
Berry phase, Chern number

November 17, 2015

November 17, 2015 1 / 22



Literature:
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Basic definitions: Berry connection, gauge invariance
Consider a quantum state |Ψ(R)〉 where R denotes some set of
parameters, e.g., v and w from the Su-Schrieffer-Heeger model.
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|〈Ψ(R)|Ψ(R+ dR)〉|
∆γ = i〈Ψ(R)|∇RΨ(R)〉 · dR

This equation defines the Berry connection:

A = i〈Ψ(R)|∇RΨ(R)〉 = −Im[〈Ψ(R)|∇RΨ(R)〉]

(here we used ∇R〈Ψ(R)|Ψ(R)〉 = 0).
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The relative phase between two states that are close in the parameter
space:

e−i∆γ =
〈Ψ(R)|Ψ(R+ dR)〉

|〈Ψ(R)|Ψ(R+ dR)〉|
∆γ = i〈Ψ(R)|∇RΨ(R)〉 · dR

This equation defines the Berry connection:

A = i〈Ψ(R)|∇RΨ(R)〉 = −Im[〈Ψ(R)|∇RΨ(R)〉]

(here we used ∇R〈Ψ(R)|Ψ(R)〉 = 0).

Note, that the Berry connection is not gauge invariant:

|Ψ(R)〉 → e iα(R)|Ψ(R)〉 : A(R) → A(R) +∇Rα(R).
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Berry phase

Consider a closed directed curve C in parameter space R.
The Berry phase along C is defined in the following way:

∑

i

∆γi → γ(C) = −Arg

[

exp

(

−i

∮

C

A(R)dR

)]
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Berry phase

Consider a closed directed curve C in parameter space R.
The Berry phase along C is defined in the following way:

∑

i

∆γi → γ(C) = −Arg

[

exp

(

−i

∮

C

A(R)dR

)]

Important: The Berry phase is gauge invariant: the integral of ∇Rα(R)
depends only on the start and end points of C, hence for a closed curve it
is zero.
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Berry curvature

Consider the map R 7→ |Ψ(R)〉〈Ψ(R)| !
We asume that this map is smooth.
However, this does not imply that R 7→ |Ψ(R)〉 is smooth!
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of a point R0 in the parameter space, one can always find and alternative
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i) locally smooth
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integral of a gauge invariant quantity → Berry curvature.
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Consider the map R 7→ |Ψ(R)〉〈Ψ(R)| !
We asume that this map is smooth.
However, this does not imply that R 7→ |Ψ(R)〉 is smooth!
Nevertheless, even if the gauge R 7→ |Ψ(R)〉 is not smooth in the vicinity
of a point R0 in the parameter space, one can always find and alternative
gauge |Ψ′(R)〉 which is :

i) locally smooth

ii) which generates the same map, i.e., |Ψ′(R)〉〈Ψ′(R)| = |Ψ(R)〉〈Ψ(R)|

We want to express the gauge invariant Berry phase in terms of a surface
integral of a gauge invariant quantity → Berry curvature.

Consider a simply connected region F in a two-dimensional parameter
space, with the oriented boundary curve of this surface denoted by ∂F ,
and calculate the continuum Berry phase corresponding to the ∂F .
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Berry curvature
In two dimensions: let R = (x , y). We are looking for a function B(x , y)
such that

exp

(

−i

∮

∂F
A(R)dR

)

= exp

(

−i

∫

F

B(x , y)dxdy

)

Here B(x , y) is the Berry curvature.
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(

−i

∮
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A(R)dR

)

= exp

(

−i

∫

F

B(x , y)dxdy

)

Here B(x , y) is the Berry curvature.

In case |Ψ(R)〉 is smooth in the neighbourhood of F then we can use the
Stokes theorem:

∮

∂F
A(R)dR =

∫

F

(∂xAy − ∂yAx)dxdy =

∫

F

B(x , y)dxdy
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In two dimensions: let R = (x , y). We are looking for a function B(x , y)
such that

exp

(

−i

∮

∂F
A(R)dR

)

= exp

(

−i

∫

F

B(x , y)dxdy

)

Here B(x , y) is the Berry curvature.

In case |Ψ(R)〉 is smooth in the neighbourhood of F then we can use the
Stokes theorem:

∮

∂F
A(R)dR =

∫

F

(∂xAy − ∂yAx)dxdy =

∫

F

B(x , y)dxdy

In 3 dimensional parameter space:

B(R) = ∇R × A(R)

Generalization to higher dimensions is also possible.
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Useful formulas for the Berry curvature
We want to calculate the Berry phase corresponding to an eigenstate
|n(R)〉 of some Hamiltonian.

B
(n)
j = −Im[εjkl∂k〈n|∂ln〉] = −Im[εjkl 〈∂kn|∂ln〉]

summation over repeated indeces, and ∂l = ∂Rl
.
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B
(n)
j = −Im[εjkl∂k〈n|∂ln〉] = −Im[εjkl 〈∂kn|∂ln〉]

summation over repeated indeces, and ∂l = ∂Rl
.

Secondly, inserting 1 =
∑

n′ |n
′〉〈n′| one can write

B(n) = −Im





∑

n′ 6=n

〈∇Rn|n
′〉 × 〈n′|∇Rn〉





November 17, 2015 7 / 22



Useful formulas for the Berry curvature
We want to calculate the Berry phase corresponding to an eigenstate
|n(R)〉 of some Hamiltonian.

B
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j = −Im[εjkl∂k〈n|∂ln〉] = −Im[εjkl 〈∂kn|∂ln〉]

summation over repeated indeces, and ∂l = ∂Rl
.

Secondly, inserting 1 =
∑

n′ |n
′〉〈n′| one can write

B(n) = −Im





∑

n′ 6=n

〈∇Rn|n
′〉 × 〈n′|∇Rn〉





To calculate 〈n′|∇Rn〉, one can do the following steps: (both the
Hamiltonian Ĥ and the eigenstates |n〉 depend on R! )

Ĥ |n〉 = En|n〉

∇RĤ|n〉+ Ĥ |∇Rn〉 = (∇REn)|n〉+ En|∇Rn〉

〈n′|∇RĤ |n〉+ 〈n′|Ĥ |∇Rn〉 = En〈n
′|∇Rn〉
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Useful formulas for the Berry curvature

Since 〈n′|Ĥ = En′〈n
′|

〈n′|∇RĤ|n〉+ En′〈n
′|∇Rn〉 = En〈n

′|∇Rn〉

〈n′|∇RĤ |n〉 = (En − En′)〈n
′|∇Rn〉
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Useful formulas for the Berry curvature

Since 〈n′|Ĥ = En′〈n
′|

〈n′|∇RĤ|n〉+ En′〈n
′|∇Rn〉 = En〈n

′|∇Rn〉

〈n′|∇RĤ |n〉 = (En − En′)〈n
′|∇Rn〉

Using this result to calculate

B(n) = −Im





∑

n′ 6=n

〈∇Rn|n
′〉 × 〈n′|∇Rn〉





we find that

B(n) = −Im





∑

n′ 6=n

〈n|∇RH|n′〉 × 〈n′|∇RH|n〉

(En − En′)2




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Berry curvature

B(n) = −Im





∑

n′ 6=n

〈n|∇RH|n′〉 × 〈n′|∇RH|n〉

(En − En′)2





This form manifestly show that the Berry curvature is gauge invariant!
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Berry curvature

B(n) = −Im





∑

n′ 6=n

〈n|∇RH|n′〉 × 〈n′|∇RH|n〉

(En − En′)2





This form manifestly show that the Berry curvature is gauge invariant!

Remarks

i) The sum of the Berry curvatures of all eigenstates of a Hamiltonian is
zero

ii) if the eigenstates are degenerate, then the dynamics must be
projected onto the degenerate subspace. In this case the non-Abelian

Berry curvature naturally arises

iii) Berry curvature is often the larges at near-degeneracies
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Example: two level system

Consider the following Hamiltonian:

Hd = dxσx + dyσy + dzσz = d · σ

where d = (dx , dy , dz) = R
3 \ {0}, to avoid degeneracy

Eigenvalues, eigenstates:

H(d)|±〉 = ±|d||±〉
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Example: two level system

Consider the following Hamiltonian:

Hd = dxσx + dyσy + dzσz = d · σ

where d = (dx , dy , dz) = R
3 \ {0}, to avoid degeneracy

Eigenvalues, eigenstates:

H(d)|±〉 = ±|d||±〉

The |+〉 eigenstate can be represented in the following form:

|+〉 = e iα(θ,φ)
(

e−iφ/2 cos(θ/2)

e iφ/2 sin(θ/2)

)

where

cos θ =
dz

|d|
, e iφ =

dx + idy
√

d2
x + d2

y
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Example: two level system

Figure : The reprentation of the parameter space on a Bloch sphere
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Example: two level system
The choice of phase α(θ, φ) corresponds to fixing a gauge.
Several choices are possible:
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Example: two level system
The choice of phase α(θ, φ) corresponds to fixing a gauge.
Several choices are possible:

1) α(θ, φ) = 0 for all θ, φ.

|+〉0 =

(

e−iφ/2 cos(θ/2)

e iφ/2 sin(θ/2)

)

We except that φ = 0 and φ = 2π should correspond to the same state
in the Hilbert space state. However,
|+ (θ, φ = 0)〉 = −|+ (θ, φ = 2π)〉.
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Example: two level system
The choice of phase α(θ, φ) corresponds to fixing a gauge.
Several choices are possible:

1) α(θ, φ) = 0 for all θ, φ.

|+〉0 =

(

e−iφ/2 cos(θ/2)

e iφ/2 sin(θ/2)

)

We except that φ = 0 and φ = 2π should correspond to the same state
in the Hilbert space state. However,
|+ (θ, φ = 0)〉 = −|+ (θ, φ = 2π)〉.

2) α(θ, φ) = φ/2. Then we have

|+〉S =

(

cos(θ/2)
e iφ sin(θ/2)

)

There are two interesting points: the north (θ = 0) and the south
(θ = π) points. For θ = 0 |+〉S = (1, 0) but for θ = π |+〉S = (0, e iφ),
i.e., the value of the wave function depends on the direction one
approaches the south pole.
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Example: two level system

A couple of other choices are possible, one can try to find a gauge where
the wavefunction is well behaved everywhere on the Bloch sphere. It turns
out that there is no such gauge.

Calculating the Berry phase for a two level system
Let us take a closed curve C in the parameter space R

3 \ {0} and calculate
the Berry phase for the state |−〉.

γ− =

∮

C

A(d)dd, A−(d) = i〈−|∇d|−〉

The calculation is easier if one uses the Berry curvature.
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Calculating the Berry phase for a two level system

B±(d) = −Im
〈±|∇dĤ |∓〉 × 〈∓|∇dĤ |±〉

4|d|2
, ∇dĤ = σ

This can be evaluated in any of the gauges.

B±(d) = ±
d

|d|

1

2|d|2

This is the field of a pointlike monopole source in the origin.
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Calculating the Berry phase for a two level system

The Berry phase of the closed loop C in parameter space is the flux of the
monopole field through a surface F whose boundary is C.
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Calculating the Berry phase for a two level system

The Berry phase of the closed loop C in parameter space is the flux of the
monopole field through a surface F whose boundary is C.
This is half of the solid angle subtended by the curve:

γ− =
1

2
ΩC , γ+ = −γ−

November 17, 2015 15 / 22



Berry phase: physical interpretation

The Berry phase can be interpreted as a phase acquired by the
wavefunction as the parameters appearing in the Hamiltonian are changing
slowly in time.

Ĥ(R)|n(R)〉 = En(R)|n(R)〉

where we have fixed the gauge of |n(R)〉.
Assume that the parameters of the Hamiltonian at t = 0 are R = R0 and
there are no degeneracies in the spectrum. The system is in an eigenstate
|n(R0)〉 for t = 0.

R(t = 0) = R0, |Ψ(t = 0)〉 = |n(R0)〉
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Berry phase: physical interpretation

The Berry phase can be interpreted as a phase acquired by the
wavefunction as the parameters appearing in the Hamiltonian are changing
slowly in time.

Ĥ(R)|n(R)〉 = En(R)|n(R)〉

where we have fixed the gauge of |n(R)〉.
Assume that the parameters of the Hamiltonian at t = 0 are R = R0 and
there are no degeneracies in the spectrum. The system is in an eigenstate
|n(R0)〉 for t = 0.

R(t = 0) = R0, |Ψ(t = 0)〉 = |n(R0)〉

Now consider the situation when R is slowly changed in time and the
values of R(t) define a continuous curve C. Also, assume that |n(R)〉 is
smooth along C.
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Berry phase: physical interpretation

The wavefunction evolves according to the time-dependent Schrödinger
equation:

i~
∂

∂t
|Ψ(t)〉 = Ĥ(R(t))|Ψ(t)〉
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Further important assumption: starting from the initial state |n(R0)〉 for
all times the state |n(R(t))〉 remains non-degenerate.
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Further important assumption: starting from the initial state |n(R0)〉 for
all times the state |n(R(t))〉 remains non-degenerate.
In this case one can choose the rate of change R(t) along C slow enough
such that the system remains in an eigenstate |n(R(t))〉 (adiabatic
approximation). However, |n(R(t))〉 picks up a phase factor during the
time evolution.

November 17, 2015 17 / 22



Berry phase: physical interpretation

The wavefunction evolves according to the time-dependent Schrödinger
equation:

i~
∂

∂t
|Ψ(t)〉 = Ĥ(R(t))|Ψ(t)〉

Further important assumption: starting from the initial state |n(R0)〉 for
all times the state |n(R(t))〉 remains non-degenerate.
In this case one can choose the rate of change R(t) along C slow enough
such that the system remains in an eigenstate |n(R(t))〉 (adiabatic
approximation). However, |n(R(t))〉 picks up a phase factor during the
time evolution.

Ansatz:
|Ψ(t)〉 = e iγ(t)e−i/~

∫ t
0 En(R(t′))dt′ |n(R(t))〉
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Berry phase: physical interpretation

The parameter vector R(t) traces out a curve C in the parameter space.
Substituting the above Ansatz into the Schrödinger equation, one can
show that

γn(C) = i

∫

C

〈n(R)|∇Rn(R)〉dR
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The parameter vector R(t) traces out a curve C in the parameter space.
Substituting the above Ansatz into the Schrödinger equation, one can
show that

γn(C) = i

∫

C

〈n(R)|∇Rn(R)〉dR

Consider now an adiabatic and cyclic change of the Hamiltonian, such
that R(t = 0) = R(t = T ). In this case the adiabatic phase reads

γn(C) = i

∮

C

〈n(R)|∇Rn(R)〉dR

The phase that a state acquires during a cyclic and adiabatic change of
the Hamiltonian is equivalent to the Berry phase corresponding to the
closed curve representing the Hamiltonian’s path in the parameter space.
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Berry phase: physical interpretation

Considering the Berry curvature instead of the Berry connection, one can
reformulate the above findings in the following way.
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Berry phase: physical interpretation

Considering the Berry curvature instead of the Berry connection, one can
reformulate the above findings in the following way.
Although the system remains in the same state |n(R)〉 during the adiabatic
evolution, other states of the system |n′(R)〉, n 6= n′ are nevertheless
influencing the state |n(R)〉. This influence is manifested in the Berry
curvature, which, in turn, determines the Berry phase picked up by |n(R)〉.
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Chern number

Let us now consider Berry phase effects in crystalline solids.
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Chern number

Let us now consider Berry phase effects in crystalline solids.
In the independent electron approximation, the Hamiltonian reads

Ĥ =
p̂2

2me
+ V (r)

where V (r) = V (r+ Rn) is periodic, Rn is a lattice vector.
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In the independent electron approximation, the Hamiltonian reads

Ĥ =
p̂2

2me
+ V (r)

where V (r) = V (r+ Rn) is periodic, Rn is a lattice vector.
Generally, the solutions of the Schrödinger equations are Bloch
wavefunctions.
They satisfy the following boundary condition (Bloch’s theorem):

Ψmk(r + Rn) = e ikRnΨmk(r)

Here Ψmk is the eigenstate corresponding to the mth band and k is the
wave number which is defined in the Brillouin zone.
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Chern number

Let us now consider Berry phase effects in crystalline solids.
In the independent electron approximation, the Hamiltonian reads

Ĥ =
p̂2

2me
+ V (r)

where V (r) = V (r+ Rn) is periodic, Rn is a lattice vector.
Generally, the solutions of the Schrödinger equations are Bloch
wavefunctions.
They satisfy the following boundary condition (Bloch’s theorem):

Ψmk(r + Rn) = e ikRnΨmk(r)

Here Ψmk is the eigenstate corresponding to the mth band and k is the
wave number which is defined in the Brillouin zone.
Note, that the Brillouin zone has a topology of a torus: wave numbers k
which differ by a reciprocal wave vector G describe the same state.
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Chern number

The Bloch wavefunctions can be written in the following form:
Ψmk = e ikrumk(r) where umk(r) is lattice periodic: umk(r) = umk(r+ Rn).
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The Bloch wavefunctions can be written in the following form:
Ψmk = e ikrumk(r) where umk(r) is lattice periodic: umk(r) = umk(r+ Rn).

The functions umk(r) satisfy the following Schrödinger equation:

[

(p̂ + ~k)2

2me

+ V (r)

]

umk(r) = Emkumk(r)
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Chern number

The Bloch wavefunctions can be written in the following form:
Ψmk = e ikrumk(r) where umk(r) is lattice periodic: umk(r) = umk(r+ Rn).

The functions umk(r) satisfy the following Schrödinger equation:

[

(p̂ + ~k)2

2me

+ V (r)

]

umk(r) = Emkumk(r)

This can be written as

Ĥ(k)|um(k)〉 = Em(k)|um(k)〉

=⇒ the Brillouin zone can be considered as the parameter space for the
Hamiltonian Ĥ(k) and |um(k)〉 are the basis functions.
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Chern number

The Bloch wavefunctions can be written in the following form:
Ψmk = e ikrumk(r) where umk(r) is lattice periodic: umk(r) = umk(r+ Rn).

The functions umk(r) satisfy the following Schrödinger equation:

[

(p̂ + ~k)2

2me

+ V (r)

]

umk(r) = Emkumk(r)

This can be written as

Ĥ(k)|um(k)〉 = Em(k)|um(k)〉

=⇒ the Brillouin zone can be considered as the parameter space for the
Hamiltonian Ĥ(k) and |um(k)〉 are the basis functions.
Various Berry phase effects can be expected, if k is varied in the
wavenumber space.
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Chern number

For simplicity, let us consider a two-dimensional crystalline system.
Then the Berry connection of the mth band :

A(m)(k) = i〈um(k)|∇kum(k)〉 k = (kx , ky ).

and the Berry curvature as

Ω(m)(k) = ∇k × i〈um(k)|∇kum(k)〉
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Chern number

For simplicity, let us consider a two-dimensional crystalline system.
Then the Berry connection of the mth band :

A(m)(k) = i〈um(k)|∇kum(k)〉 k = (kx , ky ).

and the Berry curvature as

Ω(m)(k) = ∇k × i〈um(k)|∇kum(k)〉

Finally, the Chern number of the mth band is defined as

Q(m) = −
1

2π

∫

BZ

Ω(m)(k)dk

integration is taken over the Brillouin zone (BZ).
The Chern number is an intrinsic property of the band structure and has
various effects on the transport properties of the system.
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