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Problem 1: Fock states of light.

a) Considering the multimode Fock state |{n}〉 = Πk|nk〉, evaluate 〈â†i âj〉,〈â
†
i â
†
j〉 and 〈âiâj〉.

b) Show for the operator d̂ =
∑

s[αsâs + βsâ
†
s] that 〈d̂†d̂〉 ≥ 0 for any state vector by proving that

〈{n}|d̂†d̂|{n}〉 =
∑
s

[
|αs|2ns + |βs|2(ns + 1)

]
.

Problem 2: Wigner function.

a) Analyse the Wigner function at the origin, i.e., W (0, 0) = 1
2π

∫
dxΨ∗(−x

2
)Ψ(x

2
). Construct the

condition for Ψ(x) and Ψ∗(x) that produces the extremum value for W (0, 0) with the constraint∫
dx|Ψ(x)|2 = 1. Hint: use Lagrange multipliers.

b) Show that − 1
π
≤ W (0, 0) ≤ 1

π
. Why is this result valid for any phase-space point?

Problem 3: Casimir effect.

Consider two parallel conducting plates of dimensions L2 separated by a distance a � L, both
located inside a cubic conducting box of volume L3.

a) Using Dirichlet boundary conditions for the electric field, find the allowed wave numbers and
the zero-point energy and show that the following expression for the energy is valid, where σ
stands for the polarization:
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In the Coulomb gauge, the transversality condition determines one of the amplitude vector com-
ponents in terms of the other two, unless ni = 0 for any i. Apart from this exception, the modes
are characterized by a two-dimensional amplitude vector, that is by two polarizations. In the
exceptional case of nx = 0 or ny = 0 or nz = 0, the electric field is uniform in a given direction,
and the modes have only one polarization. This means that for the ni 6= 0 terms we can sum over
polarizations to get a factor 2.

b) Observing that the x and y terms are added in quadrature and that L � a, we can take the
limit of these sums as integrals and make a change to polar coordinates. It is even clearer now
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that 〈E〉 is infinite. Quantizing the electromagnetic field at each point in space must yield an
infinite energy! However, we are free to set the zero of a potential energy wherever we like, even
at infinity. To that end, we consider the difference between the obtained zero-point energy at two
different configurations, one with a� L and another one with a . L (you should rescale the latter
just like what was done in the lectures). Show that the energy difference 〈δE〉 is porportional to
a−3 times a divergent sum of integrals.

c) Considering the fact that each conductor has a plasma frequency ωp, which is the minimum
oscillation frequency the electrons in the conductor can support, the conducting plates are sup-
posed to be transparent to photons of frequencies above ωp due to the plates’ electrons oscillating
in resonance with the high frequency waves. Because of this, we multiply the contributions to
the total energy of each mode k by a regulator function f(k/km), which is unity for k < km,
approaches 0 at infinity, and is 1/2 at k = km. The exact value of km and the shape of f may be
phenomenologically obtained, but will not be especially important in this case, since the answer
is independent of the regularization parameters. Show that the corrected formula for the energy
difference is given by:

〈δE〉 = L2~c
π2
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d) Consider the Euler-Maclaurin formula:∫ N

0

f(x)dx−
N∑
n=0

(1− δ0,nz/2)f(n) =

p∑
k=2

Bk

k!
(f (k−1)(N)− f (k−1)(0)) +R

where R is an error term that decreases as N increases, Bk are the Bernoulli numbers (−1/2, 1/6, 0,
−1/30 for k = 1, 2, 3, 4) and p is the degree of differentiability of f (in this example you should
go up to the first non-zero term only). Identifying f(n) with the inner integral in both terms of
the expression for 〈δE〉 and applying the fundamental theorem of calculus, find its derivatives and
apply the Euler-Maclaurin series to find the final expression for the energy difference (don’t forget
to use the properties of the function f).

e) Considering that dV = L2da for a slowly and adiabatically varying distance between the plates,
find the Casimir pressure with the help of the expression P = −∂E/∂V .


