
Nuclear State Preparation via Landau-Zener-Stückelberg Transitions in Double Quantum Dots

Hugo Ribeiro and Guido Burkard

Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
(Received 21 November 2008; published 28 May 2009)

We theoretically model a nuclear-state preparation scheme that increases the coherence time of a two-

spin qubit in a double quantum dot. The two-electron system is tuned repeatedly across a singlet-triplet

level anticrossing with alternating slow and rapid sweeps of an external bias voltage. Using a Landau-

Zener-Stückelberg model, we find that in addition to a small nuclear polarization that weakly affects the

electron spin coherence, the slow sweeps are only partially adiabatic and lead to a weak nuclear spin

measurement and a nuclear-state narrowing which prolongs the electron spin coherence. This resolves

some open problems brought up by a recent experiment [D. J. Reilly et al., Science 321, 817 (2008).].

Based on our description of the weak measurement, we simulate a system with up to n ¼ 200 nuclear

spins per dot. Scaling in n indicates a stronger effect for larger n.
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Introduction.—Since the electron spin in quantum dots
(QDs) has been proposed as a qubit [1], much progress has
been made to develop reliable semiconductor devices,
mostly with GaAs, in which only a single electron can be
confined and its spin can be controlled [2]. Despite the
achievement of reliable control, spin decoherence due to
the hyperfine interaction with the surrounding nuclear
spins remains a major problem [3]. In double QDs, where
the singlet (S) and one of the triplet (T0) states can be
chosen as an effective two-level system to implement a
qubit [4–6], it has been shown that the probability, aver-
aged over many runs of the experiment, to find the sys-
tem in the singlet state at time t > 0, having prepared a
singlet at time t ¼ 0, is a decaying oscillating function
/ cosðJtÞ exp½�ðt=T�

2Þ2� [7,8], with singlet-triplet ex-
change splitting J and decoherence time T�

2 .
An important goal in the quest to overcome decoherence

of spin qubits in solid-state devices is to find mechanisms
that allow for an increase in T�

2 . Spin echo has been used to
reveal T2 � �s � T�

2 [8] which sets the scale that can be
achieved by nuclear-state preparation. In principle, it is
possible to reduce the nuclear fluctuations, thus prolonging
T�
2 , by projecting the nuclear state into (approximate)

Overhauser eigenstates with either electrical or optical
means [9,10] or by polarizing the nuclear spins [11,12].
However, a sizable enhancement of electron spin coher-
ence would only be realized for a polarization of more than
99% [13], which so far has not been achieved.

Reilly et al. [14] have experimentally studied adiabatic
transitions of two electrons in a pair of tunnel-coupled QDs
from a spin singlet S(2,0) with both electrons in the same
QD and total spin 0, across an energy level anticrossing to a
spin triplet Tþð1; 1Þ, with one electron in each QD and total
spin 1 (see Fig. 1). Because of angular momentum conser-
vation, the hyperfine-induced transition S-Tþ involves an
electron spin flip accompanied by a nuclear spin flop. In the
experiment, the process was repeated many times with

intermediate fast resetting to the singlet state (200 ns). If
the slow S-Tþ transition was fully adiabatic and the nu-
clear spin polarization sufficiently long-lived, this cycle
should allow for complete nuclear polarization as the
number of cycles becomes comparable to the number of
nuclear spins in the QDs (typically about 105 to 106).
However, a polarization of only about 1% was achieved.
Nevertheless, the coherence time measured in the S-T0

subspace was improved by a factor of up to 70 [14] which
can be attributed to the preparation of a suitable nuclear
state. A previous theoretical model has been used to cal-
culate the evolution of up to 36 nuclear spins per dot for an
initial mixed state with fixed angular momentum per dot
[15].
Here, we propose a theoretical model of nuclear-state

preparation taking into account all possible angular mo-
menta, up to 200 nuclear spins per QD, and the possibility
of partially adiabatic transitions. Such transitions can ex-

FIG. 1 (color online). (a) Energy diagram for the relevant
states of the double QD as a function of the bias ". (b) The
hyperfine interaction allows for flip-flop processes that open a
gap �HF at the S-Tþ crossing. Driving the system slowly from
S(2,0) can result either in an adiabatic (b) or a nonadiabatic (c)
transition. Driving the system back very fast results in a non-
adiabatic passage to two distinguishable charge states.
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plain the smallness of the nuclear polarization generated
while allowing for a weak measurement [16] of the nuclear
state. The repeated weak measurements at each cycle lead
to nuclear-state narrowing and, as a consequence, to a
prolongation of the spin singlet-triplet coherence. The
main feature of our theoretical model is the description
of the partially adiabatic S-Tþ transition by the Landau-
Zener-Stückelberg (LZS) theory [17–19]. Because of the
high degeneracy of the nuclear spin state and the finite
sweep time, we use suitable generalizations of the LZS
model [20,21].

Model.—We derive the Hamiltonian describing the par-
tially adiabatic dynamics at the S-Tþ anticrossing. We start
with the spin-preserving part H0 of the Hamiltonian, with
½H0; Sz� ¼ 0, describing the coupling between two elec-
trons in a double QD in a magnetic field B,

H0 ¼
X
i�

�
"i þ 1

2
g��BB�

�
cyi�ci� þ u

X
i

cyi"ci"c
y
i#ci#

þ �
X
�

ðcy1�c2� þ h:c:Þ; (1)

where g� denotes the effective Landé g-factor (�0:44 for
GaAs), �B the Bohr magneton, and the indices i ¼ 1, 2
and� ¼" , # label the dot number and spin. The first term is
the single-particle energy of the confined electrons, the
second accounts for the Coulomb energy u of two electrons
on the same QD, and the last for the electron tunneling with
strength � between the dots.

The diagonalization of the first two terms of Eq. (1)
leads to the relevant states of a double QD: the singlets
S(0,2), S(2,0), S(1,1) and triplets T�;0ð1; 1Þ, where (l, r)
indicates the number of electrons in the (left, right) dot.
The other states can be neglected as they have energies
much higher than those considered here. The degeneracy
of the singlets S(2,0) and S(1,1) at " ¼ �u is lifted by the

interdot tunneling, resulting in a splitting of
ffiffiffi
2

p
�. The

energy levels as a function of the bias " ¼ "1 � "2 are
shown in Fig. 1(a). At the degeneracy " ¼ "� of the singlet
S(1,1) and the triplet Tþð1; 1Þ, the hyperfine interaction
between the electron spins Si and the nuclear spins Iki
opens a splitting �HF. The contact hyperfine Hamiltonian

is given by HHF ¼ S1 � h2 þ S2 � h2 where hi ¼PnðiÞ
k¼1 A

k
i I

k
i is the Overhauser (effective nuclear field) op-

erator. The sum runs over the n nuclear spins in dot i, Ak
i ¼

vk�0j�ðrkÞj2 is the hyperfine coupling constant with the
kth nucleus in dot i, with�ðrkÞ the electron wave function,
�0 the volume of the unit cell and vk the hyperfine coupling
strength. Introducing S�i ¼ Sxi � iSyi and h�i ¼ hxi � ihyi ,
we write HHF as

HHF ¼ 1

2

X
i

ð2Szihzi þ Sþi h�i þ S�i hþi Þ: (2)

Since � � �HF, we can useH ¼ H0 þHHF to derive an
effective Hamiltonian for the subspace spanned by
fjS; j1; m1; j2; m2ig and fjTþ; j1; m0

1; j2; m
0
2ig, where ji is

the total nuclear angular momentum in dot i and mi its
projection along B,

Hð"Þ ¼ X
q�

Eq�ð"Þjq�ihq�j þ 1

2

X
i

ðSþi h�i þ S�i hþi Þ (3)

where q ¼ S;T, j�i ¼ jj1; m1; j2; m2i, and ES;�ð"Þ ¼
ESð"Þ, and ET;�ð"Þ ¼ ETð"Þ þ hhz1 þ hz2i�=2þ g��BB.

Method.—With a time-dependent bias " ¼ "ðtÞ, the
Hamiltonian (3) is of the form H ¼ H0ðtÞ þHint, as the
one studied by LZS to derive the staying and transi-
tion probabilities Pa and Pna between two levels j1i and
j2i driven through resonance between ti ¼ �1 and
tf ¼ þ1 by assuming that their energy difference is a

linear function of time, �ðtÞ ¼ jES;�ðtÞ � ET;�ðtÞj ¼ �t

with the well-known result Pa ¼ 1� Pna ¼ 1�
expð�2�jh1jHHFj2ij2=�@Þ. Here, we study the effect that
the transitions can have on the nuclear difference field
�hz ¼ hz1 � hz2 and more precisely on its fluctuations

�ðzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihð�hzÞ2i � h�hzi2p
that are responsible for the qu-

bit decoherence via T�
2 ¼ @=�ðzÞ [2,22].

To study the evolution of �ðzÞ, we compute the new state
of the system after each cycle, which consists of a forward
and a return sweep. The state of the system after the
forward sweep results from the time evolution operator
generated by (3); the resulting state is taken as the initial
condition for the return sweep which is performed suffi-
ciently fast to ensure a sudden parameter change without
change in the state. As in the original LZS model, we
assume a linear dependence �ðtÞ ¼ �t throughout.
Moreover, to make the problem treatable, we assume a
constant hyperfine coupling Ak ! �A and the nuclear spins
to be 1=2 (in reality the nuclear species of GaAs have spin
3=2). Before treating the case of many nuclear spins, we
explain the main ideas by considering the simple case of
one nuclear spin in dot 1 and none in dot 2. The initial
nuclear state is assumed to be an incoherent mixture of spin

up and down; its density matrix 	ð0Þ
n has matrix elements

	ð0Þ
ij ¼ �ij=2 with i, j ¼" , # . The initial mean value and

standard deviation for �hz are h�hzi0 ¼ 0 and �ðzÞ
0 ¼ �A=2.

We now assume that after a cycle, a measurement of the
electron spin (via charge) is performed to determine if a
flip-flop has occurred. If a singlet is detected, the nuclear

density matrix becomes 	ð1Þ;S
"" ¼ e�
=2PS, 	ð1Þ;S

## ¼
1=2PS, and 	ð1Þ;S

"# ¼ 	ð1Þ;S
#" ¼ 0, with 
 ¼ � �A2=�@ and

the probability to measure a singlet, PS ¼ ðe�
 þ 1Þ=2.
In this new state, h�hzi1 ¼ �Aðe�
 � 1Þ=2ðe�
 þ 1Þ and

�ðzÞ
1 ¼ ð �A=2Þcosh�1ð
=2Þ. In the ‘‘fast’’ limit � ! 1, we

find 	ð1Þ;S
n ¼ 	ð0Þ

n therefore the variance is unchanged,

�ðzÞ
1 ¼ �ðzÞ

0 . In the ‘‘slow’’ limit � ! 0, we have 	ð1Þ;S
## ¼

1 while all other elements of 	ð1Þ;S
n vanish, such that �ðzÞ

1 ¼
0, describing a strong (projective) measurement of the
nuclear spin. For 0<�<1, the detection of a singlet
induces a weak measurement which decreases the fluctua-
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tions, �ðzÞ
1 <�ðzÞ

0 . On the other hand, if a triplet is mea-

sured, we have 	ð1Þ;T
"" ¼ 	ð1Þ;T

"# ¼ 	ð1Þ;T
#" ¼ 0 and 	ð1Þ;T

## ¼ 1

independently of �; in this case the nuclear spin is pro-
jected on the down state. We conclude that it is possible to
reduce the fluctuations of the nuclear spins without fully
polarizing them. Below, we show that the same mechanism
works also for a system with many nuclear spins.

For n � 1, the nuclear states are highly degenerate
and the LZS propagator from the simple case cannot be
used anymore. An elegant solution to derive the LZS
propagator for degenerate systems consists in applying
the unitary Morris-Shore (MS) transformation to the LZS
Hamiltonian to reduce the dynamics into sets of decoupled
single states and independent two-level systems [20].
Because HHF exclusively couples states of the form
jS; j1; m1; j2; m2i � j0i to the degenerate states
jTþ; j1; m1 � 1; j2; m2i � j1i and jTþ; j1; m1; j2; m2 �
1i � j2i, the LZS Hamiltonian can be brought into a block
diagonal form. The MS basis is found by diagonalizing

VVy ¼
�A2

8

a21 þ a22 0 0
0 a21 a1a2
0 a1a2 a22

0
B@

1
CA; (4)

where Vij ¼ hijHintjji, ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jiðji þ 1Þ �miðmi � 1Þp

.

The eigenstates are j0i and j10i ¼ ða1j1i þ a2j2iÞ=a0 as-
sociated with the eigenvalue �2 ¼ �A2=8a20, and j20i ¼
ða1j1i � a2j2iÞ=a0 with eigenvalue 0, where a20 ¼
a21 þ a22. The states with the same eigenvalues are coupled
with strength �. The state j20i is a ‘‘dark state’’, as it does
not couple to other states. In the subspace spanned by j0i
and j10i, the time-dependent Schrödinger equation with the
initial state j0i at time ti can be solved and thus the LZS
propagator elements UMS

0i0 can be calculated [21]. In order

to express the solution in the original basis, we perform the
inverse MS transformation to find the matrix elements
U0i ¼ ðai=a0ÞUMS

0i0 . We also account for finite-time propa-

gation and thus avoid the unphysical situations of infinite
energy that arises for couplings that do not vanish when
t ! �1, and infinite detuning as we assume �ðtÞ ¼ �t.
The finite-time solution also allows us to model the situ-
ation in the experiment [14] where mixing between
T0ð1; 1Þ and the S(1,1) states must be avoided.

At typical operating temperatures and fields, where
kBT � gN�NB, the initial nuclear density matrix can be

assumed to be diagonal, 	ð0Þ
n ¼ P

�pð�Þj�ih�j with a uni-

form distribution of states �. At 120 mK and 100 mT, we
have kBT 	 10�5 eV and gN�NB	 10�9 eV. The joint
probability pð�Þ can be factorized into p0ðj1; m1Þp0ðj2; m2Þ
since the dots are initially independent, with p0ðji; miÞ ¼
gðjiÞfðmijjiÞ, where gðjiÞ is the probability for total nu-
clear angular momentum ji and fðmijjiÞ ¼ ½�ðji þmiÞ �
�ðji �miÞ�=ð2ji þ 1Þ is the equally distributed conditional
probability of having a magnetization mi given ji, and � is
the Heaviside function with �ð0Þ ¼ 1. The probability
distribution gðjiÞ ¼ GðjiÞ=

P
ji
GðjiÞ is found by counting

how many times GðjiÞ an irreducible representation of
dimension 2ji þ 1 occurs.
After the forward sweep of the kth cycle, the state is

	ðkþ1Þ ¼ U	ðkÞUy, with 	ð0Þ ¼ jSihSj 
 	ð0Þ
n . The back

sweep will act as a measurement of the final configuration
of the electronic system. After the LZS transition the
charge configuration of the system is (1, 1) independent
of the spin, but after the back sweep is a superposition of
Tþð1; 1Þ and S(2,0) which has a relatively fast decay time
�	 1 ns [23], such that the electronic system will evolve
with probability PS to the singlet S(2,0) and with proba-
bility PT to the triplet Tþð1; 1Þ after a time �. This provides
a way to determine if the system has evolved adiabatically

or not during the forward sweep. We write 	ðkþ1Þ ¼
PS	

ðkþ1Þ
S þ PT	

ðkþ1Þ
T to describe the mixture of the ensem-

bles that have evolved adiabatically and nonadiabatically
in the forward sweep. After a time �, this state will collapse

either to 	ðkþ1Þ
S or 	ðkþ1Þ

T with probability PS and PT,

respectively, with (q ¼ S;T),

Pq ¼ Tr½MqU	ðkÞUyMy
q �; (5)

where Mq ¼ jqihqj is the projection operator describing a

strong measurement in the charge sector. If a singlet (q ¼
S) or triplet (q ¼ T) is detected after the (kþ 1)th sweep,
we update 	n according to

	ðkþ1Þ
n ¼ 1

Pq

MqU	ðkÞ
n UyMy

q : (6)

In the case of a triplet (q ¼ T), we must also take into
account the nuclear spin flop,

	ðkþ1Þ
j1j2j1j2

! 0;

	ðkþ1Þ
j1j2m1m2

! 	ðkþ1Þ
j1j2;m1þ1;m2

þ 	ðkþ1Þ
j1j2m1;m2þ1P

j1j2m1m2
ð	ðkþ1Þ

j1j2;m1þ1;m2
þ 	ðkþ1Þ

j1j2m1;m2þ1Þ
:

(7)

After a flip-flop process, the crossing point "� moves
slightly because of the change in the total magnetic field
Bþ ðh1 þ h2Þ=g��B and affects the initial and final times
of the LZS transitions. With the convention that t ¼ 0 at
the initial anticrossing point, the time shift is ti ! ti þ �t,
tf ! tf þ �t, with �t ¼ �A=�.

We have performed a Monte Carlo simulation where
ti ¼ �30 ns and tf ¼ 20 ns, such that the duration of the

first sweep is the same as in [14]. Our choice for � satisfies
the conditions � � �ti and � � �tf � g��BB that hold

for a system far from resonance at the beginning and at the
end of the first cycles, and with a final difference in energy
smaller than the Zeeman splitting. The order of magnitude
of � is determined by looking at the case of the most likely
ji, which is 	 ffiffiffi

n
p

, with mi ¼ 0 to consider the strongest
coupling in that subspace. The number of spins is currently
limited to n ¼ 200 per dot by the computational power at
our disposal. This limitation has a side effect on the choice
of the hyperfine coupling constant. For large spin systems,
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one has �A ¼ A
n with A ¼ 90 �eV for GaAs, but for dilute

systems �A can be crucially smaller, therefore we choose
�A ¼ 9 neV [24]. Thus, �	 10�8 eV so that�tf must be of

the order of 10�7 eV since jg��BBj ’ 2:3 �eV. This im-
plies that �must be between 10 and 50 eV s�1, which also
satisfies the condition on �ti.

Results.—In Fig. 2(a), we plot the evolution of �ðzÞ,
averaged over 160 runs, as a function of the number of

cycles for � ¼ 11 eV s�1. Since the reduction of �ðzÞ
persists in the average, a readout of the charge state after
each cycle is not required. When the polarization reaches

about 8% (generally at �1=
ffiffiffiffiffiffiffiffi
n=2

p
) the nuclear spins ap-

proach a ‘‘dark state’’ preventing further polarization. We
plot in Fig. 2(b) the average probability PS of measuring a
singlet as a function of the number of cycles. PS can be
measured in the S-Tþ, as it was done for S-T0 [8].

Conclusion.—We have developed a model to explain the
increase of T�

2 in double QDs via the tuning of two elec-

trons across an energy level anticrossing between S(2,0)
and Tþð1; 1Þ. Our model is based on the possibility of
partially adiabatic transitions which are described by a
generalized LZS theory. We have shown that the cycling
combined with a spin-to-charge conversion to the (1, 1),
respectively (2, 0), configuration induces a weak measure-
ment on the nuclear state which strongly contributes to the
suppression of the nuclear fluctuations. An experimental
confirmation of the predicted weak measurement would be

provided by measuring PS � 1 and at the same time an
increase in T�

2 as a function of the number of cycles.
Using a Monte Carlo algorithm for n ¼ 200 nuclear

spins per QD, we find an enhancement of the electron

spin coherence time T�
2 ¼ @=�ðzÞ by a factor of	1:34 after

300 cycles. While the initial �ðzÞ
i / ffiffiffi

n
p

, the final �ðzÞ
f is

mainly determined by the preparation mechanism and is
approximatively independent of n. Therefore, we expect

T�
2;f=T

�
2;i ¼ �ðzÞ

i =�ðzÞ
f / ffiffiffi

n
p

, and we estimate T�
2;f=T

�
2;i �

94 for n � 106. This scaling stops when T�
2 � T2 or before

if dipolar interaction effects are taken into account. Future
calculations for more spins will allow more direct com-
parison with experiments. Our results also apply for QDs
with fewer nuclear spins, e.g., in Si, ZnO, carbon nano-
tubes, or graphene.
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FIG. 2 (color online). (a) Averaged Overhauser field fluctua-
tions �ðzÞ and electron spin decoherence T�

2 ¼ @=�ðzÞ (upper

inset) as a function of the number of performed cycles.
(b) Singlet return probability PS as a function of the number
of performed cycles. Error bars are smaller than line thickness.
(c) Initial (black) and final (orange) averaged probability distri-
bution of the nuclear spin eigenstates of �hz. Repeated cycles
narrow the distribution, showing a reduction of �ðzÞ.
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