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Figure : A segment of the periodic SSH model.
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Model system

Figure : A segment of the periodic SSH model.

Rice-Mele model

Ĥ(t) = v(t)
N
∑

m=1

|m,B〉〈m,A|+ h.c .) + w(t)
N−1
∑

m=1

(|m + 1,A〉〈m,B |+ h.c .)

+u(t)

N
∑

m=1

(|m,A〉〈m,A| − |m,B〉〈m,B |)
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Model system

Because of spatial periodicity, the eigenstates are Bloch wave functions.
The instantaneous eigenstates read |Ψn,k(t)〉 = |k〉 ⊗ |un(k , t)〉, where
n = 1, 2 are the two bands, k wavenumber.
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Because of spatial periodicity, the eigenstates are Bloch wave functions.
The instantaneous eigenstates read |Ψn,k(t)〉 = |k〉 ⊗ |un(k , t)〉, where
n = 1, 2 are the two bands, k wavenumber.
Reminder:

|k〉 = 1√
N

N
∑

m=1

e imk |m〉 m : site index

and |un(k , t)〉 satisfy the instantaneous Schrödinger equation

Ĥ(k , t)|un(k , t)〉 = En(k , t)|un(k , t)〉.
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and |un(k , t)〉 satisfy the instantaneous Schrödinger equation

Ĥ(k , t)|un(k , t)〉 = En(k , t)|un(k , t)〉.

Note, that this is a different convention regarding |un(k , t)〉 than what
we used the last time to define the Bloch wave functions.
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Model system

Because of spatial periodicity, the eigenstates are Bloch wave functions.
The instantaneous eigenstates read |Ψn,k(t)〉 = |k〉 ⊗ |un(k , t)〉, where
n = 1, 2 are the two bands, k wavenumber.
Reminder:

|k〉 = 1√
N

N
∑

m=1

e imk |m〉 m : site index

and |un(k , t)〉 satisfy the instantaneous Schrödinger equation

Ĥ(k , t)|un(k , t)〉 = En(k , t)|un(k , t)〉.

Note, that this is a different convention regarding |un(k , t)〉 than what
we used the last time to define the Bloch wave functions.

Nevertheless, it is true that |Ψn,k(r + Rl)〉 = e ikRl |Ψn,k(r)〉
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Model system

We assume that the Hamiltonian is also periodic in time, therefore

1 Ĥ(k + 2π, t) = Ĥ(k , t)

2 Ĥ(k , t + T ) = Ĥ(k , t), and Ω = 2π/T .
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Model system

We assume that the Hamiltonian is also periodic in time, therefore

1 Ĥ(k + 2π, t) = Ĥ(k , t)

2 Ĥ(k , t + T ) = Ĥ(k , t), and Ω = 2π/T .

We can rewrite the problem using the following notation. The Hamiltonian
is given by (two-band insulator model):

Ĥ(d(k , t)) = dxσx + dyσy + dzσz = d · σ
The parameter vector d(k , t) reads:

d(k , t) =





ν + cosΩt + cos k
sin k
sinΩt



 ⇐⇒
v(t) = ν + cosΩt

w(t) = 1
u(t) = sinΩt
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Influx of particles into a segment

Figure : A segment of the periodic SSH model.

The number of particles NS in segment S is given by the expectation
value of the operator

N̂S =
∑

m∈S

∑

α∈{A,B}

|m, α〉〈m, α|
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Influx of particles into a segment

Figure : A segment of the periodic SSH model.

The number of particles NS in segment S is given by the expectation
value of the operator

N̂S =
∑

m∈S

∑

α∈{A,B}

|m, α〉〈m, α|

Due to the time-dependence, the number of particles in a given region
changes.
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Influx of particles into a segment

Figure : A segment of the periodic SSH model.

The change of the number of particles is given by the Heisenberg equation
of motion

∂N̂ (t)S
∂t

= ĵS (t) = −i [N̂ , Ĥ]
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Influx of particles into a segment

Figure : A segment of the periodic SSH model.

The change of the number of particles is given by the Heisenberg equation
of motion

∂N̂ (t)S
∂t

= ĵS (t) = −i [N̂ , Ĥ]

One finds

ĵS (t) = −iw(t) [|p + 1,A〉〈p,B | − |p,B〉〈p + 1,A|
+ |q,B〉〈q + 1,A| − |q + 1,A〉〈q,B |]
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Particle current operator

Figure : A segment of the periodic SSH model.

ĵS (t) = −iw(t) [|p + 1,A〉〈p,B | − |p,B〉〈p + 1,A|
+ |q,B〉〈q + 1,A| − |q + 1,A〉〈q,B |]

The particle number can change through the interface at m = p and
through the interface at m = q.
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Particle current operator

Figure : A segment of the periodic SSH model.

ĵS (t) = −iw(t) [|p + 1,A〉〈p,B | − |p,B〉〈p + 1,A|
+ |q,B〉〈q + 1,A| − |q + 1,A〉〈q,B |]

The particle number can change through the interface at m = p and
through the interface at m = q.
One can define

ĵm+1/2(t) = −iw(t) (|m + 1,A〉〈m,B | − |m,B〉〈m + 1,A|)
which is interpreted as the operator describing the net particle flow

through the cross-section at m + 1/2.
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Particle current and group velocity

Remember: the instantaneous eigenstates read |Ψn,k(t)〉 = |k〉 ⊗ |un(k , t)〉
where

|k〉 = 1√
N

N
∑

m=1

e imk |m〉 m : site index

and
|un(k , t)〉 = an(k , t)|A〉+ bn(k , t)|B〉
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Particle current and group velocity

Remember: the instantaneous eigenstates read |Ψn,k(t)〉 = |k〉 ⊗ |un(k , t)〉
where

|k〉 = 1√
N

N
∑

m=1

e imk |m〉 m : site index

and
|un(k , t)〉 = an(k , t)|A〉+ bn(k , t)|B〉

We can calculate the diagonal matrix elements of the current operator

〈Ψn,k(t)|̂jm+1/2(t)|Ψn,k(t)〉 = 〈un(k , t)|̂jm+1/2(k , t)|un(k , t)〉

where

ĵm+1/2(k , t) =
1

N

(

0 −iw(t)e−ik

iw(t)e ik 0

)
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Particle current and group velocity

ĵm+1/2(k , t) =
1

N

(

0 −iw(t)e−ik

iw(t)e ik 0

)

We can recognize that

ĵm+1/2(k , t) =
1

N
∂k Ĥ(d(k , t))

=⇒ the momentum diagonal elements of the current operator are related
to the momentum-space Hamiltonian.
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Particle current and group velocity

ĵm+1/2(k , t) =
1

N

(

0 −iw(t)e−ik

iw(t)e ik 0

)

We can recognize that

ĵm+1/2(k , t) =
1

N
∂k Ĥ(d(k , t))

=⇒ the momentum diagonal elements of the current operator are related
to the momentum-space Hamiltonian.

This is a very general result. It applies not only to the Rice-Mele problem
but to time-independent problems defined on a lattice and can be
generalized to (quasi) two dimensional case (Büttiker formalism etc.)
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Particle current and group velocity

Matrix elements of the current operator: in terms of the instantaneous
eigenvalues

〈un(k , t)|̂jm+1/2(k , t)|un(k , t)〉 =
1

N
〈un(k , t)|∂k Ĥ|un(k , t)〉

=
∂kE (k , t)

N
=

vn(k , t)

N

Here vn(k , t) is the instantaneous group velocity of the eigenstate.
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Overview
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2) Particle current and group velocity
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Time evolution governed by quasi-adiabatic Hamiltonian

We want to calculate the total particle current over one cycle of driving.
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For this we need to consider the time evolution of the eigenstates (not
only the instantaneous eigenstates)
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Time evolution governed by quasi-adiabatic Hamiltonian

We want to calculate the total particle current over one cycle of driving.

For this we need to consider the time evolution of the eigenstates (not
only the instantaneous eigenstates)

Remarks

i) due to the spatial periodicity, the wave number k remains a good
quantum number. Therefore we consider the time evolution of a set of
two-level system, each labelled by a different k

ii) basically, we are going to use time dependent perturbation theory to
calculate the time evolution of the eigenstates
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Time evolution governed by quasi-adiabatic Hamiltonian

Quasi adiabatic: for the driving Ω it is fulfilled that Ω ≪ ∆E where
∆E = min∀k,t,t→T (E2(k , t)− E1(k , t)).
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Time evolution governed by quasi-adiabatic Hamiltonian

Quasi adiabatic: for the driving Ω it is fulfilled that Ω ≪ ∆E where
∆E = min∀k,t,t→T (E2(k , t)− E1(k , t)).
We are looking for the solutions of the following time dependent
Schrödinger equation.

i~
∂

∂t
|u(t)〉 = Ĥ(t)|u(t)〉

One can expand the wave function in terms of the instantaneous
eigenstates of Ĥ(t)

|u(t)〉 =
∑

n

exp

(

− i

~

∫ t

0
dt ′En(t

′)

)

an(t)|un(t)〉
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Time evolution governed by quasi-adiabatic Hamiltonian

Quasi adiabatic: for the driving Ω it is fulfilled that Ω ≪ ∆E where
∆E = min∀k,t,t→T (E2(k , t)− E1(k , t)).
We are looking for the solutions of the following time dependent
Schrödinger equation.

i~
∂

∂t
|u(t)〉 = Ĥ(t)|u(t)〉

One can expand the wave function in terms of the instantaneous
eigenstates of Ĥ(t)

|u(t)〉 =
∑

n

exp

(

− i

~

∫ t

0
dt ′En(t

′)

)

an(t)|un(t)〉

The coefficients satisfy

∂tan(t) = −
∑

l

al(t)〈un(t)|∂t |ul(t)〉 exp
(

− i

~

∫ t

0
dt ′[El (t

′)− En(t
′)]

)
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Time evolution governed by quasi-adiabatic Hamiltonian

It is convenient to impose the parallel transport gauge. This fixes the
phases of the instantaneous eigenstates |un(t)〉 such that

〈un(t)|∂t |un(t)〉 = ∂td(t)〈un(t)|
∂

∂d
|un(t)〉 = 0.

The wave function obtained with this gauge will be denoted by |ũ(t)〉.
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∂
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The wave function obtained with this gauge will be denoted by |ũ(t)〉.

This condition basically corresponds to neglecting the acquired Berry
phase, which turns out to be not important in this case.
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The wave function obtained with this gauge will be denoted by |ũ(t)〉.

This condition basically corresponds to neglecting the acquired Berry
phase, which turns out to be not important in this case.

The characteristic frequency for ∂td(t) is Ω.
If ∂td(t) → 0 then in zeroth order

∂tan(t) = 0
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Time evolution governed by quasi-adiabatic Hamiltonian

It is convenient to impose the parallel transport gauge. This fixes the
phases of the instantaneous eigenstates |un(t)〉 such that

〈un(t)|∂t |un(t)〉 = ∂td(t)〈un(t)|
∂

∂d
|un(t)〉 = 0.

The wave function obtained with this gauge will be denoted by |ũ(t)〉.

This condition basically corresponds to neglecting the acquired Berry
phase, which turns out to be not important in this case.

The characteristic frequency for ∂td(t) is Ω.
If ∂td(t) → 0 then in zeroth order

∂tan(t) = 0

If the system is initially in the nth eigenstate then approximately it will
stay in that eigenstate =⇒ adiabatic theorem.
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Time evolution governed by quasi-adiabatic Hamiltonian

First order corrections:
Initially, an(t = 0) = 1 and an′ 6=n(t = 0) = 0.
The equation for an′ 6=n:

∂tan′ = −〈un′(t)|∂t |un(t)〉 exp
(

− i

~

∫ t

0
dt ′[En(t

′)− En′(t
′)]

)

November 17, 2015 19 / 31



Time evolution governed by quasi-adiabatic Hamiltonian

First order corrections:
Initially, an(t = 0) = 1 and an′ 6=n(t = 0) = 0.
The equation for an′ 6=n:

∂tan′ = −〈un′(t)|∂t |un(t)〉 exp
(

− i

~

∫ t

0
dt ′[En(t

′)− En′(t
′)]

)

The approximate solution, up to first order in ∂td(t) is then

an′ = −〈un′(t)|∂t |un(t)〉
En − En′

i~ exp

(

− i

~

∫ t

0
dt ′[En(t

′)− En′(t
′)]

)
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Time evolution governed by quasi-adiabatic Hamiltonian

Let us now go back to the Rice-Mele model (two-levels).
The time evolution of the lower energy state (ground state) in terms of
the instantaneous eigenstates |u1,2(t)〉

|ũ1(t)〉 = e−i
∫ t
0 dt′E1(t

′)

[

|u1(t)〉+ i
〈u2(t)|∂t |u1(t)〉
E2(t)− E1(t)

|u2(t)〉
]
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Time evolution governed by quasi-adiabatic Hamiltonian

Let us now go back to the Rice-Mele model (two-levels).
The time evolution of the lower energy state (ground state) in terms of
the instantaneous eigenstates |u1,2(t)〉

|ũ1(t)〉 = e−i
∫ t
0 dt′E1(t

′)

[

|u1(t)〉+ i
〈u2(t)|∂t |u1(t)〉
E2(t)− E1(t)

|u2(t)〉
]

Reminder: |ũ1(t)〉 satisfies i~ ∂
∂t |ũ1(t)〉 = Ĥ(t)|ũ1(t)〉

Most of the weight is in the instantaneous ground state |u1(t)〉 with a
small admixture of the instantaneous excited state |u2(t)〉.
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Time evolution governed by quasi-adiabatic Hamiltonian

Let us now go back to the Rice-Mele model (two-levels).
The time evolution of the lower energy state (ground state) in terms of
the instantaneous eigenstates |u1,2(t)〉

|ũ1(t)〉 = e−i
∫ t
0 dt′E1(t

′)

[

|u1(t)〉+ i
〈u2(t)|∂t |u1(t)〉
E2(t)− E1(t)

|u2(t)〉
]

Reminder: |ũ1(t)〉 satisfies i~ ∂
∂t |ũ1(t)〉 = Ĥ(t)|ũ1(t)〉

Most of the weight is in the instantaneous ground state |u1(t)〉 with a
small admixture of the instantaneous excited state |u2(t)〉.

In the case of cyclic change of parameters, the final state |ũ1(t = T )〉 may
differ from the initial state |u1(t = 0)〉 by a phase factor e iγ1 (Berry
phase).
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2) Particle current and group velocity
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Pumped probability current and Berry curvature

Figure : A segment of the periodic SSH model.

We want to calculate the number of particles N through a cross section at
m + 1/2 in a time interval [0,T ].

N =

∫ T

0
dt

∑

k∈BZ

〈Ψ1(k , t)|̂jm+1/2(t)|Ψ1(k , t)〉
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Pumped probability current and Berry curvature

Figure : A segment of the periodic SSH model.

We want to calculate the number of particles N through a cross section at
m + 1/2 in a time interval [0,T ].

N =

∫ T

0
dt

∑

k∈BZ

〈Ψ1(k , t)|̂jm+1/2(t)|Ψ1(k , t)〉

Here Ψ1(k , t) ≈ |k〉 ⊗ |ũ1(k , t)〉
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Pumped probability current and Berry curvature

We can write

N =

∫ T

0
dt

∑

k∈BZ

〈ũ1(k , t)|̂jm+1/2(k , t)|ũ1(k , t)〉

=
1

N

∫ T

0
dt

∑

k∈BZ

〈ũ1(k , t)|∂k Ĥ(k , t)|ũ1(k , t)〉
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Pumped probability current and Berry curvature

We can write

N =

∫ T

0
dt

∑

k∈BZ

〈ũ1(k , t)|̂jm+1/2(k , t)|ũ1(k , t)〉

=
1

N

∫ T

0
dt

∑

k∈BZ

〈ũ1(k , t)|∂k Ĥ(k , t)|ũ1(k , t)〉

We insert

|ũ1(k , t)〉 = e−i
∫ t
0 dt′E1(k,t′)

[

|u1(k , t)〉+ i
〈u2(k , t)|∂t |u1(k , t)〉
E2(k , t)− E1(k , t)

|u2(k , t)〉
]
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Pumped probability current and Berry curvature

〈ũ1(k , t)|̂jm+1/2(k , t)|ũ1(k , t)〉 = v1(k , t) + i
〈u1|∂k Ĥ |u2〉〈u2|∂t |u1〉

E2 − E1
+ c .c
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Pumped probability current and Berry curvature
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〈u1|∂k Ĥ |u2〉〈u2|∂t |u1〉

E2 − E1
+ c .c

When sumed over the Brillouin zone, the contribution ∼ v1(k , t) will
vanish.
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Pumped probability current and Berry curvature

〈ũ1(k , t)|̂jm+1/2(k , t)|ũ1(k , t)〉 = v1(k , t) + i
〈u1|∂k Ĥ |u2〉〈u2|∂t |u1〉

E2 − E1
+ c .c

When sumed over the Brillouin zone, the contribution ∼ v1(k , t) will
vanish.

Next, we use that

〈u1|∂kĤ |u2〉 = (E1 − E2)〈∂ku1|u2〉

therefore

−〈u1|∂k Ĥ |u2〉〈u2|∂t |u1〉
E2 − E1

+ c .c = −i〈∂ku1|u2〉〈u2|∂t |u1〉+ c .c .
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Pumped probability current and Berry curvature

Using the parallel transport gauge 〈u1|∂t |u1〉 = 0, one can write

−i〈∂ku1|u2〉〈u2|∂t |u1〉+ c .c . = −i〈∂ku1|∂tu1〉+ c .c

= −i(〈∂ku1|∂tu1〉 − 〈∂tu1|∂ku1〉)
= −i(∂k〈u1|∂tu1〉)− ∂t〈u1|∂ku1〉)
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The last expression is exactly the Berry curvature Ω(1)(k , t) defined in the
parameter space (k , t).
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Pumped probability current and Berry curvature

Using the parallel transport gauge 〈u1|∂t |u1〉 = 0, one can write

−i〈∂ku1|u2〉〈u2|∂t |u1〉+ c .c . = −i〈∂ku1|∂tu1〉+ c .c

= −i(〈∂ku1|∂tu1〉 − 〈∂tu1|∂ku1〉)
= −i(∂k〈u1|∂tu1〉)− ∂t〈u1|∂ku1〉)

The last expression is exactly the Berry curvature Ω(1)(k , t) defined in the
parameter space (k , t).

Finally, the number of pumped particles in a given driving cycle is

N =

∫ T

0
dt

∫

BZ

dk

2π
Ω(1)(k , t)

given by the integral of the Berry curvature.
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Pumped probability current and Berry curvature

Figure : Number of pumped particles as a function of time.
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Pumped probability current and Berry curvature

Figure : Number of pumped particles as a function of time.

Does it have to be an integer number ?
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Overview

1) Model system

2) Particle current and group velocity

3) Quasi adiabatic time evolution

4) Pumped current and Berry curvature
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Anomalous velocity of electrons

Let us consider a crystal under the perturbation of a weak electric field E.
We represent the electric field through a uniform vector potential A(t)
which is time dependent.
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Anomalous velocity of electrons

Let us consider a crystal under the perturbation of a weak electric field E.
We represent the electric field through a uniform vector potential A(t)
which is time dependent.

Using minimal coupling theory, the Hamiltonian can be written

H(t) =
[p̂+ eA]2

2me
+ V (r)

V (r) lattice periodic potential.

Because of the translation invariance, the solutions are Bloch wave
functions.
The Hamiltonian that acts on the lattice periodic part of the Bloch wave
functions can be written

H(k, t) = H
(

k+
e

~
A(t)

)
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Anomalous velocity of electrons

Since A preserves translation invariance, k is a good quantum number and
is a constant of motion. Therefore

d

dt
q =

d

dt

(

k+
e

~
A(t)

)

=
e

~

d

dt
A(t) = −e

~
E
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One can define the average velocity in band n as a function of q:

v(n)(q) = 〈un(k, t)|∂qĤ |un(k, t)〉
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Anomalous velocity of electrons

Since A preserves translation invariance, k is a good quantum number and
is a constant of motion. Therefore

d

dt
q =

d

dt

(

k+
e

~
A(t)

)

=
e

~

d

dt
A(t) = −e

~
E

One can define the average velocity in band n as a function of q:

v(n)(q) = 〈un(k, t)|∂qĤ |un(k, t)〉

Using

i) the results for the adiabatic evolution of |un(k, t)〉
ii) that ∂/∂ki = ∂/∂qi and ∂/∂t = −(e/~)Ei∂/∂qi
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Anomalous velocity of electrons

One can write the average velocity as

v(n)(q) =
∂En(q)

~∂q
− e

~
E×Ω(n)(q)

where Ω(n)(q) is the Berry curvature of the nth band

Ω(n)(q) = i〈∇qun(k)| × |∇qun(q)〉
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Anomalous velocity of electrons

One can write the average velocity as

v(n)(q) =
∂En(q)

~∂q
− e

~
E×Ω(n)(q)

where Ω(n)(q) is the Berry curvature of the nth band

Ω(n)(q) = i〈∇qun(k)| × |∇qun(q)〉

One can see that there is an anomalous velocity component

e

~
E×Ω(n)(q)

which is transverse to the electric field.
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Anomalous velocity of electrons

Symmetry considerations

The velocity v(n)(q) should obey certain symmetry constraints:

i) under time reversal, v(n) and q) change sign, while E is fixed

ii) under spatial inversion, v(n), q), E change sign
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This requires that

i) if the unperturbed system has time reversal symmetry then
Ω(n)(−q) = −Ω(n)(q)

ii) if the unperturbed system has spatial inversion symmetry then
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Anomalous velocity of electrons

Symmetry considerations

The velocity v(n)(q) should obey certain symmetry constraints:

i) under time reversal, v(n) and q) change sign, while E is fixed

ii) under spatial inversion, v(n), q), E change sign

This requires that

i) if the unperturbed system has time reversal symmetry then
Ω(n)(−q) = −Ω(n)(q)

ii) if the unperturbed system has spatial inversion symmetry then
Ω(n)(−q) = Ω(n)(q)

In crystals with simultaneous time-reversal and inversion symmetry the
Berry curvature vanishes in the whole Brillouin zone.
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