodic and the perturbation depends
only on time (or any scalar for that matter). In this case,
it is straightforward to obtain the polarization based on
the equations of motion (6.11). However, in many physi-
cal situations the system is in an inhomogeneous state
and the electric polarization strongly depends on the in-
homogeneity. Examples include flexoelectricity where a
finite polarization is produced by a strain gradient
(Tagantsev, 1986, 1991) and multiferroic materials where
the magnetic ordering varies in space and induces a po-
larization (Fiebig et al., 2002; Kimura et al., 2003; Hur et
al., 2004; Cheong and Mostovoy, 2007).

Consider an insulating crystal with an order param-
eter that varies slowly in space. We assume that, at least
at the mean-field level, the system can be described by a
perfect crystal under the influence of an external field
h(r). If, for example, the order parameter is the magne-
tization, then h(r) can be chosen as the exchange field
that yields the corresponding spin configuration. Our
goal is to calculate the electric polarization to first order
in the spatial gradient as the field A(r) is gradually
turned on. The Hamiltonian thus takes the form
H[h(r);\], where \ is the parameter describing the turn-
ing on process. Xiao et al. (2009) showed that the first-
order contribution to the polarization can be classified
into two categories: the perturbative contribution due to
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the correction to the wave function and the topological
contribution which is from the dynamics of the elec-
trons.

First consider the perturbation contribution, which is
basically a correction to the polarization formula ob-
tained by King-Smith and Vanderbilt (1993) for a uni-
form system. The perturbative contribution is obtained
by evaluating the Berry curvature (), in Eq. (2.27) to
first order of the gradient. Remember that we always
expand the Hamiltonian into the form H=H +AH and
choose the eigenfunctions of H, as our expansion basis.
Hence to calculate the Berry curvature to first order of
the gradient, one needs to know the form of the wave
function perturbed by AH. This calculation has been dis-
cussed in the case of an electric field (Nunes and Gonze,
2001; Souza et al., 2002).

The topological contribution is of different nature.
Starting from Eq. (6.9) and making use of the modified
density of states (6.16), one finds the adiabatic current
induced by inhomogeneity is given by

dq
i(2) _ _~1 r\ r N r X
j2=e LZ 5507 + Q00 - 0g08.

(6.29)

We can see that this current is explicitly proportional to
the spatial gradient. Comparing this equation with Eq.
(2.6) reveals an elegant structure: the zeroth-order con-
tribution [Eq. (2.6)] is given as an integral of the first
Chern form, while the first-order contribution [Eq.
(6.29)] is given as an integral of the second Chern form.
A similar result has been obtained by Qi et al. (2008).

The polarization is obtained by integrating the cur-
rent. As usually in the case of multiferroics, we can as-
sume the order parameter is periodic in space (but in
general incommensurate with the crgstal lattice). A two-
point formula can be written down'

Pf)zgfdrf
v BZ

+ ARVEAD

dq , ,
2 (AIVLAG + AGVIAY,

(6.30)

where V is the volume of the periodic structure of the
order parameter. Again, due to the loss of tracking of A,
there is an uncertain quantum which is the second Chern
number. If we assume the order parameter has period /,
in the y direction, the polarization quantum in the x
direction is given by

—, (6.31)

where a is the lattice constant.
Kunz (1986) discussed the charge pumping in incom-
mensurate potentials and showed that in general the

1380 far we only considered the Abelian Berry case. The non-
Abelian result is obtained by replacing the Chern-Simons form
with its non-Abelian form.
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charge transport is quantized and given in the form of
Chern numbers, which is consistent with what we have
derived.

The second Chern form demands that the system
must be two dimensions or higher, otherwise the second
Chern form vanishes. It allows us to determine the gen-
eral form of the induced polarization. Consider a two-
dimensional minimal model with A(r) having two com-
ponents. If we write H[h(r);\] as H[NA(r)], i.e., N acts
like a switch, the polarization can be written as

PO % J dry (V- bk - (h - V)h]. (6.32)
The coefficient y is given by
e dq fl dX
=9 . €ubc ‘Q’a ‘Q’u } (633)
X SfBZ(zTF)2 o A ped b

where the Berry curvature is defined on the parameter
space (q,h) and €,,.; is the Levi-Civita antisymmetric
tensor.

Xiao et al. (2009) showed how the two-point formula
can be implemented in numerical calculations using a
discretized version (Kotiuga, 1989).

1. Magnetic-field-induced polarization

An important application of the above result is the
magnetic-field-induced polarization. Essin et al. (2009)
considered an insulator in the presence of a vector po-
tential A=Byz with its associated magnetic field B
=h/ea.l,x. The inhomogeneity is introduced through the
vector potential in the z direction. Note that magnetic
flux over the supercell a, X/, in the x direction is exactly
h/e, therefore the system is periodic in the y direction
with period /. According to our discussion in Sec. V, the
effect of a magnetic field can be counted by the Peierls
substitution k,—k_ +eBy/f, hence V,=(eB/%)V,,. Ap-
plying Eq. (6.30), one obtains the induced polarization

6e?

P.=—-R8,
Y 2mh

(6.34)
with
1 2
=—f dksaByTl{Aaﬂlgfl./—l—Aa.AﬁAy , (6.35)
277 BZ 3

where (A,)un=i{t,,|Vy |u,) is the non-Abelian Berry
connection, discussed in Sec. IX. Recall that the polar-
ization is defined as the response of the total energy to
an electric field P=d€/JE, such a magnetic-field-induced
polarization implies that there is an electromagnetic
coupling of the form
6e*

Alpv=5 E-B.
This coupling, labeled “axion electrodynamics,” was dis-
cussed by Wilczek (1987). When 6=, the corresponding
insulator is known as a 3D Z, topological insulator (Qi
et al., 2008).

(6.36)
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E. Spin texture

So far our discussion has focused on the physical ef-
fects of the Berry curvature in the momentum space
(Qg) or in the mixed space of the momentum coordi-
nates and some other parameters (2, and €,). In this
section we discuss the Berry curvatures which originate
only from the nontrivial real-space configuration of the
system.

One of such systems is magnetic materials with do-
main walls or spin textures. Consider a ferromagnetic
thin films described by the following Hamiltonian:

P’
H="—-Ja(r1 - o, (6.37)
2m

where the first term is the bare Hamiltonian for a con-
duction electron and the second term is the s-d coupling
between the conduction electron and the local
d-electron spin along the direction #(r,?) with J the cou-
pling strength. Note that we have allowed the spin tex-
ture to vary in both space and time. The simple momen-
tum dependence of the Hamiltonian dictates that all
k-dependent Berry curvatures vanish.

Because of the strong s-d coupling, we adopt the adia-
batic approximation which states that the electron spin
will follow the local spin direction during its motion.
Then the spatial variation in local spin textures gives rise
to the Berry curvature field

Q,,=3sin dVOX V), (6.38)

where 6 and ¢ are the spherical angles specifying the
direction of #1. According to Egs. (6.9), this field acts on
the electrons as an effective magnetic field. In addition,
the time-dependence of the spin texture also gives rises
to

Q, =1sin 06,6V 0-0,0V ¢). (6.39)

Similarly, Q,, acts on the electrons as an effective elec-
tric field. This is in analogy with a moving magnetic field
(Q,,) generating an electric field (£2,,).

The physical consequences of these two fields are ob-
vious by analogy with the electromagnetic fields. The
Berry curvature ,, will drive a Hall current, just like
the ordinary Hall effect (Ye et al., 1999; Bruno et al.,
2004). Unlike the anomalous Hall effect discussed in
Sec. II1.D, this mechanism for a nonvanishing Hall effect
does not require the spin-orbit coupling but does need a
topologically nontrivial spin texture, for example, a skyr-
mion. On the other hand, for a moving domain wall in a
thin magnetic wire the Berry curvature €, will induce
an electromotive force, which results in a voltage differ-
ence between the two ends. This Berry curvature in-
duced emf has recently been experimentally measured
(Yang et al., 2009).

VII. QUANTIZATION OF ELECTRON DYNAMICS

In previous sections we have reviewed several Berry
phase effects in solid-state systems. Berry curvature of-
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ten appears as a result of restricting (or projecting) the
extent of a theory to its subspace. In particular, the
Berry curvature plays a crucial role in the semiclassical
dynamics of electrons, which is valid under the one-band
approximation. In the following, we explain how the
semiclassical formulation could be requantized. This is
necessary, for example, in studying the quantized
Wannier-Stark ladders from the Bloch oscillation, or the
quantized Landau levels from the cyclotron orbit (Ash-
croft and Mermin, 1976). The requantized theory is valid
in the same subspace of the semiclassical theory. It will
become clear that, the knowledge of the Bloch energy,
the Berry curvature, and the magnetic moment in the
semiclassical theory constitute sufficient information for
building the requantized theory. In this section we focus
on the following methods of quantization: the Bohr-
Sommerfeld quantization and the canonical quantiza-
tion.

A. Bohr-Sommerfeld quantization

A method of quantization is a way to select quantum
mechanically allowed states out of a continuum of clas-
sical states. This is often formulated using the general-
ized coordinates ¢; and their conjugate momenta p;. The
Bohr-Sommerfeld quantization requires the action inte-
gral for each set of the conjugate variables to satisfy

35 pidq;= (m,~+ ﬁ)h i=1,....d,
G 4

where C; are closed trajectories in the phase space with
dimension 2d, m; are integers, and v; are the so-called
Maslov indices, which are usually integers. Notice that
since the choice of conjugate variables may not be
unique, the Bohr-Sommerfeld quantization method
could give inequivalent quantization rules. This problem
can be fixed by the following Einstein-Brillouin-Keller
(EBK) quantization rule.

For a completely integrable system, there are d con-
stants of motion. As a result, the trajectories in the
phase space are confined to a d-dimensional torus. On
such a torus, one can have d closed loops that are topo-
logically independent of each other (Tabor, 1989). That
is, one cannot be deformed continuously to the other.
Since E?legdq€ is invariant under coordinate transfor-
mation, instead of Eq. (7.1), one can use the following
EBK quantization condition:

d

2 pedge= (mk+ ﬂ>h, k=1,....d,
Cy t=1 4

(7.1)

(7.2)

where C; are periodic orbits on invariant tori. Such a
formula is geometric in nature (i.e., it is coordinate in-
dependent). Furthermore, it applies to the invariant tori
of systems that may not be completely integrable.
Therefore, the EBK formula plays an important role in
quantizing chaotic systems (Stone, 2005). In the follow-
ing, we refer to both types of quantization simply as the
Bohr-Sommerfeld quantization.
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In the wave-packet formulation of Bloch electrons,
both r. and ¢, are treated as generalized coordinates.
With the Lagrangian in Eq. (5.7), one can find their con-
jugate momenta JL/di. and JL/dq., which are equal to
fiq. and #i(u|iou/dq.)=hA, respectively (Sundaram and
Niu, 1999). The quantization condition for an orbit with
constant energy thus becomes

r
é qc-drC:ZW(m+£——C>,
c 4 2w

where I'c=¢-A-dq, is the Berry phase of an energy
contour C [see also Wilkinson (1984b) and Kuratsuji and
Iida (1985)]. Since the Berry phase is path dependent,
one may need to solve the equation self-consistently to
obtain the quantized orbits.

Before applying the Bohr-Sommerfeld quantization in
the following sections, we point out two disadvantages
of this method. First, the value of the Maslov index is
not always apparent. For example, for a one-
dimensional particle bounded by two walls, its value
would depend on the slopes of the walls (van Houten et
al., 1989). In fact, a noninteger value may give a more
accurate prediction of the energy levels (Friedrich and
Trost, 1996). Second, this method fails if the trajectory in
phase space is not closed, or if the dynamic system is
chaotic and invariant tori fail to exist. On the other
hand, the method of canonical quantization in Sec.
VIL.D does not have these problems.

(7.3)

B. Wannier-Stark ladder

Consider an electron moving in a one-dimensional pe-
riodic lattice with lattice constant a. Under a weak uni-
form electric field E, according to the semiclassical equa-
tions of motion, the quasimomentum of an electron
wave packet is simply [see Eq. (5.8)]

fiq.(t) = — eEt. (7.4)

It takes the time Tg=h/eEa for the electron to traverse
the first Brillouin zone. Therefore, the angular fre-
quency of the periodic motion is wg=eFEa/f. This is the
so-called Bloch oscillation (Ashcroft and Mermin, 1976).

Similar to a simple harmonic oscillator, the energy of
the oscillatory electron is quantized in multiples of Zwp.
However, unlike the former, the Bloch oscillator has no
zero-point energy (that is, the Maslov index is zero).
These equally spaced energy levels are called the
Wannier-Stark ladders. Since the Brillouin zone is peri-
odic, the electron orbit is closed. According to the Bohr-
Sommerfeld quantization, one has

Ie
% r.-dq.=-2m\m-—"1|.
C 2

m

(7.5)

For a simple one-dimensional lattice with inversion sym-
metry, if the origin is located at a symmetric point, then
the Berry phase I'c can only have two values, 0 or 7
(Zak, 1989), as discussed in Sec. II.C.
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Starting from Eq. (7.5), it is not difficult to find the
average position of the electron,

<rc>m:a<m_ &>a

. (7.6)

where we have neglected the subscript m in I’ since all
of the paths in the same energy band have 'the same
Berry phase here. Such average positions (r.),, are the
average positions of the Wannier function (Vanderbilt
and King-Smith, 1993). Due to the Berry phase, they are
displaced from the positive ions located at am.

In Sec. II.C the electric polarization is derived using
the theory of adiabatic transport. It can also be obtained
from the expectation value of the position operator di-
rectly. Because of the charge separation mentioned
above, the one-dimensional crystal has a polarization
AP=el'./27 (compared to the state without charge sepa-
ration), which is the electric dipole per unit cell. This is
consistent with the result in Eq. (2.28).

After time average, the quantized energies of the elec-
tron wave packet are

r
<g>m: <8(qc)>_ eE(rc>m:80—eEa(m - 2_C>7 (77)
a

which are the energy levels of the Wannier-Stark lad-
ders.

Two short comments are in order: First, beyond the
one-band approximation, there exist Zener tunnelings
between Bloch bands. Therefore, the quantized levels
are not stationary states of the system. They should be
understood as resonances with finite lifetimes (Avron,
1982; Gluck et al., 1999). Second, the fascinating phe-
nomenon of Bloch oscillation is not commonly observed
in laboratory for the following reason: In an usual solid,
the electron scattering time is shorter than the period 7'z
by several orders of magnitude. Therefore, the phase
coherence of the electron is destroyed within a small
fraction of a period. Nonetheless, with the help of a su-
perlattice that has a much larger lattice constant the pe-
riod Ty can be reduced by two orders of magnitude,
which could make the Bloch oscillation and the accom-
panying Wannier-Stark ladders detectable (Mendez and
Bastard, 1993). Alternatively, the Bloch oscillation and
Wannier-Stark ladders can also be realized in an optical
lattice (Ben Dahan et al., 1996; Wilkinson and Kay,
1996), in which the atom can be coherent over a long
period of time.

C. de Haas—van Alphen oscillation

When a uniform B field is applied to a solid, the elec-
tron would execute a cyclotron motion in both r and the
k space. From Eq. (5.25b), it is not difficult to see that an
orbit C in k space lies on the intersection of a plane
perpendicular to the magnetic field and the constant-
energy surface (Ashcroft and Mermin, 1976). Without
quantization, the size of an orbit is determined by the
initial energy of the electron and can be varied continu-
ously. One then applies the Bohr-Sommerfeld quantiza-
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tion rule, as Onsager did, to quantize the size of the
orbit (Onsager, 1952). That is, only certain orbits satisfy-
ing the quantization rule are allowed. Each orbit corre-
sponds to an energy level of the electron (i.e., the Lan-
dau level). Such a method remains valid in the presence
of the Berry phase.

With the help of the semiclassical equation [see Eq.

(5.8)],

hk,=—er. X B, (7.8)
the Bohr-Sommerfeld condition in Eq. (7.3) can be writ-
ten as (note that iig.=hk.—eA, and v=2)

B 3@ X d ( ! FC’”>¢ (7.9)
dl B .
2 C r. re m 2 27T 0>

m

where ¢y=h/e is the flux quantum. The integral on the
left-hand side is simply the magnetic flux enclosed by the
real-space orbit (allowing a drift along the B direction).
Therefore, the enclosed flux has to jump in steps of the
flux quantum (plus a Berry phase correction).

Similar to the Bohr atom model, in which the electron
has to form a standing wave, here the total phase ac-
quired by the electron after one circular motion also has
to be integer multiples of 27. Three types of phases con-
tribute to the total phase: (a) the Aharonov-Bohm
phase—an electron circulating a flux quantum picks up a
phase of 27r; (b) the phase lag of 7 at each turning point
(there are two of them)—this explains why the Maslov
index is two; and (c) the Berry phase intrinsic to the
solid. Therefore, Eq. (7.9) simply says that the summa-
tion of these three phases should be equal to 27m.

The orbit in k space can be obtained by rescaling the
r-space orbit in Eq. (7.9) with a linear factor of A%, fol-
lowed by a rotation of 90°, where Az = Vh/eB is the mag-
netic length (Ashcroft and Mermin, 1976). Therefore,
one has

A

B 1 T B
—-3@ kcxdk6=2w<m+—_i>e—.
2 Cm

7.10
2 2@/ h ( )

The size of the orbit combined with the knowledge of
the electron energy E(k.)=e(k,)—M-B help determine
the quantized energy levels. For an electron with a qua-
dratic energy dispersion (before applying the magnetic
field), these levels are equally spaced. However, with the
Berry phase correction, which is usually different for dif-
ferent orbits, the energy levels are no longer uniformly
distributed. This is related to the discussion in Sec. V on
the relation between the density of states and the Berry
curvature (Xiao et al., 2005).

As a demonstration, we apply the quantization rule to
graphene and calculate the energies of Landau levels
near the Dirac point. Before applying a magnetic field,
the energy dispersion near the Dirac point is linear,
e(k)=fivpk. Tt is known that if the energy dispersion
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near a degenerate point is linear, then the cyclotron or-
bit will acquire a Berry phase I' =, independent of the
shape of the orbit (Blount, 1962b). As a result, the 1/2
on the right-hand side of Eq. (7.10) is canceled by the
Berry phase term. According to Eq. (7.10), the area of a
cyclotron orbit is thus wk?>=2mmeB/#, where m is a non-
negative integer, from which one can easily obtain the
Landau-level energy &,,=vpv2eBhim. The experimental
observation of a quantum Hall plateau at zero energy is
thus a direct consequence of the Berry phase (No-
voselov et al., 2005, 2006; Zhang et al., 2005).

In addition to point degeneracy, other types of degen-
eracy in momentum space can also be a source of the
Berry phase. For example, the effect of the Berry phase
generated by a line of band contact on magneto-
oscillations is studied by Mikitik and Sharlai (1999,
2004).

The discussion so far is based on the one-band ap-
proximation. In reality, the orbit in one band would
couple with the orbits in other bands. As a result, the
Landau levels are broadened into minibands (Wilkinson,
1984a). A similar situation occurs in a magnetic Bloch
band, which is the subject of Sec. VIIL

D. Canonical quantization (Abelian case)

In addition to the Bohr-Sommerfeld quantization, an
alternative way to quantize a classical theory is by find-
ing out position and momentum variables that satisfy
the following Poisson brackets:

{xi.pjt = 3. (7.11)
Afterwards, these classical canonical variables are pro-
moted to operators that satisfy the commutation relation

[xi.pj] = ih5; (7.12)

l]?
that is, all we need to do is to substitute the Poisson
bracket {x;,p;} by the commutator [x;,p;]/ifi. Based on
the commutation relation, these variables can be written
explicitly using either the differential-operator represen-
tation or the matrix representation. Once this is done,
one can proceed to obtain the eigenvalues and eigen-
states of the Hamiltonian H(x,p).

Even though one can always have canonical pairs in a
Hamiltonian system, as guaranteed by the Darboux
theorem (Arnold, 1989), in practice, however, finding
them may not be a trivial task. For example, the center-
of-mass variables r, and k. in the semiclassical dynamics
in Eq. (5.8) are not canonical variables since their Pois-
son brackets below are not of the canonical form (Xiao
et al., 2005; Duval et al., 2006a),

{rirj}t = €k, (7.13)

{ki,k]}: - EijkeBk/K, (714)
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{ri,kj}z (5l'j+eBl'Qj)/K, (715)

where k=1+eB(r)-Q(k). In order to carry out the ca-
nonical quantization, canonical variables of position and
momentum must be found.

The derivation of Egs. (7.13)—(7.15) is outlined as fol-
lows: One first writes the equations of motion in Eq.
(5.7) in the form of Eq. (6.13) [£=(r,k)]. In this case, the

only nonzero Berry curvatures are ({),,);/=—¢;eB) and

(Quao)ij= €k, whereas Qg and (), are zero. The Pois-

< 1 ( 6kk 7— 5kk6rr+eB‘
1+€B‘Q —7+5”.5kk—€B'Q ﬁrr

Equations (7.13)—(7.15) thus follow when f and g are
identified with the components of &.

We start with two special cases. The first is a solid with
zero Berry curvature that is under the influence of a
magnetic field (=0, B+#0). In this case, the factor « in
Eq. (7.14) reduces to 1 and the position variables com-
mute with each other. Obviously, if one assumes 7k,
=p+eA(x) and requires x and p to be canonical conju-
gate variables, then the quantized version of Eq. (7.14)
(with i inserted) can easily be satisfied. This is the fa-
miliar Peierls substitution (Peierls, 1933).

In the second case, consider a system with Berry cur-
vature but not in a magnetic field (Q #0, B=0). In this
case, again we have x=1. Now the roles of r. and k. in
the commutators are reversed. The momentum variables
commute with each other but not the coordinates. One
can apply a Peierls-like substitution to the coordinate
variables and write r.=x+.A(qg). It is not difficult to see
that the commutation relations arising from Eq. (7.13)
can indeed be satisfied. After the canonical quantization,
x becomes id/dq in the quasimomentum representation.
Blount (1962b) showed that the position operator r in
the one-band approximation acquires a correction,
which is our Berry connection A. Therefore, r, can be
identified with the projected position operator PrP,
where P projects to the energy band of interest.

When both B and ) are nonzero, applying both of the
Peierls substitutions simultaneously is not enough to
produce the correct commutation relations, mainly be-
cause of the nontrivial factor « there. In general, exact
canonical variables cannot be found easily. However,
since the semiclassical theory itself is valid to linear or-
der of field, we only need to find the canonical variables
correct to the same order in practice. The result is
(Chang and Niu, 2008)

r.=x+ A(w) + G(m),
(7.18)
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son bracket of two functions in the phase space f and g is
then defined as

NEAYS (a_g
{f’g}_<a§> - ag)’

where T'=Q-7J [see Eq. (6.14)]. It is defined in such a
way that the equations of motion can be written in the

(7.16)

standard form: £={£,¢}. To linear order of magnetic
field or Berry curvature, one can show that

’)
, (7.17)

hk.=p+eA(x) +eB X A(w),

where w=p+eA(x) and G (k.)=(e/h)(AXB)-0A/ldk,,.
This is the generalized Peierls substitution for systems
with Berry connection A and vector potential A. With
these equations, one can verify Egs. (7.13) and (7.15) to
linear orders of B and Q.

A few comments are in order: First, if a physical ob-
servable is a product of several canonical variables, the
order of the product may become a problem after the
quantization since the variables may not commute with
each other. To preserve the Hermitian property of the
physical observable, the operator product needs to be
symmetrized. Second, the Bloch energy, Berry curva-
ture, and orbital moment of the semiclassical theory
contains sufficient information for building a quantum
theory that accounts for all physical effects to first order
in external fields. We return to this in Sec. IX, where the
non-Abelian generalization of the canonical quantiza-
tion method is addressed.

VIII. MAGNETIC BLOCH BANDS

The semiclassical dynamics in previous sections is
valid when the external field is weak, so that the latter
can be treated as a perturbation to the Bloch states.
Such a premise is no longer valid if the external field is
so strong that the structure of the Bloch bands is signifi-
cantly altered. This happens, for example, in quantum
Hall systems where the magnetic field is of the order of
Tesla and a Bloch band would break into many sub-
bands. The translational symmetry and the topological
property of the subband are very different from those of
the usual Bloch band. To distinguish between the two,
the former is called the magnetic Bloch band (MBB).

The MBB usually carries nonzero quantum Hall con-
ductance and has a nontrivial topology. Compared to the
usual Bloch band, the MBB is a more interesting play-
ground for many physics phenomena. In fact, nontrivial
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topology of magnetic Bloch state was first revealed in
the MBB (Thouless et al., 1982). In this section, we re-
view some basic facts of the MBB, as well as the semi-
classical dynamics of the magnetic Bloch electron when
it is subject to further electromagnetic perturbation
(Chang and Niu, 1995, 1996). Such a formulation pro-
vides a clear picture of the hierarchical subbands split by
the strong magnetic field [called the Hofstadter spec-
trum (Hofstadter, 1976), which could also be realized in
a Bose-Einstein condensate, e.g., see Umucalilar et al.
(2008)].

A. Magnetic translational symmetry

In the presence of a strong magnetic field, one needs
to treat the magnetic field and the lattice potential on
equal footing and solve the following Schrodinger equa-
tion:

1
{%[P+€A(r)]2+ VL(r)}tﬂ(r) =Ey(r), 8.1)
where V; is the periodic lattice potential. For conve-
nience of discussion, we assume the magnetic field is
uniform along the z axis and the electron is confined to
the x-y plane. Because of the vector potential, the
Hamiltonian H above no longer has the lattice transla-
tion symmetry.

Since the lattice symmetry of the charge density is not
broken by an uniform magnetic field, one should be able
to define translation operators that differ from the usual
ones only by phase factors (Lifshitz and Landau, 1980).
First, consider a system translated by a lattice vector a,

{i[p +eA(r+a)* + VL(r)}¢(r+ a)=Ey(r+a),
(8.2)

where V,;(r+a)=V,(r) has been used. One can write
A(r+a)=A(r)+ Vf(r), (8.3)

where Vf(r)=A(r+a)-A(r)=AA(a). In a uniform mag-
netic field, one can choose a gauge such that A is per-
pendicular to the magnetic field BZ and its components
linear in x and y. As a result, AA is independent of r and
f=AA-r. The extra vector potential Vf can be removed
by a gauge transformation,

{ﬁ[p +eA(r) P+ VL(r)}ei(E/ﬁ')-fz,b(r +a)

= E"“y(r + a). (8.4)

We now identify the state above as the magnetic trans-
lated state T,¢d(r),

T, (r) = e“MAATy(r 1 a). (8.5)
The operator T, being defined this way has the desired
property that [H,T,]=0.
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FIG. 12. (Color online) When the magnetic flux per plaquette
is ¢/ 3, the magnetic unit cell is composed of three plaquettes.
The magnetic Brillouin zone is three times smaller than the
usual Brillouin zone. Furthermore, the magnetic Bloch states
are threefold degenerate.

Unlike usual translation operators, magnetic transla-
tions along different directions usually do not commute.
For example, let @; and a, be lattice vectors, then

e
To,Ta =TaTa, exp(tg 3[) A- dr), (8.6)

where $A -dr is the magnetic flux going through the unit
cell defined by a; and a,. That is, the noncommutativity
is a result of the Aharonov-Bohm phase. T, commutes
with T,, only if the flux ¢ is an integer multiple of the
flux quantum ¢y=e/h.

If the magnetic flux ¢ enclosed by a plaquette is
(p/q) o, where p and g are coprime integers, then T,
would commute with 7, (see Fig. 12). The simultaneous
eigenstate of H, Tya,> and T, is called a magnetic Bloch
state and its energy the magnetic Bloch energy,

Hipi = Enicthuke, (87)
Ty, Ynic = €* 4“1, (8.8)
Ta2 ke = ek Dk (8.9)

Since the magnetic unit cell is g times larger than the
usual unit cell, the magnetic Brillouin zone (MBZ) has
to be g times smaller. If b; and b, are defined as the
lattice vectors reciprocal to a; and a,, then, in this ex-
ample, the MBZ is folded back ¢ times along the b,
direction.
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In addition, with the help of Egs. (8.6) and (8.8), one
can show that the eigenvalues of the T, operator for the
following translated states,

Tal lpnk’ T2a1 lzbnk’ cees T(q—l)a1 wnk, (810)

are

ei(k+b2p/q)‘a2’ei(k+2b2p/q)~a2’ . ’ei[k+(q—1)b2p/q]‘a2’ (811)
respectively. These states are not equivalent, but have
the same energy as ¢, since [H, T, ]=0. Therefore, the
MBZ has a g-fold degeneracy along the b, direction.
Each repetition unit in the MBZ is sometimes called a
reduced magnetic Brillouin zone. More discussions on
the magnetic translation group can be found in Zak
(1964a, 1964b, 1964c).

B. Basics of magnetic Bloch band

In this section we review some basic properties of the
magnetic Bloch band. These include the pattern of band
splitting due to a quantizing magnetic field, the phase of
the magnetic Bloch state, and its connection with the
Hall conductance.

The rules of band splitting are simple in two opposite
limits, which are characterized by the relative strength
between the lattice potential and the magnetic field.
When the lattice potential is much stronger than the
magnetic field, it is more appropriate to start with the
zero-field Bloch band as a reference. It was found that if
each plaquette encloses a magnetic flux (p/q)d,, then
each Bloch band would split to g subbands (Obermair
and Wannier, 1976; Schellnhuber and Obermair, 1980;
Wannier, 1980; Kohmoto, 1989; Hatsugai and Kohmoto,
1990). We know that if N is the total number of lattice
sites on the two-dimensional plane, then the number of
allowed states in the Brillouin zone (and in one Bloch
band) is N. Since the area of the MBZ (and the number
of states within) is smaller by a factor of ¢, each MBB
has N/q states, sharing the number of states of the origi-
nal Bloch band equally.

On the other hand, if the magnetic field is much stron-
ger than the lattice potential, then one should start from
the Landau level as a reference. In this case, if each
plaquette has a magnetic flux ¢=(p/q)¢,, then after
turning on the lattice potential each Landau level (LL)
will split to p subbands. The state counting is quite dif-
ferent from the previous case: The degeneracy of the
original LL is ®/¢y=Np/q, where ®=N¢ is the total
magnetic flux through the two-dimensional sample.
Therefore, after splitting, each MBB again has only N/gq
states, the number of states in a MBZ.

Between the two limits, when the magnetic field is
neither very strong nor very weak, the band splitting
does not follow a simple pattern. When the field is tuned
from weak to strong, the subbands will split, merge, and
interact with each other in a complicated manner, such
that in the end there are only p subbands in the strong-
field limit.
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According to Laughlin’s gauge-invariance argument
(Laughlin, 1981), each of the isolated magnetic Bloch
bands carries a quantized Hall conductivity (see Secs.
IL.B and III.C). This is closely related to the nontrivial
topological property of the magnetic Bloch state
(Kohmoto, 1985; Morandi, 1988). Furthermore, the dis-
tribution of Hall conductivities among the split subbands
follows a simple rule first discovered by Thouless et al.
(1982). This rule can be derived with the help of the
magnetic translation symmetry (Dana et al., 1985). We
show the derivation below following the analysis of
Dana et al. since it reveals the important role played by
the Berry phase in the magnetic Bloch state.

In general, the phases of Bloch states at different k’s
are unrelated and can be defined independently."* How-
ever, the same does not apply to a MBZ. For one thing,
the phase has to be nonintegrable in order to account
for the Hall conductivity. One way to assign the phase of
the MBS u,(r) is by imposing the parallel-transport con-
dition [see Thouless’s article in Prange and Girvin
(1987)],

J
<Mk]0|ﬁ_kl|uklo> =0, (8.12)

1%
<uk1k2|(9_kz|”k1k2> =0. (8.13)
The first equation defines the phase of the states on the
ki axis; the second equation defines the phase along a
line with fixed k; [see Fig. 13(a)]. As a result, the phases
of any two states in the MBZ have a definite relation.

The states on opposite sides of the MBZ boundaries
represent the same physical state. Therefore, they can
only differ by a phase factor. Following Egs. (8.12) and
(8.13), we have

Uk +b gy = Uk keys (8.14)

k1)

g sy, = €701 (8.15)

Uk, k>

where by and b, are the lengths of the primitive vectors
reciprocal to a; and a,. That is, the states on the oppo-
site sides of the k| boundaries have the same phase. The
same cannot also be true for the k, boundaries, other-
wise the topology will be too trivial to accommodate the
quantum Hall conductivity.

Periodicity of the MBZ requires that

8ky+ bi/q) = 8(ky) + 27 X integer. (8.16)

In order for the integral (1/2m)$ ppzdk- A(k) (which is
nonzero only along the upper horizontal boundary) to
be the Hall conductivity o (in units of //e?), the integer
in Eq. (8.16) obviously has to be equal to op.

Following the periodicity condition in Eq. (8.16), it is
possible to assign the phase in the form

YIn practice, the phases are usually required to be continuous
and differentiable so that the Wannier function can behave
well.
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>y / K
FIG. 13. (Color online) Reduced magnetic Brillouin zone. (a)
The phases of the MBS in the reduced MBZ can be assigned
using the parallel transport conditions, first along the k; axis,
then along the paths parallel to the k, axis. (b) Hyperorbits in
a reduced MBZ. Their sizes are quantized following the Bohr-

Sommerfeld quantization condition. The orbit enclosing the
largest area is indicated by solid lines.

8(ky) = 8(ky) + okiqay, (8.17)

where 8(k;+b,/q)=05(k;). On the other hand, from the
discussion at the end of Sec. VIII.A, we know that

Ty gk, = eio(kl)uklk2+2wp/qa2' (8.18)
Again from the periodicity of the MBZ, one has

(ki + bi/q) = 0(ky) +2mtm, m e Z, (8.19)
which gives

0(k,) = 6(k,) + mk,qa,. (8.20)
Choosing S(kl) and 5(k1) to be 0, one finally gets

Ty, Uk, = €™ 19y o 5 oty

= elamkiaagipopkiaay,, (8.21)
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But this state should also be equal to eiqkl‘lluklkz. There-
fore, the Hall conductivity should satisfy

pog+qm=1. (8.22)

This equation determines the Hall conductivity (mod ¢q)
of a MBB (Dana et al., 1985). In Sec. VIIL.D, we will see
that the semiclassical analysis can also help us finding
out the Hall conductivity of a MBB.
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C. Semiclassical picture: Hyperorbits

When a weak magnetic field is applied to a Bloch
band, the electron experiences a Lorentz force and ex-
ecutes a cyclotron motion on the surface of the Fermi
sea. In the case of the MBB, the magnetic field B,
changes the band structure itself. On the other hand, the
magnetic quasimomentum #k is a good quantum num-

ber with #k=0. Therefore, there is no cyclotron motion
of k (even though there is a magnetic field B;). Similar
to the case of the Bloch band, one can construct a wave
packet out of the magnetic Bloch states, and study its
motion in both r and k spaces when it is subject to an
additional weak electromagnetic field E and 6B. The
semiclassical equations of motion that are valid under
the one-band approximation have exactly the same form
as Eq. (5.8). One simply needs to reinterpret ik, Ey(k),
and B in Eq. (5.8) as the magnetic momentum, the mag-
netic band energy, and the extra magnetic field 6B, re-
spectively (Chang and Niu, 1995, 1996). As a result,
when 6B is not zero, there exists similar circulating mo-
tion in the MBB. This type of orbit will be called “hy-
perorbit.”

We first consider the case without the electric field
(the case with both E and 6B will be considered in Sec.
VIIL.D). By combining the following two equations of
motion [cf. Eq. (5.8)],

fik = — eir X 8B, (8.23)
oFE .
fhir=——-hk X Q, 8.24
Ul (8.24)
one has

. 10E e
hk=——— X SB— 8.25
k ok h’ ( )

where k(k)=1+Q(k)S6Be/#. This determines the k orbit
moving along a path with constant FE(k)=Ey(k)
—M(k)- 6B, which is the magnetic Bloch band energy
shifted by the magnetization energy. Similar to the Bloch
band case, it is not difficult to see from Eq. (8.23) that
the r orbit is simply the k orbit rotated by /2 and (lin-
early) scaled by the factor #/eSB. These orbits in the
MBB and their real-space counterparts are the hyperor-
bits mentioned above (Chambers, 1965).

The size of a real-space hyperorbit may be very large
(if phase coherence can be maintained during the circu-
lation) since it is proportional to the inverse of the re-
sidual magnetic field §B. Furthermore, since the split
magnetic subband is narrower and flatter than the origi-
nal Bloch band, the electron group velocity is small. As
a result, the frequency of the hyperorbit motion can be
very low. Nevertheless, it is possible to detect the hyper-
orbit using, for example, resonant absorption of ultra-
sonic wave or conductance oscillation in an electron fo-
cusing device.

Similar to the cyclotron orbit, the hyperorbit motion
can also be quantized using the Bohr-Sommerfeld quan-
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tization rule [see Eq. (7.3)]. One only needs to bear in
mind that k is confined to the smaller MBZ and the
magnetic field in Eq. (7.3) should be 6B. After the quan-
tization, there can only be a finite number of hyperorbits
in the MBZ. The area of the largest hyperorbit should
be equal to or slightly smaller (assuming 6B < B so that
the number of hyperorbits is large) than the area of the
MBZ (27/a)?/q [see Fig. 13(b)]. For such an orbit, the
Berry phase correction I'/27 in Eq. (7.3) is very close to
the integer Hall conductivity o of the MBB. Therefore,
it is not difficult to see that the number of hyperorbits
should be |1/(q )+ oy, where dp= SBa*/ ¢, is the re-
sidual flux per plaquette.

Because the MBZ is g-fold degenerate (see Sec.
VIIIL.A), the number of energy levels produced by these
hyperorbits are (Chang and Niu, 1995)

D= |1/(q5¢) + 0’H|
q

If one further takes the tunneling between degenerate
hyperorbits into account (Wilkinson, 1984a), then each
energy level will be broadened into an energy band.
These are the magnetic energy subbands at a finer en-
ergy scale compared to the original MBB.

(8.26)

D. Hall conductivity of hyperorbit

According to Laughlin’s argument, each of the iso-
lated subband should have its own integer Hall conduc-
tivity. That is, as a result of band splitting, the integer
Hall conductivity o of the parent band is split to a
distribution of integers o, (there are g of them). The sum
of these integers should be equal to the original Hall
conductivity: oz=2,0,. There is a surprisingly simple
way to determine this distribution using the semiclassical
formulation: one only needs to study the response of the
hyperorbit to an electric field.

After adding a term —eE to Eq. (8.23), one obtains

A& .  Ex3?
F=——hk X {4
¢SB 5B

(8.27)

For a closed orbit, this is just a cyclotron motion super-
imposed with a drift along the E X 6B direction. After
time average, the former does not contribute to a net
transport. Therefore the Hall current density for a filled
magnetic band in a clean sample is

; f &k . EX?
=—e ——LHFr=—¢€ 5

(8.28)

where p is the number of states in the MBZ divided by
the sample area. Therefore, the Hall conductivity is
0= ¢p/ 5B. If the areal electron density of a sample is
po, then after applying a flux ¢=p/q per plaquette the
MBZ shrinks by g times and p=p,/q.

How can one be sure that both the degeneracy in Eq.
(8.26) and the Hall conductivity o“°* are integers? This
is closely related to the following question: How does

one divide an uniform magnetic field B into the quantiz-
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FIG. 14. A parent magnetic Bloch band at magnetic field B,
splits to D, subbands (D,=5 here) due to a perturbation B,,;.
The subbands near the band edges of the parent band are
usually originated from closed hyperorbits. The subband in the
middle is from an open hyperorbit.

ing part B, and the perturbation 6B? The proper way to
separate them was first proposed by Azbel (1964). Since
then, such a recipe has been used widely in the analysis
of the Hofstadter spectrum (Hofstadter, 1976).

One first expands the flux ¢p=p/q(<1) as a continued
fraction,

(8.29)

QT

1
=—F=[fi.f2f3 .- |
fi+
frt

1

1
f3+j

then the continued fraction is truncated to obtain vari-
ous orders of approximate magnetic flux. For example,
¢ =fil=pi/q1, b =f1.f21=r2/ 02, b3=f1.1>.13]
=ps/qs,..., etc. What is special about these truncations
is that p,/q, is the closest approximation to p/q among
all fractions with ¢ <g, (Khinchin, 1964).

As a reference, we show two identities that will be
used below:

Qre1=Fr19r + 415 (8.30)

Pri1dr—=Pr9ra1= (_ 1)r (831)

According to desired accuracy, one chooses a particu-
lar ¢, to be the quantizing flux, and takes &¢,= ¢,
— ¢, as a perturbation (see Fig. 14). With the help of Eq.
(8.31) one has

_
949 r+1 ‘

5, (8.32)

As a result, the Hall conductivity for a closed hyperorbit
produced by 6B, = 6¢,_;/a’ is (recall that p,=py/q,)

close _ _C€Pr — (_ 1)r_1CIr—1~

= 8.33
" =B (8.33)

Substituting this value back into Eq. (8.26) for Dﬁl"se (the
number of subbands split by 8¢,), and using Eq. (8.30),
one has
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close|

|1/(g,50,) + o
qr

D™ = = fra1- (8.34)

This is the number of subbands split from a parent band
that is originated from a closed hyperorbit. One can see
that the Hall conductivity and the number of splitting
subbands are indeed integers.

For lattices with square or triangular symmetry, there
is one and only one nesting (open) hyperorbit in the
MBZ [for example, see the diamond-shaped energy con-
tour in Fig. 13(b)]. Because of its open trajectory, the
above analysis fails for the nesting orbit since the first
term in Eq. (8.27) also contributes to the Hall conduc-
tivity. However, since the total number of hyperorbits in
the parent band can be determined by the quantization
rule, we can easily pin down the value of o7P" with the
help of the sum rule o%**"'=3 g,. Furthermore, D"
can be calculated from Eq. (8.26) once oyP*" is known.
Therefore, both the distribution of the o,’s and the pat-
tern of splitting can be determined entirely within the
semiclassical formulation. The computation in principle
can be carried out to all orders of r. Interested readers
may consult Chang and Niu (1996) and Bohm et al.
(2003) (Chap. 13) for more details.

IX. NON-ABELIAN FORMULATION

In previous sections we have considered the semiclas-
sical electron dynamics with an Abelian Berry curva-
ture. Such a formalism can be extended to the cases
where the energy bands are degenerate or nearly degen-
erate (e.g., due to spin) (Culcer et al., 2005; Shindou and
Imura, 2005) [also see Strinati (1978), Gosselin er al.
(2006), Gosselin et al. (2007), and Dayi (2008)]. Because
the degenerate Bloch states have multiple components,
the Berry curvature becomes a matrix with non-Abelian
gauge structure. We report recent progress on requan-
tizing the semiclassical theory that helps turning the
wave-packet energy into an effective quantum Hamil-
tonian (Chang and Niu, 2008). After citing the dynamics
of the Dirac electron as an example, this approach is
applied to semiconductor electrons with spin degrees of
freedom. Finally, we point out that the effective Hamil-
tonian is only part of an effective theory, and that the
variables in the effective Hamiltonian are often gauge
dependent and therefore cannot be physical variables.
In order to have a complete effective theory, one also
needs to identify the correct physical variables relevant
to experiments.

A. Non-Abelian electron wave packet
The wave packet in an energy band with D-fold de-

generacy is a superposition of the Bloch states #,, (cf.
Sec. 1V),
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D
|W>: E d3qa(qvt)77n(q’t)|¢nq>a (91)
n=1

where 2,|7,(¢q,1)>=1 at each ¢ and a(q,?) is a normal-
ized distribution that centers at g (¢f). Furthermore, the
wave packet is built to be localized at r. in the r space.
One can first obtain an effective Lagrangian for the
wave-packet variables r., q., and 7,, then derive their
dynamical equations of motion. Without going into de-
tails, we only review primary results of such an investi-
gation (Culcer et al., 2005).

Similar to the nondegenerate case, there are three es-
sential quantities in such a formulation. In addition to
the Bloch energy E((q), there are the Berry curvature
and the magnetic moment of the wave packet (see Sec.
IV). However, because of the spinor degree of freedom,
the latter two become vector-valued matrices instead of
the usual vectors. The Berry connection becomes

Oty '
oq

In the rest of this section, (bold-faced) calligraphic fonts
are reserved for (vector-valued) matrices. Therefore, the
Berry connection in Eq. (9.2) can simply be written as
R.

The Berry curvature is defined as

(9.2)

Rmn(q) = l< Ung

Fl@) =V X R-iR X R. (9.3)

Recall that the Berry connection and Berry curvature in
the Abelian case have the same mathematical structures
as the vector potential and the magnetic field in electro-
magnetism. Here R and F also have the same structure
as the gauge potential and gauge field in the non-
Abelian SU(2) gauge theory (Wilczek and Zee, 1984).
Redefining the spinor basis {¢,,} amounts to a gauge
transformation. Assuming that the new basis is obtained
from the old basis by a gauge transformation U, then R
and F would change in the following way:

.ooU
R =URU +i—U",
N
(9.4)
F =UFU,

where A is the parameter of adiabatic change.

The magnetic moment of the wave packet can be
found in Eq. (4.6). If the wave packet is narrowly distrib-
uted around g, then it is possible to write it as the
spinor average of the following quantity (Culcer et al.,
2005):

() .e [ du,
ni\gc 2% (?qc

where Hy=e “"Hye4". That is, M=(M)=5'Mny
=3,,m,M,;m. Except for the extension to multiple com-
ponents, the form of the magnetic moment remains the
same as its Abelian counterpart [see Eq. (4.6)].

X [Hy - Eo(qc)]‘ 37;”> (9.5)
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As a reference, we write down the equations of mo-
tion for the non-Abelian wave packet (Culcer et al.,
2005),

tk.=—eE —er. X B, (9.6)
hi D H hk. X F 9.7)
"=\ | k.’ S e ‘

ihip=(- M -B-tk.-R)y, (9.8)

where k.=q.+(e/h)A(r.), F=(F), and the covariant de-
rivative D/Dk.=d/ dk.—iR. Again the calligraphic fonts
represent matrices. A spinor average (represented by
the angular bracket) is imposed on the commutator of
D/Dk,. and H. The semiclassical Hamiltonian matrix in-
side the commutator in Eq. (9.7) is

H(rcakc) = EO(kc) - €¢(rc) - M(kc) ‘B. (99)

The spinor-averaged Hamiltonian matrix is nothing but
the wave-packet energy E=(H). Like the Abelian case,
it has three terms: the Bloch energy, the electrostatic
energy, and the magnetization energy.

Compared to the Abelian case in Eq. (5.8), the kc
equation also has the electric force and the Lorentz
force. The . equation is slightly more complicated: The
derivative in the group velocity JE/dk, is replaced by
the commutator of the covariant derivative and H. The
anomalous velocity in Eq. (9.7) remains essentially the
same. One only needs to replace the Abelian Berry cur-
vature with the spinor average of the non-Abelian one.

Equation (9.8) governs the dynamics of the spinor,
from which we can derive the equation for the spin vec-

tor J, where J=(J) and J is the spin matrix,

itd =((TH -tk - R]). (9.10)

The spin dynamics in Eq. (9.10) is influenced by the Zee-
man energy in H, as it should be. However, the signifi-
cance of the other term that is proportional to the Berry
connection is less obvious here. Later we will see that it
is in fact the spin-orbit coupling.

B. Spin Hall effect

The anomalous velocity in Eq. (9.7) that is propor-
tional to the Berry curvature F is of physical signifi-
cance. We have seen earlier that it is the transverse cur-
rent in the quantum Hall effect and the anomalous Hall
effect (Sec. III). The latter requires electron spin with
spin-orbit coupling and therefore the carrier dynamics is
suitably described by Egs. (9.6), (9.7), and (9.10).

For the non-Abelian case, the Berry curvature F is
often proportional to the spin § (see Secs. IX.D and
IX.E). If this is true, then in the presence of an electric
field the anomalous velocity is proportional to EXS.
That is, the trajectories of spin-up and spin-down elec-
trons are parted toward opposite directions transverse to
the electric field. There can be a net transverse current if
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the populations of spin-up and spin-down electrons are
different, as in the case of a ferromagnet. This then leads
to the anomalous Hall effect.

If the populations of different spins are equal, then
the net electric Hall current is zero. However, the spin
Hall current can still be nonzero. This is the source of
the intrinsic spin Hall effect (SHE) in semiconductors
predicted by Murakami et al. (2003). In the original pro-
posal, a four-band Luttinger model is used to describe
the heavy-hole (HH) bands and light-hole (LH) bands.
The Berry curvature emerges when one restricts the
whole Hilbert space to a particular (HH or LH) sub-
space. As shown in Sec. IX.E, such a projection of the
Hilbert space almost always generates a Berry curva-
ture. Therefore, the SHE should be common in semi-
conductors or other materials. Indeed, intrinsic SHE has
also been theoretically predicted in metals (Guo et al.,
2008). The analysis of the SHE from the semiclassical
point of view can also be found in Culcer et al. (2005).

In addition to the Berry curvature, impurity scattering
is another source of the (extrinsic) SHE. This is first pre-
dicted by Dyakonov and Perel (1971a, 1971b) [see also
Chazalviel (1975)] and the same idea is later revived by
Hirsch (1999). Because of the spin-orbit coupling be-
tween the electron and the (spinless) impurity, the scat-
tering amplitude is not symmetric with respect to the
transverse direction. This is the same skew scattering (or
Mott scattering) in AHE (see Sec. II1.D.1).

To date most of the experimental evidences for the
SHE belongs to the extrinsic case. They are first ob-
served in semiconductors (Kato et al., 2004; Sih et al.,
2005; Wunderlich et al., 2005) and later in metals (Valen-
zuela and Tinkham, 2006; Kimura et al., 2007; Seki et al.,
2008). The spin Hall conductivity in metals can be de-
tected at room temperature and can be several orders of
magnitude larger than that in semiconductors. Such a
large effect could be due to the resonant Kondo scatter-
ing from the Fe impurities (Guo et al., 2009). This sub-
ject is currently in rapid progress. Complete understand-
ing of the intrinsic or extrinsic SHE is crucial to future
devices that could generate a significant amount of spin
current.

C. Quantization of electron dynamics

In Sec. VII we have introduced the Bohr-Sommerfeld
quantization, which helps predicting quantized energy
levels. Such a procedure applies to the Abelian case and
is limited to closed orbits in phase space. In this section
we report on the method of canonical quantization that
applies to more general situations. With both the semi-
classical theory and the method of requantization at
hand, one can start from a quantum theory of general
validity (such as the Dirac theory of electrons) and de-
scend to an effective quantum theory with a smaller
range of validity. Such a procedure can be applied itera-
tively to generate a hierarchy of effective quantum theo-
ries.

As mentioned in Sec. VIL.D, even though a Hamil-
tonian system always admits canonical variables, it is not
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always easy to find them. In the wave-packet theory, the
variables r. and k. have clear physical meaning, but they
are not canonical variables. The canonical variables r
and p accurate to linear order of the fields are related to

the center-of-mass variables as follows (Chang and Niu,
2008):

r.=r+R(mw + G(m),
(9.11)
hk.=p+eA(r)+eB X R(wm),

where m=p+eA(r) and G (7)=(e/h)(R XB)-IR/dm,.
This is a generalization of the Peierls substitution to the
non-Abelian case. The last terms in both equations can
be neglected on some occasions. For example, they will
not change the force and the velocity in Egs. (9.6) and
9.7).

When expressed in the new variables, the semiclassi-
cal Hamiltonian in Eq. (9.9) can be written as

H(r,p) = Eo(m) — ep(r) + eE - R(m)

IE
M(m) —eR X —2|, (9.12)
o

where we have used the Taylor expansion and neglected
terms nonlinear in fields. Finally, one promotes the ca-
nonical variables to quantum conjugate variables and
converts H to an effective quantum Hamiltonian.

Compared to the semiclassical Hamiltonian in Eq.
(9.9), the quantum Hamiltonian has two additional terms
from the Taylor expansion. The dipole-energy term
eE-"R is originated from the shift between the charge
center r. and the center of the canonical variable r. Al-
though the exact form of the Berry connection R de-
pends on the physical model, we show that for both the
Dirac electron (Sec. IX.D) and the semiconductor elec-
tron (Sec. IX.E) the dipole term is closely related to the
spin-orbit coupling. The correction to the Zeeman en-
ergy is sometimes called the Yafet term, which vanishes
near a band edge (Yafet, 1963).

Three remarks are in order. First, the form of the
Hamiltonian, especially the spin-orbit term and Yafet
term, is clearly gauge dependent because of the gauge-
dependent Berry connection. Such gauge dependence
has prevented one from assigning a clear physical signifi-
cance to the Yafet term. For that matter, it is also doubt-
ful that the electric dipole, or the spin-orbit energy, can
be measured independently. Second, in a neighborhood
of a k point, one can always choose to work within a
particular gauge. However, if the first Chern number (or
its non-Abelian generalization) is not zero, one cannot
choose a global gauge in which R is smooth everywhere
in the Brillouin zone. In such a nontrivial topological
situation one has to work with patches of the Brillouin
zone for a single canonical quantum theory. Third, the
semiclassical theory based on the variables F and M,
on the other hand, is gauge independent. Therefore, the
effective quantum theory can be smooth globally.
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D. Dirac electron

To illustrate the application of the non-Abelian wave-
packet theory and its requantization, we use the Dirac
electron as an example. The starting quantum Hamil-
tonian is

H=ca- (p+eA)+ Bmc? —ed(r)

=Hy+cea-A—ed(r), (9.13)

where @ and B are the Dirac matrices (Strange, 1998)
and H, is the free-particle Hamiltonian. The energy
spectrum of H,, has positive-energy branch and negative-
energy branch, each with twofold degeneracy due to the
spin. These two branches are separated by a large en-
ergy gap mc?. One can construct a wave packet out of
the positive-energy eigenstates and study its dynamics
under the influence of an external field. The size of the
wave packet can be as small as the Compton wavelength
N.=h/mc (but not smaller), which is two orders of mag-
nitude smaller than the Bohr radius. Therefore, the
adiabatic condition on the external electromagnetic field
can be easily satisfied: the spatial variation in the poten-
tial only needs to be much smoother than \. In this
case, even the lattice potential in a solid can be consid-
ered as a semiclassical perturbation. Furthermore, be-
cause of the large gap between branches, interbranch
tunneling happens (and the semiclassical theory fails)
only if the field is so strong that electron-positron pair
production can no longer be ignored.

Since the wave packet is living on a branch with two-
fold degeneracy, the Berry connection and curvature are
2 X 2 matrices (Chang and Niu, 2008),

2

— ¢ _gXoao, (9.14)
2y(y+ 1)q

R(q) =

)\211 o

Flg) = zyg( 1!1),

where y(q)=+v1+(hq/ mc)2 is the relativistic dilation fac-
tor. To calculate these quantities, we only need the free
particle eigenstates of H, [see Egs. (9.2) and (9.3)]. That
is, the nontrivial gauge structure exists in the free par-
ticle already.

It may come as a surprise that the free wave packet
also possesses an intrinsic magnetic moment. Straight-
forward application of Eq. (9.5) gives (Chuu et al., 2010)

eh q o
——|o+\NT—¢q].
2my? ‘y+1

This result agrees with the one calculated from the ab-

(9.15)

Mq)=- (9.16)

stract spin operator S in the Dirac theory (Chuu et al.,
2010),

Miq) =~

(9.17)
( )
in which the g factor is 2. The Zeeman coupling in the
wave-packet energy is —M - B. Therefore, this magnetic
moment gives the correct magnitude of the Zeeman en-
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ergy with the correct g factor. Recall that Eq. (9.5) is
originated from Eq. (4.6), which is the magnetic moment
due to a circulating charge current. Therefore, the mag-
netic moment here indeed is a result of the spinning
wave packet.

The present approach is a revival of Uhlenbeck and
Goudsmit’s rotating sphere model of the electron spin
but without its problem. The size of the wave packet A,
constructed from the positive-energy states is two orders
of magnitude larger than the classical electron radius
e?/mc?. Therefore, the wave packet does not have to
rotate faster than the speed of light to have the correct
magnitude of spin. This semiclassical model for spin is
pleasing since it gives a clear and heuristic picture of the
electron spin. Also, one does not have to resort to the
more complicated Foldy-Wouthuysen approach to ex-
tract the spin from the Dirac Hamiltonian (Foldy and
Wouthuysen, 1950).

From the equation of motion in Eq. (9.10), one ob-
tains

()= | B+ Ex x (). (9.18)
'ym

C
(y+ D)mc?
This is the Bargmann-Michel-Telegdi equation for a
relativistic electron (Bargmann et al., 1959). More dis-
cussions on the equations of motion for r, and k. can be
found in Chang and Niu (2008).

Finally, substituting the Berry connection and the
magnetic moment into Eq. (9.12) and using Ey(a)
=\c?>m?+m?c*, one can obtain the effective quantum
Hamiltonian,

MB T
H(r,p) = Ymme* - ed(r) + o 1)@ Xo-E
5. B, (9.19)
Y

in which all y’s are functions of 7 and ug=e#/2m. This
is the relativistic Pauli Hamiltonian. At low velocity, y
=1, and it reduces to the more familiar form. Notice
that the spin-orbit coupling comes from the dipole en-
ergy term with the Berry connection, as mentioned ear-
lier [also see Mathur (1991) and Shankar and Mathur
(1994)].

E. Semiconductor electron

When studying the transport properties of semicon-
ductors, one often only focuses on the carriers near the
fundamental gap at the I' point. In this case, the band
structure far away from this region is not essential. It is
then a good approximation to use the k-p expansion and
obtain the four-band Luttinger model or the eight-band
Kane model (Luttinger, 1951; Kane, 1957; Winkler, 2003)
to replace the more detailed band structure (see Fig. 15).
In this section, we start from the eight-band Kane model
and study the wave-packet dynamics in one of its sub-
space: the conduction band. It is also possible to inves-
tigate the wave-packet dynamics in other subspaces: the
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b E(k)
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8-band
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4-band :
Luttinger; :
model i

FIG. 15. (Color online) Schematic of the semiconductor band
structure near the fundamental gap. The wave packet in the
conduction band is formed from a two-component spinor.

HH-LH complex or the spin-orbit split-off band. The
result of the latter is not reported in this review. Inter-
ested readers can consult Chang and Niu (2008) for
more details, including the explicit form of the Kane
Hamiltonian that the calculations are based upon.

To calculate the Berry connection in Eq. (9.2), one
needs to obtain the eigenstates of the Kane model,
which have eight components. Similar to the positive-
energy branch of the Dirac electron, the conduction
band is twofold degenerate. Detailed calculation shows
that, to linear order in k [and up to a SU(2) gauge rota-
tion], the Berry connection is a 2 X 2 matrix of the form

Vz{l 1
R=—|—=

- (9.20)
3 E;, (E,+A)

}axk,

where E, is the fundamental gap, A is the spin-orbit spit-
off gap, and V=(h/my){S|p,|X) is a matrix element of
the momentum operator.
As a result, the dipole term eE-R becomes
HSOZGE‘RZCYE'O'XIC, (9.21)
where aE(eV2/3)[1/E§,—1/(Eg+A)2]. The coefficient a
and the form of the spin-orbit coupling are the same as
the Rashba coupling (Rashba, 1960; Bychkov and
Rashba, 1984). However, unlike the usual Rashba cou-
pling that requires structural inversion asymmetry to
generate an internal field, this term exists in a bulk semi-
conductor with inversion symmetry but requires an ex-
ternal field E.
From the Berry connection, we can calculate the
Berry curvature in Eq. (9.3) to the leading order of k as

ZVZ{l 1 } 9.22)
=—|-—"|o. .
3 |E; (Eg+A)

In the presence of an electric field, this would generate
the transverse velocity in Eq. (9.7),

vr=2eaE X (o). (9.23)
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As a result, spin-up and spin-down electrons move to-
ward opposite directions, which results in a spin-Hall
effect (see Sec. IX.B for related discussion).

The wave packet in the conduction band also sponta-
neously rotates with respect to its own center of mass.
To the lowest order of k, it has the magnetic moment,

VTR
3 \E, E,+A)7

With these three basic quantities, R, F, and M, the
requantized Hamiltonian in Eq. (9.12) can be established
as

(9.24)

ho
H(r,p)=Eym) —ed(r) + aE - o X 7+ SgupB - -

(9.25)
where E includes the Zeeman energy from the bare
spin and

4mV2( 1 1 )
3 42 \E, E,+A)
In most textbooks on solid-state physics, one can find
this correction of the g factor. However, a clear identifi-
cation with electron’s angular momentum is often lack-
ing. In the wave-packet formulation, we see that g is

indeed originated from the electron’s spinning motion.

F. Incompleteness of effective Hamiltonian

Once the effective Hamiltonian H(r,p) is obtained,
one can go on to study its spectra and states, without
referring back to the original Hamiltonian. Based on the
spectra and states, any physics observables of interest
can be calculated. These physics variables may be posi-
tion, momentum, or other related quantities. Neverthe-
less, we emphasize that the canonical variables in the
effective Hamiltonian may not be physical observables.
They may differ, for example, by a Berry connection in
the case of the position variable. The effective Hamil-
tonian itself is not enough for correct prediction if the
physical variables have not been identified properly.

This is best illustrated using the Dirac electron as an
example. At low velocity, the effective Pauli Hamil-
tonian is [see Eq. (9.19)]

™
H(r,p) = —ed(r) el 5 X o E+ pgo- B,
mc?

(9.27)

which is a starting point of many solid-state calculations.
It is considered accurate for most of the low-energy ap-
plications in solid state. When one applies an electric
field, then according to the Heisenberg equation of mo-
tion, the velocity of the electron is

2

4ﬁ (9.28)

where A, is the Compton wavelength.
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parent full
space (Il) | space (1)

FIG. 16. The extent of wave-packet space, parent space, and
full space.

If one calculates the velocity of a Dirac electron ac-
cording to Eq. (9.7), then the result is

. hk e)\2

et o
That is, the transverse velocity is larger by a factor of 2.
The source of this discrepancy can be traced back to the
difference between the two position variables: r. and r
[see Eq. (9.11)]. One should regard the equation for 7, as
the correct one since it is based on the Dirac theory [see
also Bliokh (2005)].

Such a discrepancy between the same physical vari-
able in different theories can also be understood from
the perspective of the Foldy-Wouthuysen transforma-
tion. The Pauli Hamiltonian can also be obtained from
block diagonalizing the Dirac Hamiltonian using an uni-
tary transformation. Since the basis of states has been
rotated, the explicit representations of all observables
should be changed as well. For example, r. in Eq. (9.11)
can be obtained by a Foldy-Wouthuysen rotation, fol-
lowed by a projection to the positive-energy subspace
(Foldy and Wouthuysen, 1950).

(9.29)

G. Hierarchy structure of effective theories

Finally, we report on the hierarchical relations for the
basic quantities, the Berry curvature F and the mag-
netic moment M. We consider theories on three differ-
ent levels of hierarchy (I, II, and III) with progressively
smaller and smaller Hilbert spaces. These spaces will be
called the full space, the parent space, and the wave-
packet space, respectively (see Fig. 16).

Alternative to Egs. (9.3) and (9.5), the Berry curvature
and the magnetic moment can be written in the follow-
ing forms (Chang and Niu, 2008):

Fpy=i 2 Ry X Ry, (9.30)
leout
le

an E (EOm - EO Z)le X Rln’ (931)
2ﬁ’leout

where R, is the Berry connection and / sums over the
states outside of the space of interest. From Egs. (9.30)
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and (9.31), one sees that the Berry curvature and the
magnetic moment for theory I are O since there is no
state outside the full space. With the help of the states in
the full space, one can calculate the Berry curvatures
and the magnetic moment in theory II and theory IIL
They are designated as (F,,M,) and (F, M), respec-
tively. These two sets of matrices have different ranks
since the parent space and the wave-packet space have
different dimensions.

If one starts from the parent space, on the other hand,
then the Berry curvature and the magnetic moment for
theory Il is O (instead of F, and M,,). The Berry cur-
vature and the magnetic moment for theory III are now
designated as F' and M'. They are different from F
and M since the former are obtained from the summa-
tions with more outside states from the full space. It is
straightforward to see from Egs. (9.30) and (9.31) that

F=F +PF,P, M=M'+PM,P, (9.32)

where P is a dimension-reduction projection from the
parent space to the wave-packet subspace. This means
that starting from theory II, instead of theory I, as the
parent theory one would have the errors PF,P and
PM,P. On the other hand, however, whenever the
scope of the parent theory needs to be extended, e.g.,
from II to I, instead of starting all of the calculations
anew, one only needs additional input from F, and M,
and the accuracy can be improved easily.

For example, in the original proposal of Murakami et
al. (2003, 2004) of the spin Hall effect of holes, the par-
ent space is the HH-LH complex. The heavy hole (or the
light hole) acquires a nonzero Berry curvature as a result
of the projection from this parent space to the HH band
(or the LH band). This Berry curvature corresponds to
the F' above. It gives rise to a spin-dependent trans-
verse velocity eE X F' that is crucial to the spin Hall
effect.

Instead of the HH-LH complex, if one chooses the
eight bands in Fig. 15 as the full space, then the Berry
curvatures of the heavy hole and the light hole will get
new contributions from PF,P. The projection from the
full space with eight bands to the HH-LH complex
of four bands generates a Berry curvature F,
=—(2V?/ 3E§)J (Chang and Niu, 2008), where J is the
spin-3/2 matrix. Therefore, after further projections, we
would get additional anomalous velocities (eV?/ Ei,)E
X o and (eV?/ 3E§)E X o for HH and LH, respectively.

X. OUTLOOK

In most of the researches mentioned in this review,
the Berry phase and semiclassical theory are explored in
the single-particle context. The fact that they are so use-
ful and that in some of the materials the many-body
effect is crucial naturally motivates one to extend this
approach to many-body regime. For example, the Berry
phase effect has been explored in the density functional
theory with spin degrees of freedom (Niu and Kleinman,
1998; Niu et al., 1999). Also, the Berry phase and rel-
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evant quantities are investigated in the context of Fermi-
liquid theory (Haldane, 2004). Furthermore, the Berry
curvature on the Fermi surface, if strong enough, is pre-
dicted to modify a repulsive interaction between elec-
trons to an attractive interaction and causes pairing in-
stability (Shi and Niu, 2006). In addition to the artificial
magnetic field generated by the monopole of Berry cur-
vature, a slightly different Berry curvature involving the
time component is predicted to generate an artificial
electric field, which would affect the normalization fac-
tor and the transverse conductivity (Shindou and
Balents, 2006). This latter work has henceforth been
generalized to multiple-band Fermi liquid with non-
Abelian Berry phase (Shindou and Balents, 2008). Re-
cently, the ferrotoroidic moment in multiferroic materi-
als is also found to be a quantum geometric phase
(Batista et al., 2008). Research along such a path is ex-
citing and still at its early stage.

There has been a growing amount of research on the
Berry phase effect in light-matter interaction. The Berry
curvature is responsible for a transverse shift (side jump)
of a light beam reflecting off an interface (Onoda et al.,
2004a; Sawada and Nagaosa, 2005; Onoda, Murakami,
and Nagaosa, 2006). The shift is of the order of the
wavelength and is a result of the conservation of angular
momentum. The direction of the shift depends on the
circular polarization of the incident beam. This “optical
Hall effect” can be seen as a rediscovery of the Imbert-
Federov effect (Federov, 1955; Imbert, 1972). More de-
tailed study of the optical transport involving spin has
also been carried out by Bliokh and others (Bliokh,
2006a; Bliokh and Bliokh, 2006; Duval et al., 2006a). The
similarity between the side jump of a light beam and
analogous “jump” of an electron scattering off an impu-
rity has been noticed quite early in Berger and Berg-
mann’s review on anomalous Hall effect (Chien and
Westgate, 1980). In fact, the side jump of the electro-
magnetic wave and the electron can be unified using
similar dynamical equations. This shows that the equa-
tion of motion approach in this review has general va-
lidity. Indeed, a similar approach has also been extended
to the quasiparticle dynamics in Bose-Einstein conden-
sate (Zhang et al., 2006).

Even though the Berry curvature plays a crucial role
in the electronic structure and electron dynamics of crys-
tals, direct measurement of such a quantity is still lack-
ing. There does exist sporadic and indirect evidence of
the effect of the Berry phase or the Berry curvature
through the measurement of, for example, the quantum
Hall conductance, the anomalous Hall effect, or the Hall
plateau in graphene. However, this is just a beginning. In
this review, one can see that in many circumstances the
Berry curvature should be as important as the Bloch
energy. Condensed-matter physicists over the years have
compiled a large database on the band structures and
Fermi surfaces of all kinds of materials. It is about time
to add theoretical and experimental results of the Berry
curvature that will deepen our understanding of material
properties. There is still plenty of room in the quasimo-
mentum space.
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APPENDIX: ADIABATIC EVOLUTION

Suppose the Hamiltonian H[R(¢)] depends on a set of
parameters R(f). Consider an adiabatic process in which
R(t) changes slowly in time. The wave function |¢(7))
must satisfy the time-dependent Schrodinger equation

L d

it |0) = H(O)ly0)- (A1)
If we expand the wave function using the instantaneous
eigenstates |n(t)) of H(t) as

S|

0

dt'En(t’)>an(t)|n(t)>, (A2)
then the coefficients satisfy

)=~ S a0 20

[

i’ f dt’[E,(r')—En(m]). (A3)

0

Xexp(—

So far we have not made any choice regarding the phase
of the instantaneous eigenstates. For our purpose here,
it is convenient to impose the condition of parallel trans-
port,

J . J
<n(t)|at|n(t)> —R(t)<n(t)|&R|n(t)>—0- (A4)
We denote the wave function chosen this way as |7). We
note that this condition is different from the single-
valued phase choice we used in the main text: For a
closed path in the parameter space, i.e., R(t)=R(ty),
there is no guarantee that the phase at the final time #;is
the same as the phase at the beginning f,. In other
words, under the parallel transport condition, even
though |7i(¢)) is uniquely determined as a function of ¢, it
can still be a multivalued function of R. The phase dif-
ference v, in |i(1))=e"|ii(1y)) is precisely the Berry
phase of the closed path. In fact, this can be considered
as another definition of the Berry phase.

In the limit of R—>0, we have, to zeroth order,

A1) =0. (A5)

Therefore if the system is initially in the nth eigenstate,
it will stay in that state afterwards. This is the quantum
adiabatic theorem. Now consider the first-order correc-
tion. We have a,(0)=1 and a,,,(0)=0 for n’ # n. For the
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nth state, we still have a4,=0, therefore a,,=1. However,
for n' #n,

Lt == | 21 f
—a,,r=—Nn |—[n)x -
o " ot P\"% .

0

dt,[En(t,) - En’(t,)]> .

(A6)

Then, since the exponential factor oscillates while its co-
efficient slowly varies in time, we can integrate the
above equation by parts, yielding

1| dlot\n
('] |n>l.h

an/ = -
E,-E,

Xexp(— éf dt'[E,(t") - En,(t’)]). (A7)

0

The wave function including the first-order approxima-
tion is given by

|¢<z>>=exp(— g

0

dt'En(t')>

w1y i E |~,>(n |c9/(9t|n> (A8)

When applying the above result, as long as the expres-
sions involving |7i) are gauge independent, we can always
replace |i7) with eigenstates under another phase choice.

Finally, we mentioned that if the phase of the eigen-
states is required to be single valued as a function of R,
Eq. (A8) can still be obtained with an extra overall phase
¢!, where

oy j ar (RO 2|n(RO). (A9)

0

If the path R(z) is closed, vy, gives the Berry phase.
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