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Within the lowest-order Born approximation, we calculate the exact dynamics of a qubit in the presence of
1 / f noise without Markov approximation. We show that the non-Markovian qubit time-evolution exhibits
asymmetries and beatings that can be observed experimentally and cannot be explained within a Markovian
theory. The present theory for 1 / f noise is relevant for both spin- and superconducting qubit realizations in
solid-state devices, where 1 / f noise is ubiquitous.
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I. INTRODUCTION

Random telegraph noise has been encountered in a wide
range of situations in many different areas of physics.1 A
typical example in condensed-matter physics is that of a re-
sistor coupled to an ensemble of randomly switching impu-
rities, producing voltage fluctuations with a spectral density
that scales inversely proportional with the frequency, hence
the name “1 / f noise.” The quest to build and coherently
control quantum two-level systems functioning as qubits in
various solid-state systems has once more highlighted the
importance of understanding 1 / f noise, being a limitation to
the quantum coherence of such devices.

The description of low-frequency noise �such as 1 / f
noise� is complicated by the presence of long-time correla-
tions in the fluctuating environment which prohibit the use of
the Markov approximation. Only in few cases, non-
Markovian effects have been taken into account exactly, e.g.,
for the relaxation of an atom to thermal equlibrium.2 Here,
we are interested in the decoherence and relaxation of a qu-
bit, i.e., a single two-level system �spin 1/2�. For the spin-
boson model, i.e., a qubit coupled to a bath of harmonic
oscillators, the dynamics has been calculated within a rigor-
ous Born approximation without making a Markov
approximation.3,4 Here, we carry out a similar analysis for
1 / f noise and find even stronger effects than in the spin-
boson case �see Fig. 1�.

Charge and to some extent �via the spin-orbit interaction�
spin qubits in quantum dots5 formed in semiconductor6 or
carbon7 structures are subject to 1 / f noise. In superconduct-
ing �SC� Josephson junctions, SC quantum interference de-
vices �SQUIDs�, and SC qubits, 1 / f noise has been exten-
sively studied experimentally8–15 and theoretically.16,17

Even where the origin of 1 / f noise is known, the induced
decoherence is not fully understood. Most theoretical work is
either restricted to longitudinal fluctuations or employs a
Markov approximation. Here, we present a calculation of the
qubit dynamics in the presence of 1 / f noise which is exact
within the lowest-order Born approximation. In particular,
we make no use of a Markov approximation. In contrast to
earlier calculations,18–22 we allow for arbitrary qubit Hamil-
tonians and include transverse as well as longitudinal �phase�
1 / f noise. Non-Gaussian 1 / f noise originating from few
fluctuators was studied in Refs. 23–25 while numerical stud-

ies using an adiabatic approximation were carried out in Ref.
26. The coupling to a single fluctuator was also studied.27

II. MODEL

We model the qubit �spin 1/2� coupled to a bath of two-
level fluctuators with the Hamiltonian

H = HS + HB + HSB, �1�

with

HS = ��x + ��z, �2�

HSB = �zX , �3�

where �x and �z are Pauli matrices describing the qubit and
X=�i=1

N vi�z
i where �z

i operates on the ith fluctuator. In a SC
qubit, � and � denote the tunneling and energy bias between
the two qubit states. In a spin qubit, � is the Zeeman splitting
and � is a transverse field. The bath Hamiltonian HB need
not be provided explicitly; it is sufficient to know the auto-
correlator C�t�= �X�0�X�t�� of the bath operator X�t�, where
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FIG. 1. �Color online� Non-Markovian time-evolution of the
unbiased ��=0� qubit �spin� z-component ��z�t��, for A /�2=0.05
and �0 /�=0.05 �solid oscillating black line�. The Markovian pole
contribution ��z�t��poles is plotted as a dashed line for comparison.
The essential non-Markovian part is nonexponential and given by
the branch cut contribution ��z�t��bc �solid decreasing red line�. In-
set: Plot for A /�2=0.005 and �0 /�=10−10. Here, the essential non-
Markovian part is the long-time asymmetry which carries informa-
tion about the initial state.
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�¯�=TrB�¯�B� denotes a trace over the bath degrees of
freedom with the bath density matrix �B. We can further
assume that the fluctuators are unbiased, �X�t��=0. For inde-
pendent two-level fluctuators with switching rates �i, one
obtains

C�t� = �
i

vi
2��i�t��i�0�� = �

i
vi

2e−�i�t�. �4�

The noise spectral density is the Fourier transform

S��� = �
−	

	

dtC�t�e−i�t = �
i

�2vi
2�i�/��i

2 + �2� . �5�

While this correlator describes essentially classical bath dy-
namics �as is commonly assumed for 1 / f noise�, it should be
emphasized that our model is not classical because
�HSB ,HS	�0. In the case of a large number of fluctuators,
the sum in C�t� can be converted into an integral. For 1 / f
noise, one typically assumes a distribution of fluctuators of
the form P�v ,��
1 /�v�, where both v and � are limited by
upper and lower cutoffs.31 The spectral density of the en-
semble of fluctuators then becomes

S��� 
 �
vmin

vmax �
�0

�c

dvd�P�v,��
2v2�

�2 + �2 . �6�

For �0=0 this yields 1 / f noise of the form S���
1 / ���. The
divergence at low frequencies is cut off by the finite duration
of a qubit measurement, if not by other effects at even
shorter times. A low-frequency cutoff �0�0 yields

S��� = 2A
arctan��/�0�



1

�
, �7�

where A depends on the cutoffs and the exponent �. For
�0→0, we recover S���→2A / ���. Inverting the above
Fourier transform, we obtain

C�t� = − A Ei�− �0�t�� , �8�

where Ei denotes the exponential integral function.

III. QUBIT DYNAMICS

The density matrix � of the total system, consisting of the
qubit and the bath, obeys the Liouville equation, �̇�t�=
−i�H ,��t�	. The time evolution of the reduced density matrix
of the qubit alone �S�t�=TrB � is then determined by the
generalized master equation �GME�,3,4

�̇S�t� = − i�HS,�S�t�	 − i�
0

t

��t − t���S�t��dt�, �9�

where the self-energy superoperator ��t� gives rise to
memory effects, i.e., the time evolution of �S�t� depends on
the state �S�t�� at all earlier times t�� t. Therefore, the qubit
dynamics is inherently non-Markovian. Expanding the right-
hand side of the GME in orders of HSB and only keeping the
lowest �second� order, one obtains � in �lowest-order� Born
approximation ��t��S=−i TrB�HSB ,e−itH0�HSB ,�S � �B	eitH0	,
where H0=HS+HB.

Introducing the Bloch vector ���t��=TrS ��S�t�, where
�= ��x ,�y ,�z� is a vector of Pauli operators, we write the
GME as a generalized Bloch equation

��̇� = R � ��� + k , �10�

where the star denotes convolution and3,4

R�t� =
 −
E2

�2�1�t� − ���t� +
E

�
Ky

+�t� 0

���t� −
E

�
Ky

+�t� − �y�t� − ���t�

0 ���t� 0
�

�11�

with E=��2+�2 and �1�t�= �2� /E�2 cos�Et�C��t�,
�y�t�= �2� /E�2�1+ �� /��2 cos�Et�	C��t�, and Ky

+�t�
= �4�� /E2�sin�Et�C��t�, where C��t� and C��t� denote the
real and imaginary parts of C�t�. Since for 1 / f noise, C��t�
=0, we find k�t�=0.3,4 As shown in Refs. 3 and 4, Eq. �10�
can be solved by means of the Laplace transform �LT� f�s�
=0

	f�t�e−tsdt, where

���s�� = �s − R�s�	−1����t = 0�� − k�s�	 . �12�

The LT R�s� of R�t� has entries according to Eq. �11�, with
��t� replaced by 1, and, for 1 / f noise,

�1�s� = �2A/E2��2�C�s + iE� + C�s − iE�	 , �13�

�y�s� = �2A/E2��2�2C�s� + �2�C�s + iE� + C�s − iE�	� ,

�14�

Ky
+�s� = i�2A/E2����C�s + iE� − C�s − iE�	 , �15�

where the LT of the correlator C�t� in Eq. �4� is

C�s� =
A

s
log�1 + s/�0� . �16�

We recover ���t�� from ���s�� by way of an inverse LT as
carried out below, first for the special case of an unbiased
qubit ��=0� and then for the general case.

IV. UNBIASED QUBIT

We first assume that the qubit is prepared at time t=0 in
one of the eigenstates �0�= �↑ � of �z, i.e., ���= �0,0 ,1�, and
that the qubit is unbiased, �=0. If the fluctuators were absent
the qubit would undergo a precession about the x axis,
��z�t��=cos��t�. Due to the presence of the fluctuators, we
find �see also the Appendix�

��z�s�� =
s2 + 4A log�1 + s/�0�

s�s2 + �2 + 4A log�1 + s/�0�	
. �17�

We expand ��z�s�� in leading order of A,

��z�s�� =
s

s2 + �2 + 4A�2 log�1 + s/�0�
s�s2 + �2�2 + O�A2� . �18�

The coherent spin oscillations in the time domain are ob-
tained from the inverse LT, the so-called Bromwich

GUIDO BURKARD PHYSICAL REVIEW B 79, 125317 �2009�

125317-2



integral3,4 �see Fig. 2�, ��z�t��= 1
2i lim�↓0−i	+�

i	+� ��z�s��etsds.
The integral contour can be closed in the left complex half-
plane Re�s��0 �Fig. 2�. The behavior of ��z�t�� is therefore
given by the analytic structure of ��z�s�� in the left half-
plane, see Fig. 2. In the absence of the fluctuating environ-
ment �A=0�, ��z�s�� has two poles at s= � i� which yield
��z�t��=cos��t�, as expected. The coupling to the environ-
ment has two effects: �i� a shift of the poles, and �ii� the
appearance of a branch point �bp� due to the logarithm in Eq.
�18� and the associated branch cut �bc� that we choose to lie
on the real axis between −�0 and −	. Here, it should be
noted that in the case of an unbiased qubit, the presence of
1 / f noise does not lead to the appearance of a pole on the
real axis, and thus there is only pure dephasing and no T1
type decay �spin relaxation�, in contrast to other types of
environment.4 The exact shift of the poles has been calcu-
lated numerically from Eq. �17�. To lowest order in A, we
find �r��r�+ i�r���+ A

� log�1+ �2

�0
2 ��2i A

�arctan �

�0
, where the

real part �r� is the renormalized frequency of the coherent
oscillations, while the imaginary part �r� describes an expo-
nential decay of those oscillations. If a Markovian approxi-
mation were made by setting s=0 in �1�s�, �y�s�, and Ky

+�s�,
then the bc would be missed completely and only an
exponential decay with a rate 2A /�0 would be obtained. The
Markov approximation is only justified if �0��, i.e., if the
bath dynamics is much faster than the system dynamics.
Here, we entirely avoid making a Markov approximation.

The Bromwich integral can then be divided into two parts,
��z�t��= ��z�t��poles+ ��z�t��bc. The integration in the first
term along the contour C, not including the line integrals
along the bc �Fig. 2� yields the sums of the residues from

the poles ��z�t��poles= 1
2iCds��z�s��est=r� cos��r�t�e

−�r�t

−r� sin��r�t�e
−�r�t, where r�=1− �2A /�2�log�1+�2 /�0

2�
+O�A2� and r�= �4A /�2�arctan�� /�0�+O�A2�. For A=0, this
reduces to cos��t�.

The branch-cut contribution to lowest order in A is

��z�t��bc =
4A

�2 I1��0/�,�t� , �19�

with the integral In�a ,b�=a
	dy e−by

yn�y2+1�2 , where we have used
Eq. �18� and introduced dimensionless variables and where
a�0 and b�0. For n=1, we find �Fig. 3�

I1�a,b� =
1

2
Re��ib + 2�e−ib�− i + Ei�ib − ab�	�

−
1

2

1

1 + a2e−ab − Ei�− ab� . �20�

For a=�0 /��1 and b�0�t�0�, the effect of the environ-
ment from the bc integral is exponentially suppressed:
I1�a ,b��e−ab /b and thus ���z�t��bc�� �4A /�3t�e−�0t. The
physically more interesting regime is a=�0 /��1. Within
this regime, we can distinguish two temporal regimes: short
times ab�1�t��0

−1� and long times ab�1�t��0
−1�. In the

short-time case, the integral is cut off from above by a com-
bination of the y−5 and the exponential factor. The effect of
the latter can be approximated by cutting off the integral at
1 /b, with the result I1�a ,b��−I1�1 /b ,0�+ I1�a ,0�, where
I1�a ,0�=− 1

2 �1+a2�−1+ 1
4 log�1+a−2� is the bc integral for t

=0�b=0�. Note that I1�a ,0��0 due to the logarithmic term.
In the long-time case, the integral is cut off by the exponen-
tial whereas the �y2+1�2 factor in the denominator becomes
irrelevant, I1�a ,b��−Ei�−ab�.

At this point, the parameter that controls the strength of
the non-Markovian effects due to 1 / f noise can be identified
as �= �A /�2�log�1+�2 /�0

2�. The regime of validity of the
Born approximation �the only approximation required in this
paper� is confined by the condition ��1. The resulting
damped qubit oscillation is plotted in Fig. 1 for A /�2=0.05
and �0 /�=0.05 where ��0.1. If the infrared cutoff is low-
ered, the non-Markovian effects due to 1 / f noise become
more pronounced. However, since the dependence on the
infrared cutoff �0 is only logarithmic, the result does not
change drastically even if �0 is much smaller than in our
example, as long as A is chosen sufficiently small to ensure
the validity of the Born approximation, e.g., for �
�10 GHz and �0�1 Hz �cf. Ref. 10� then �0 /�=10−10.
With28 A /�2=0.005, one finds a long-lived asymmetry as
shown in the inset of Fig. 1. The intermediate asymptotics of
this contribution is ��z�bc���0.1, while for longer times
this contribution also decays logarithmically to zero. A simi-
lar long-time behavior has been found also for longitudinal
coupling.10
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FIG. 2. �Color online� Analytic structure of ��z�s�� in the com-
plex s plane for �a� the unbiased case, �=0, and �b� the biased case,
��0. Red dots denote poles and blue lines branch cuts.
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NON-MARKOVIAN QUBIT DYNAMICS IN THE PRESENCE… PHYSICAL REVIEW B 79, 125317 �2009�

125317-3



V. BIASED CASE

We again assume that the qubit prepared at time t=0 in
one of the eigenstates �0�= �↑ � of �z, i.e., ���= �0,0 ,1�, but
now the qubit is biased, ��0. In the absence of the fluctua-
tors �A=0�, the qubit would now undergo a precession about
an axis in the xz plane with frequency E /2, where E
=��2+�2. In this unperturbed situation, ��z�s�� has three
poles at s= � iE and s=0, the former two giving rise to un-
damped oscillations of ��z�t�� with frequency E /2 and am-
plitude �2 /E2, while the latter allows for a nonvanishing
stationary value �2 /E2 of ��z�t�� in the long-time limit.

Including 1 / f noise we find in leading order in A �see the
Appendix�,

��z�s�� =
s2 + �2

s�s2 + E2�
+ 4A

�2

E2 Re� �2

�E2 + s2�2C�s�

+
�2

s2�s + iE�2C�s + iE�� + O�A2� . �21�

Analogously to the unbiased case, the poles are shifted in the
presence of the fluctuators. In leading order in A, we find
three poles at −Er�=−�4A�2 /E3�arctan�E /�0�, and �iEr
= � iE� �iA�2 /E3�log�1+E2 /�0

2�− �2A�2 /E3�arctan�E /�0�.
From the shift of these poles �Fig. 2�b�	, we obtain

��z�t��poles= �2

E2 cos�Er�t�e
−Er�t+ �2

E2 e−2Er�t. However, while in the
unbiased case a Markovian treatment at least qualitatively
describes the pole contribution correctly, in the biased case,
there is another effect that is elusive in a Markovian analysis.
As shown in Fig. 2�b�, there are three bp’s in the biased case,
lying at −�0 and −�0� iE. We find that as the two poles near
�iE approach the bp’s at −�0� iE as A is increased, these
poles split into two poles. This behavior is illustrated in Fig.
4. The significance of this splitting is that it leads to beating
patterns already in the pole part of ��z�t��, as shown in Fig.
5. It should be noted that, again, the precise value of �0 is not

critical for the possibility to observe the effect since �0 only
enters in the argument of a logarithm; even a much smaller
value of �0 can thus be compensated by only a slight in-
crease in the system-environment coupling constant A.

The three bc’s give rise to a contribution to ��z�t��,

��z�t��bc = −
4A�2

E4 ��2 + �2 cos�Et�
E2 I1

+
�2

E2 �sin�Et�I2 − cos�Et�I3	� , �22�

where the functions In are as defined above and are evaluated
at the arguments a=�0 /E and b=Et. For the unbiased case
�=0 and E=�, one retrieves the previous result. The inte-
grals I2 and I3 can be calculated in closed form but will not
be given here. The damped oscillations ��z�t��, consisting of
both pole and bc contributions, are plotted in Fig. 5.

VI. COMPARISON WITH AN EXACTLY SOLVABLE CASE

The circumstance that in the case �=0 the coupling
Hamiltonian between the system and the environment HSB
commutes with the system Hamiltonian HS makes this spe-
cial case exactly solvable.18,19,21,22 A state prepared trans-
verse to the common direction of the fixed precession axis
and the fluctuating field, e.g., as ���t=0��= �1,0 ,0�, for low-
frequency noise essentially leads to a Gaussian decay behav-
ior ��x�t��=cos��t�exp�−ct2�. The Born approximation which
we have employed here can only be expected to yield this
result in lowest order of the coupling constant, i.e.,

��x�t�� � cos��t��1 − ct2 + O�c2t4�	 . �23�

Here, we show that our result indeed has this form in the
special case �=0.

To this end, we take the limit �→0 in the propagator, Eq.
�12�, as shown in the Appendix. We then find

��x�s�� = Pxx�s� =
s + �y�s�

�s + �y�s�	2 + �� − K̃y
+�s�	2

. �24�

From Eq. �16� and omitting logarithmic corrections, we can

use C�s��A /s, and thus �y�s��4As / �s2+�2� and K̃y
+�s�
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FIG. 4. �Color online� Shift and splitting of the poles of ��z�s��
for the biased system ��=0.3 and �0=0.05�. Shown is the pole
located at s= iE for the undamped system �A=0�, indicated as a red
dot �see Inset b�. The pole at s=−iE behaves similarly. With in-
creasing A the pole shifts toward the vicinity of the bp, where a
second pole �orange dot� appears. Shown as red and orange dots are
the two poles for A=0.05. The splitting of the poles leads to a
beating in ��z�t��poles, see Fig. 5. Inset: analytic structure of ��z�s��
for ��0, where red dots are poles and blue lines are branch cuts
�see Fig. 2�.
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splitting of the poles at �iE can be observed in ��z�t��poles.
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�4A� / �s2+�2�. Substituting this into Eq. �24� and expanding
to lowest order in A, we find

��x�s�� �
s

s2 + �2 + A
s�3�2 − s2�
�s2 + �2�3 , �25�

which equals the LT of Eq. �23� to lowest order, with the
identification c=A /2. Therefore, our result is consistent with
the known exact result for �=0, but, within the Born ap-
proximation, goes far beyond it, in that it includes arbitrary
values of � and �.

VII. DISCUSSION

We find the following essentially non-Markovian features
in the decay of the z-component of the spin. �i� The spin
decay is nonexponential and asymmetric. For relatively large
infrared cutoff �0, there is an “initial loss” of coherence on a
typical time scale 1 /�0, as seen in Figs. 1 and 5. More im-
portantly, for the typical case of small �0, there is a long-time
asymmetry favoring the qubit near its initial state. �ii� In the
biased case, 1 / f noise can lead to a two-frequency oscilla-
tion, exhibiting a characteristic beating pattern. Here, we
have concentrated on the longitudinal component ��z�t�� of
the qubit under the influence of both longitudinal and trans-
verse 1 / f noise. The transverse component ��x�t�� shows
similar behavior. The predicted non-Markovian effects are
observable in free induction decay �Ramsey fringe� experi-
ments. Indeed, such asymmetries are clearly visible in super-
conducting qubits10,29 Measurements on a superconducting
flux qubit have shown deviations from the exponential decay
and beatings.30 The question whether these effects are due to
the mechanisms described here or not require further inves-
tigation.
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APPENDIX: FORM OF THE PROPAGATOR

The propagator �resolvent� for solving the generalized
Bloch equation in Laplace space is defined in Eq. �12� as

P�s� = �s − R�s�	−1. �A1�

Using the form of the relaxation matrix R�s�, we obtain the
following expressions for the matrix elements of P�s�:

Pxx�s� =
1

D�s�
�s + �y�s� +

�2

s
� , �A2�

Pyy�s� =
1

D�s�
�s +

E2

�2�1�s�� , �A3�

Pzz�s� =
1

s
−

�2

s2 Pyy�s� , �A4�

Pxy�s� = − Pyx�s� = −
1

D�s�
�� −

E

�
Ky

+�s�� , �A5�

Pxz�s� = Pzx�s� = −
�

s
Pxy�s� , �A6�

Pyz�s� = − Pzy�s� = −
�

s
Pyy�s� , �A7�

with the definition

D�s� = �s + �y�s� +
�2

s
��s +

E2

�2�1�s�� + �� −
E

�
Ky

+�s��2

.

�A8�

The solution in Laplace space is now obtained according to
Eq. �12�, with k=0,

��i�s�� = �
j=x,y,z

Pij�s��� j�t = 0�� . �A9�

For example, for ���t=0��= �0,0 ,1�, we find ��i�s��= Piz�s�.
Using Eqs. �A4�, �A6�, and �A7�, we recover the known re-
sults from Ref. 4 in the special case k=0. The remaining
matrix elements, Eqs. �A2�, �A3�, and �A5�, allow us the use
different initial conditions.

1. Case �=0

For an unbiased qubit, �=0 and thus E=� so that the
quantities discussed above are reduced to the form

D�s� = �s + �y�s� +
�2

s
��s + �1�s�	 , �A10�

Pxx�s� = �s + �1�s�	−1, �A11�

Pyy�s� =
s + �1�s�

D�s�
= �s + �y�s� +

�2

s
�−1

, �A12�

Pzz�s� = �s + �y�s�	Pyy�s�/s , �A13�

Pyz�s� = − Pzy�s� = − �Pyy�s�/s , �A14�

Pxy�s� = Pyx�s� = Pxz�s� = Pzx�s� = 0. �A15�

2. Case �=0

In the case of a diagonal system Hamiltonian HS, we set
�=0 and thus E=�, and

�y�s� =
E2

�2�1�s� = 2A�C�s + i�� + C�s − i��	 , �A16�

K̃y
+�s� �

E

�
Ky

+�s� = 2iA�C�s + i�� − C�s − i��	 , �A17�

D�s� = �s + �y�s�	2 + �� − K̃y
+�s�	2. �A18�

With Eqs. �A2�–�A7�, we obtain
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Pxx�s� = Pyy�s� =
s + �y�s�

D�s�
, �A19�

Pzz�s� =
1

s
, �A20�

Pxy�s� = − Pyx�s� = −
� − K̃y

+�s�
D�s�

, �A21�

Pxz�s� = Pzx�s� = Pyz�s� = Pzy�s� = 0. �A22�
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