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The magnetic field dependence of energy levels in gapped single-layer and bilayer graphene quantum dots
�QDs� defined by electrostatic gates is studied analytically in terms of the Dirac equation. Due to the absence
of sharp edges in these types of QDs, the valley degree of freedom is a good quantum number. We show that
its degeneracy is efficiently and controllably broken by a magnetic field applied perpendicular to the graphene
plane. This opens up a feasible route to create well-defined and well-controlled spin and valley qubits in
graphene QDs. We also point out the similarities and differences in the spectrum between single-layer and
bilayer graphene quantum dots. Striking in the case of bilayer graphene is the anomalous bulk Landau level
�LL� that crosses the gap, which results in crossings of QD states with this bulk LL at large magnetic fields in
stark contrast to the single-layer case where this LL is absent. The tunability of the gap in the bilayer case
allows us to observe different regimes of level spacings directly related to the formation of a pronounced
“sombrero” in the bulk band structure. We discuss the applicability of such QDs to control and measure the
valley isospin and their potential use for hosting and controlling spin qubits.
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I. INTRODUCTION

Graphene is one of the most promising materials for fu-
ture nanoelectronics.1,2 This is related to its truly two-
dimensional character, yielding perfect electron confinement
in one spatial dimension. In order to build functional nanode-
vices such as single-electron transistors, quantum point con-
tacts, and quantum dots �QDs�, additional confinement in the
remaining two spatial dimensions is needed. Due to the ab-
sence of a gap in the spectrum, this is a rather demanding
task in both single-layer and bilayer graphene, in contrast to
electrostatically defined QDs in semiconductors such as
GaAs. One possibility of overcoming this difficulty consists
of etching or scratching nanostructures into graphene flakes.
This has been done to experimentally study, for instance,
transport through graphene nanoribbons,3–5 single-electron
transistors,6,7 and, very recently, even QDs showing pro-
nounced signatures of excited states.8 Nevertheless, to in-
crease the functionality of graphene nanodevices it is desir-
able to develop gate-tunable structures.

In this paper, we study the energy spectrum of gate-
tunable QDs in both single-layer and bilayer graphene. In
single-layer graphene, we assume a constant gap in the
whole system that might be introduced by the underlying
substrate.9,10 In bilayer graphene, it is well known that a gap
can be generated by applying different electrostatic poten-
tials to the upper and lower layers,11,12 which has already
been experimentally observed.13–15 Once there is a physical
mechanism that gives rise to a gap, bound states exist in the
presence of an electrostatic confinement potential. We focus
on the magnetic field dependence of bound states in circu-
larly symmetric QDs. Whereas previous work has analyzed
bound states in single-layer graphene subjected to spatially

inhomogeneous magnetic fields,16 we analytically study the
magnetic field dependence of bound states due to electro-
static �i.e., nonmagnetic� confinement. A complementary nu-
merical analysis has been done to study the Fock-Darwin
spectrum of parabolic QDs in single-layer graphene17 where
only quasibound states but not true bound states exist.18

Most remarkably, we show how the valley degeneracy can
be lifted by an external magnetic field applied perpendicular
to the surface. This is of particular importance to form valley
filters, valves,19 or qubits,20 and spin qubits21 in graphene. To
do so, it is essential to have full control over both spin and
valley degrees of freedom and we show that a magnetic field
is all that is needed to achieve this goal. Some of us have
demonstrated that such a control can also be achieved in
single-layer graphene ring structures with an Aharonov-
Bohm flux applied.20 Here, the emphasis is on the more fea-
sible situation of a constant magnetic field applied to the
whole system. We would also like to mention that the broken
valley degeneracy has an interpretation in terms of a mag-
netic moment that depends on the valley isospin.22 Our mod-
els for single-layer and bilayer graphene QDs are appropriate
for the physical situation of a smooth crossover between the
dot region and the barrier. Therefore, atomically sharp edges
do not play any role in our analysis, which seems to be the
most relevant case for possible experimental realizations of
gate-tunable QDs in graphene. Indeed, in Ref. 7 the absence
of a fourfold level degeneracy in the transport data—due to
valley and spin degrees of freedom—was attributed to inter-
valley scattering at the atomically sharp edges whereas the
absence of spin degeneracy could result from spin scattering
at dangling bonds at the edge of the QD. Both possible
sources for an uncontrolled lifting of degeneracies are not
relevant for our QD realizations.
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In the regime of strong magnetic fields, the bound states
of single-layer and bilayer graphene merge into the appropri-
ate bulk Landau levels �LLs� as expected. However, the na-
ture of these LLs is quite different for the cases of single-
layer graphene versus bilayer graphene. In the bilayer case,
one of the LLs crosses the gap with increasing magnetic
field. QD bound states can cross this LL at large magnetic
fields which leads to certain constraints to form operational
QDs.

The paper is organized as follows. In Sec. II, we discuss
our model and the results for single-layer QDs. In Sec. III,
we treat the bilayer case, in Sec. IV we discuss possible
applications of our results for the emerging field of val-
leytronics and to spin-based qubits in graphene, and in Sec.
V we draw our conclusions.

II. QD IN SINGLE-LAYER GRAPHENE

In this section we study graphene in the presence of a
constant mass term � �inducing a gap 2�� that might be
introduced by the underlying substrate.9,10 The QD is defined
by gates introducing an electrostatic confining potential for
electrons in the conduction band �see Fig. 1�. We also in-
clude a homogeneous magnetic field B perpendicular to the
graphene plane.

The Hamiltonian in the valley-isotropic form is given by23

H� = H0 + ���z + U�x,y� , �1�

where H0=v�p+eA� ·�, B=��A= �0,0 ,B�, v=106 m /s is
the Fermi velocity, and �=� differentiates the two valleys K
and K�. We choose the symmetric gauge A= B

2 �−y ,x ,0� and
assume a circular symmetry in the confinement potential
U�x ,y�=U�r� with r=�x2+y2. The vector operator � acts on
the A ,B sublattice components of the spinor wave function
and its vector components are given by the standard Pauli
matrices.

H0 may be transformed into polar coordinates ��x ,y�
= �r cos � ,r sin ��� �with �=1�,

H0 = − iv� 0 e−i�

ei� 0
��r + v� 0 − e−i�

ei� 0
��1

r
�� +

ieBr

2
� .

�2�

Since H� commutes with the total angular-momentum opera-
tor Jz=−i��+�z /2, the energy eigenspinors can be chosen to
be eigenstates of Jz

���r,�� = ei�j−1/2��� 	A
� �r�

	B
� �r�ei� � , �3�

with j as the eigenvalue of Jz which has to be a half-odd
integer.

A. Bound-state solutions

To solve the eigenvalue problem H��
��r ,��=E���r ,��

we have to analyze

H̃��r�	��r� = E	��r� , �4�

with 	��r�= �	A
� �r� ,	B

� �r��T and

H̃��r� = − iv�x�r + ���z + U�r�

+ v�y�
j − 1/2

r
+

eBr

2
0

0
j + 1/2

r
+

eBr

2
	 . �5�

First, we solve Eq. �4� with a constant U�r�=U0. Defining


E−U0 and b
eB /2, we obtain the following decoupled
second-order differential equation:

r2�r
2	�

� �r� + r�r	�
� �r� = �b2r4 + a�r2 + n�

2�	�
� �r� , �6�

with �= �1, the upper sign corresponding to the A sublattice
and the lower sign to the B sublattice. The coefficients en-
tering Eq. �6� can be expressed as

a� = 2b�j + �/2� − �
2 − �2�/v2, �7�

n� = �j − �/2� . �8�

Note that Eq. �6� does not depend on the valley index �
anymore. However, 	�

� �r� depends on � through Eq. �4�. The
solutions to Eq. �6� are the confluent hypergeometric func-
tions M�a ,b ,z� and U�a ,b ,z�. The bound-state solutions for
the QD have the form

	�
� �r� = 2�1+n��/2e−br2/2rn� ���U�q�,1 + n�,br2� , r � R ,


�M�q�,1 + n�,br2� , r � R ,


�9�

where q�
 1
4 �

a�

b +2�1+n���. Equation �9� is the general solu-
tion for waves that are regular at the origin and which decay
exponentially as r→�. We want to find the bound states for
the following hard-wall potential:

U�r� = �U0, r � R ,

0, r � R ,

 �10�

and define the corresponding energies as 
�
E and 
�


E−U0.

FIG. 1. �Color online� QD in single-layer graphene with a con-
stant mass term �. An electrostatic potential with height U0 gives
rise to bound states �dashed line� in the conduction band �c� defin-
ing a QD of radius R. Note that the confining potential U�r� is
repulsive for holes in the valence band �v�.
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The ratios �B /�A and 
B /
A in Eq. �9� are fixed by the
coupled first-order differential equation �Eq. �4��. This pro-
vides us with the general solutions for r�R and r�R. The
matching conditions of the spinors at r=R give then the ei-
genvalues and eigenfunctions of the bound states.

For j�0, we obtain the following characteristic equation
for the allowed eigenenergies E of the QD:

��
+ M�q�, j + 1/2,x�U�q�, j + 3/2,x�

− ��
+ M�q�, j + 3/2,x�U�q�, j + 1/2,x� = 0. �11�

For j�0 we obtain

��
− M�q�,− j + 3/2,x�U�q� − 1,− j + 1/2,x�

− ��
− M�q� − 1,− j + 1/2,x�U�q�,− j + 3/2,x� = 0,

�12�

where x
bR2= �1 /2��R / lB�2, with lB=�� /eB as the mag-
netic length. Without loss of generality, we choose B to be
positive. The bound-state levels for B negative can be ob-

tained from the symmetry H̃��j ,B�= H̃−��−j ,−B�. We further
introduced the parameters q�,�= �j−1 /2���j�+1
− �
�,�

2 −�2� /4bv2, ��
+ = �
�−��� /4�j+1 /2�, ��

+ =bv2 / �
�

+���, ��
− = �j−1 /2� / �
�+���, and ��

− =1 / �
�+���, with
��x� as the Heaviside function.

In the limit of small magnetic fields �x�1�, the hypergeo-
metric functions reduce to Bessel functions �see Chap. 13 of
Ref. 24�

M�q�,n,x� = ��n��− xq���1−n�/2Jn−1�2�− xq�� , �13�

and

U�q�,n,x� =
2

��1 + q� − n�
�xq���1−n�/2Kn−1�2�xq�� ,

�14�

where we have introduced the QD level spacing �=�v /R.
For B=0, the characteristic equation for j�0 �Eq. �11�� be-
comes


� − ��


� − ��
��2 − 
�

2


�
2 − �2

� Jj+1/2�2

�
�
�

2 − �2�Kj−1/2�2

�
��2 − 
�

2 �
+ Jj−1/2�2

�
�
�

2 − �2�Kj+1/2�2

�
��2 − 
�

2 � = 0. �15�

For j�0 �Eq. �12��, we obtain Eq. �15� with j→−j and �
→−�.

Even in the limit of zero magnetic field, the characteristic
equation Eq. �15� cannot be solved in closed form in general.
However, the fact that E�j ,���E�−j ,��, but E�j ,��=E�−j ,
−�� lies at the heart of our current approach to control the
valley degeneracy by a magnetic field. The first statement is
a consequence of effective time-reversal symmetry �eTRS�
breaking within a single valley by a finite mass �.25 For-

mally, �H� , T̃��0, where T̃= i�yC with C as the operator of
complex conjugation. The second statement is that the true

TRS �which couples the two valleys� is not broken by a
boundary alone, i.e., at B=0 �see also Sec. IV A�.

B. Results

We first consider zero magnetic field. In Fig. 2 we show
the energy levels of the QD as a function of the dot radius R,
evaluating Eq. �15� for j=1 /2. Full lines and dashed lines
correspond to the two valleys. Due to the symmetry E�j ,��
=E�−j ,−��, the two sets of curves display also the cases j
=1 /2 and j=−1 /2 in the same valley. The different solutions
for the dashed and full lines are therefore a direct conse-
quence of eTRS breaking in a single valley at zero magnetic
field. However, if both signs of j were included, one would
observe that the valley degeneracy was not broken at B=0.

In Fig. 3 we show the bound states of the QD as a func-
tion of magnetic field evaluating the characteristic equations
Eqs. �11� and �12� numerically. In Fig. 3�a� we show the
low-lying bound states in the conduction band. Note that the
valley degeneracy �or orbital degeneracy� is broken at finite
magnetic field. The largest level spacing between the �non-
degenerate� ground state and first excited state we estimate
from Fig. 3�a� to be at R / lB�1.8 and is about
165 meV /R�nm� for the parameters used in Fig. 3. At
R / lB�1.8 we obtain for the Zeeman splitting �z=g�BB
�200 meV /R2�nm� using g=2, which shows that the level
spacing is always larger than the Zeeman energy for reason-
able dot sizes.

Considering a QD with R=25 nm, we obtain a valley
splitting �K,K� at R / lB�1.8 of about 6.6 meV corresponding
to 77 K, being much larger than 4 K, the temperature
achieved by cooling with liquid helium. The necessary mag-
netic field corresponding to R / lB=1.8 is B=3.41 T �and B

0 2 4 6 8 10 12 14
1.0

1.1

1.2

1.3

1.4

FIG. 2. �Color online� Bound-state levels as a function of the
QD radius R with U0=� and for j=1 /2 at zero magnetic field. Full
lines correspond to �= +1; dashed lines correspond to �=−1.
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=0.85 T for R=50 nm with �K,K��3.3 meV�, which is
also easily achievable in the laboratory. A gap of size 0.23
eV has been concluded from angle-resolved photoelectron
spectroscopy �ARPES� data in graphene on top of a SiC
substrate.10 Therefore, the gap � and also the confining po-
tential step height U0 could easily be larger than the QD

level spacing � which is about 26 meV. These results suggest
that such QDs confined in graphene would be an ideal host
for spin qubits where the orbital degeneracy is controllable
by a magnetic field.

In Fig. 3�b� we show the merging of the QD states with
the bulk LLs

En = � ����/��2 + 2n�R/lB�2, n = 1,2,3, . . . �16�

with increasing magnetic field. Note in particular, that there
is a zero mode LL at E=−�� which lies entirely in one
valley.26 In Sec. III we consider QDs in bilayer graphene
where a voltage tunable mass gap is possible.

III. QD IN BILAYER GRAPHENE

In bilayer graphene, an electric field perpendicular to the
layers generates a gap in the spectrum in a similar fashion to
the staggered sublattice potential in the single layer. In this
section, we will investigate the bilayer analog of the single-
layer QD studied in Sec. II, as shown in Fig. 4.

We use the simplest nontrivial form of the Hamiltonian
that captures the most important features of the spectrum and
calculate the quantized energy levels of the QD as a function
of the magnetic field and the relevant parameters of the band
structure and the QD. The approximate Hamiltonian �we use�
correctly describes the crucial formation of an electronic gap
in biased bilayer graphene.27 We briefly discuss the issue of
neglected terms in Sec. III C.

A. Solving for the energy levels

We separate the Hamiltonian in the bilayer into two parts:
H=H0+H1

�. H0 encodes the motion of the electrons within
the planes and is given by two copies of the Dirac equation.
In the valley-isotropic representation it takes on the form
��=v=1�

H0 =�
0 px + ipy 0 0

px − ipy 0 0 0

0 0 0 px − ipy

0 0 px + ipy 0
	 �17�

in both valleys. Like in the case of the single layer we add a
magnetic field by the minimal-coupling prescription p→ �p

��� ��� ��� ��� ��� ��� ���
����

����

����

����

���	

����
E

/
δ

R/lB

0 2 4 6 8 10
10

12

14

16

18

20

E
/δ

R/lB(b)

(a)

FIG. 3. �Color online� Numerical evaluation of characteristic
Eqs. �11� and �12� as a function of R / lB, with lB= �� /eB�1/2 as the
magnetic length and R as the QD radius. We use �=10� and U0

=�. �a� The parameter regime of small B fields where we observe a
breaking of the level degeneracy, shown for �j ,��
= � 1

2, �1� , �− 1
2, �1�, and �� 3

2, �1�. The full lines are for �=1 and
the dashed lines are for �=−1 corresponding to the two valleys of
graphene. �b� Same parameters as in �a�, but for larger magnetic
fields. The energy levels converge to the bulk Landau levels with
increasing R / lB. Included are levels for j= �

1
2, �

3
2, �

5
2 .

+ ++ + + ++ + + ++ + + ++ +

FIG. 4. QD in bilayer graphene: A back gate and dopants on top
of the bilayer control the voltage V between the layers—leading to
a controllable gap opening—as well as the Fermi energy �band
filling�. An additional top gate allows to induce a spatially inhomo-
geneous electrostatic potential U�r� analogous to the single-layer
model, which leads to bound states in the conduction band �or va-
lence band� of the bilayer. Another possibility is to use a split top
gate �instead of a combination of top gate and dopants� to achieve a
similar confinement.
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+eA�, with A= �B /2��−y ,x ,0�. The other part of the Hamil-
tonian �i.e., H1

�� encodes the biasing field and the hopping t�

between the two planes. The interplane hopping matrix ele-
ment t� has recently been measured to be t�=0.40 eV.28,29

In the simplest approximation we may take

H1
� =�

�V

2
0 t� 0

0
�V

2
0 0

t� 0 −
�V

2
0

0 0 0 −
�V

2

	 + U�r�1 , �18�

with U�r� the applied electrostatic potential profile again
given by Eq. �10�. The index �= �1 again distinguishes the
two valleys �note that in the valley-isotropic representation
the basis is chosen such that the two planes in the bilayer are
exchanged in the spinors that describes different valleys�. In

Ref. 30, the same Hamiltonian H at zero magnetic field was
used. However, the confinement described in Eq. �18� by
U�r� was achieved in Ref. 30 by a position-dependent “mass
term” V�r� instead.

To diagonalize H �i.e., to find the eigenspinors � that
fulfill H�=E�� we go to cylindrical coordinates in which
the states are easily classified according to their conserved
value of total angular momentum m �m being an integer�.
More explicitly, we factor out the angular dependence of the
states according to

� =
eim�

�r �
1 0 0 0

0 e−i� 0 0

0 0 1 0

0 0 0 ei�
	�1. �19�

Note that the angular momentum in the bilayer case is an
integer m, in contrast to the half-odd integer j in the single-
layer case, which reflects the different pseudospins in the
bilayer �pseudospin 1� and single layer �pseudospin 1/2�.
With the definitions j=m+1 /2 and s=sgn�B�, the Hamil-
tonian H0, which now acts on �1, can be written as

H0 =
1

i�2lB�
0 �� − �j − 1�/� − s� 0 0

�� + �j − 1�/� + s� 0 0 0

0 0 0 �� + j/� + s�

0 0 �� − j/� − s� 0
	 . �20�

In the latter equation, we have introduced the dimensionless
coordinate �=r / ��2lB�, where lB=�� / �e�B�� is the magnetic
length. The eigenvalue problem can now be solved by using
the general solutions of the ordinary differential equation im-
posed by H0. The general solutions can be conveniently writ-
ten in a simple way using the following functions �valid for
all integers m and s= �1�:

�m+�
s 
 e−�2/2��m+��+1/2M���m + �� + 1 + s�m − 1 − ���/2

+ �2/4,1 + �m + ��,�2�/��1 + �m + ��� . �21�

These solutions are regular at the origin and are used for r
�R. Note that � is an arbitrary parameter, which is chosen to
be proportional to the energy eigenvalue of the first subblock
of the matrix in Eq. �20�, i.e., H0�1=−i��1 /�2lB for the
first two components of �1. �This choice is motivated by
mathematical convenience to simplify the recursion relations
in Eqs. �23a�–�23d� below.� In addition to Eq. �21�, there are
solutions that are irregular at the origin but vanish exponen-
tially for r→� which we use for r�R. These solutions are
given by the same expression as Eq. �21� with the substitu-
tion

M���m + �� + 1 + s�m − 1 − ���/2 + �2/4,1 + �m + ��,�2�/

��1 + �m + ��� → U���m + �� + 1 + s�m − 1 − ���/2

+ �2/4,1 + �m + ��,�2� . �22�

For both types of solutions one can show the following iden-
tities by straightforward manipulations using the recursion
relations for the confluent hypergeometric functions �see,
e.g., Chap. 13 of Ref. 24�:

��� − �j − 1�/� − s���m−1 = a1
s�m, �23a�

��� + �j − 1�/� + s���m = a2
s�m−1, �23b�

��� + j/� + s���m+1 = a3
s�m, �23c�

��� − j/� − s���m = a4
s�m+1. �23d�

For r�R and for m�1 we obtain

a1
s = �2/2, �24a�

a2
s = 2, �24b�

a3
s = 2, �24c�
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a4
s = ��2 − 4s�/2. �24d�

For r�R and m=0,

a1
s = 2, �25a�

a2
s = �2/2, �25b�

a3
s = 2, �25c�

a4
s = ��2 − 4s�/2, �25d�

and for r�R and m�−1,

a1
s = 2, �26a�

a2
s = �2/2, �26b�

a3
s = ��2 − 4s�/2, �26c�

a4
s = 2. �26d�

For r�R and all integer m we obtain

a1
s = − ��s + 1� + �2�1 − s�/4� , �27a�

a2
s = − ��1 − s� + �2�1 + s�/4� , �27b�

a3
s = − ��1 − s� + ��2/4 − 1��1 + s�� , �27c�

a4
s = − ��s + 1� + �1 + �2/4��1 − s�� . �27d�

Therefore, by combining the solutions in the form

�1 =�
�m 0 0 0

0 �m−1 0 0

0 0 �m 0

0 0 0 �m+1

	�2, �28�

the H0 part of the Hamiltonian �now acting on �2� can be
replaced by

H0 =
1

i�2lB�
0 a1

s 0 0

a2
s 0 0 0

0 0 0 a3
s

0 0 a4
s 0

	 . �29�

We now note that the transformations in Eqs. �19� and �28�
commute with the part of the Hamiltonian H1

� of Eq. �18�.
Therefore the task of finding the eigenvectors is transformed
into the simple problem of finding the eigenvectors of a
4�4 matrix. Explicitly, the eigenvalue problem is equivalent
to finding the nontrivial solutions of

�
�V

2
+ U�r� − E − ia1

s /�2lB t� 0

− ia2
s /�2lB

�V

2
+ U�r� − E 0 0

t� 0 −
�V

2
+ U�r� − E − ia3

s /�2lB

0 0 − ia4
s /�2lB −

�V

2
+ U�r� − E

	�2 = 0. �30�

The nontrivial solutions are identified by finding the values
of �2 such that the determinant of the matrix is zero. Given
the values of E, V, t�, and B this amounts to solving a qua-
dratic equation for �2 inside �U�r�=0� and outside �U�r�
=U0� the QD with the result

��,�
2

2lB
2 =

s

lB
2 − 
�,�

2

−
V2

4
��t�

2 �
�,�
2 −

V2

4
� + �
�,��V −

s

lB
2 �2

, �31�

which is independent of m. The energies 
� and 
� are de-
fined in Sec. II. With the knowledge of �2, we can easily find
the corresponding eigenvector �2. Finally we may use Eqs.

�19� and �28� to recover the eigenvector � in the original
basis. A similar procedure was used previously in Ref. 27 in
the case of zero magnetic field.

Given the eigenvectors inside and outside the dot the
bound-state solutions of the full problem are those where the
two pairs of solutions can be matched at the boundary of the
dot. This is most easily tested by computing the determinant
of the matrix built up by the four relevant eigenvectors
evaluated at r=R, where R is the radius of the dot. The zeros
of the determinant as a function of the energy �inside of the
gap at r→�� determine the bound states and their energies.
The condition of having the determinant equal to zero is the
bilayer analog of Eqs. �11� and �12� for the single-layer case
and can straightforwardly be computed numerically although
the analytic expression is long and cumbersome.
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B. Landau levels in biased graphene bilayer

In this section we briefly review the properties of a biased
graphene bilayer in a magnetic field. From the point of view
of the QD there exists one level that is of particular impor-
tance since it crosses the gap with increasing magnetic field
�see also Refs. 31 and 32�. In the presence of a magnetic
field, the Hamiltonian matrix in a homogenous system can be
written as ��= +1�

H0 =�
V/2 �a† t� 0

�a V/2 0 0

t� 0 − V/2 �a

0 0 �a† − V/2
	 , �32�

in the Landau gauge A= �0,Bx ,0� and for a particular sign
�s= +1� of the magnetic field �changing the sign would just
take a↔a† and the same spectrum but with V→−V is ob-
tained�. Explicitly, a†= is�e�B� /2��x− i�s /e�B���−i��x��+ ipy
with py as a c number due to translational invariance in the y
direction. We have defined �=v��2 / lB. The eigenstates can
then be formed by a spinor of the form

� = �aA1�n�,aB1�n − 1�,aA2�n�,aB2�n + 1��T. �33�

With this choice the operator matrix in Eq. �32� becomes
a matrix of numbers acting on the spinor �̃
= �aA1 ,aB1 ,aA2 ,aB2�T:

H0 =�
V/2 ��n t� 0

��n V/2 0 0

t� 0 − V/2 ��n + 1

0 0 ��n + 1 − V/2
	 . �34�

For n�1 this leads to a spectrum that �as function of �� is
very similar to the case without a magnetic field as a function
of the absolute value of the momentum. The most important
feature for us is that the gap is still present for these quantum
numbers.

For n=−1 the spinor is simply �0,0 ,0 , �0��, which leads to
a flatband �Landau level� at −V /2. The case n=0 is more
interesting. In this case the spinor is of the form
�aA1�0� ,0 ,aA2�0� ,aB2�1�� and the resulting problem is the di-
agonalization of the matrix

H0 = �V/2 t� 0

t� − V/2 �

0 � − V/2
	 . �35�

This leads to three levels as a function of �. Two start out at
�t� at �=0 and evolve smoothly over to �� as �→�.
These two levels are therefore much like the case n�1. The
most interesting level starts out at −V /2 at �=0 and goes
smoothly to V /2 as �→�. It is easy to see that the level
crosses zero at �=�t�

2 +V2 /4. This Landau level that crosses
the gap can also be seen in Fig. 3 of Ref. 31 and has impor-
tant consequences for the levels in the QD, as we will discuss
in Sec. III C.

C. Results for the bound-state levels

The bilayer QD is in many ways similar to the single-
layer QD discussed above, but there are also important dif-
ferences in the physics. The most important result of our
study can be seen in Fig. 5 where we display the energy
levels of a dot as a function of the magnetic field. At zero
magnetic field, the degeneracy of the levels in the two val-
leys is clearly displayed. With increasing magnetic field, the
orbital degeneracy is lifted. The symmetry of the levels is
analogous to the case of the single layer discussed above.
The states that are degenerate at zero field are related by
time-reversal symmetry, which means that they correspond
to opposite values of angular momentum �m in different
valleys. The typical effective time-reversal symmetry of �m
within one valley is already broken by a “mass” term �which
breaks the inversion symmetry of the bilayer� in a similar
manner to the case of neutrino billiards considered by Berry
and Mondragon.25

An important feature of the bilayer as opposed to the
single layer is the unconventional sombrerolike dispersion
relation near the band edge. This is most apparent for a large
value of the bias field V. An example of the level structure
for such a dot is shown in Fig. 6. It is clear that there are
many closely spaced levels near the band edge. This is a
feature of the enhanced density of states near this particular
energy.33 It is also crucial to note that the trigonal distortion
term �which breaks the cylindrical symmetry and in
principle couples all states with angular momenta
m ,m�3,m�6,m�9, . . .� is a particularly relevant perturba-
tion for the degenerate states close to the band edge. For
states away from the band edge for which the energies of the
coupled states are different in energy, the trigonal distortion
term can be treated as a perturbation and we do not expect
that the energy levels will be much affected. More explicitly,

0.5 1.0 1.5 2.0

0.8

1.0

1.2

1.4

1.6

1.8
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FIG. 5. �Color online� Energy levels in a relatively small bilayer
QD �radius R=25 nm� as a function of the magnetic field. The
other parameters are as follows: t�=0.4 eV=15.19�v /R, V
=1.9�v /R, U0=1.52�v /R, and s=1 �i.e., positive B field�. The solid
and dashed lines are for different valleys.
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we use a cylindrically symmetric dispersion relation whereas
the real dispersion relation including the trigonal distortion
term, which is parametrized by v3 �v3�0.1 in graphite but it
has not yet been measured in bilayer graphene�, is not. From
the expressions in Ref. 27 �zero magnetic field� we find that
above the momentum scale pc�v3t� the cylindrically sym-
metric term that we keep is dominating over the trigonal
distortion term in the Hamiltonian and does hence provide a
reasonable zeroth order approximation. It is not trivial to
convert this momentum scale into an energy in general be-
cause of the sombrero structure. But for the parameters we
use in Figs. 5–7 the associated momentum is larger than pc

for energies above the region of the sombrero �i.e., above
V /2� where the energy becomes a monotonously growing
function of momentum. Therefore, we believe that our model
captures the relevant physics above the sombrero. We note
that at finite magnetic fields, it is known that the trigonal
distortion quickly becomes less important with growing
magnetic field in an unbiased bilayer.34 We therefore expect
that for the large field regime, the corrections are small at all
energies. Additional subleading parameters �such as �4
which introduce an electron-hole asymmetry into the
spectrum29� will also shift the level positions slightly.

For a large QD, it is also possible to reach the regime
where the dot levels are described by the Landau levels. This
feature is seen in Fig. 7�a� where we display the bound states
for m=0, m= �1 for large magnetic fields. Note that the
QD levels tend to approach the bulk Landau levels displayed
in Fig. 7�b�.

In a smaller QD it is hard to reach the Landau level limit
for moderate magnetic fields. Another important feature of
the bilayer for designing a QD is the existence of an anoma-
lous LL that crosses the gap; see Sec. III B and Fig. 7�b�. The
character of bound states changes when the square root of
��,�

2 in Eq. �31� changes sign, which occurs at energies

E� =
s�V

lB
2�t�

2 + V2�
�� V2t�

2

4�t�
2 + V2�

−
t�
2

lB
4�t�

2 + V2�2 �36�

and at E�=E�+U0. These lines are shown in Fig. 8 as a
function of magnetic field. The area between E� and E�

defines an effective �valley-dependent� bandwidth for the
QD. Indeed, at B=0, we obtain only bound states for ener-
gies above �t�V� /2�t�

2 +V2 and below �t�V� /2�t�
2 +V2+U0,

which correspond to the conduction-band minima inside and
outside the QD, respectively. Within this bandwidth, the two
�2’s inside the QD ���� are purely real and the two �2’s
outside the QD ���� have an imaginary part. The physical
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3.0

3.5

4.0

FIG. 6. �Color online� Energy levels in a relatively small bilayer
QD with the same parameters as in Fig. 5 except that the bias field
V is about three times larger: V=6�v /R.
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FIG. 7. �Color online� �a� Merging of bilayer QD levels to the
bulk LLs as function of magnetic field for a relatively large bilayer
QD with R=67.48 nm and t�=0.4 eV=41�v /R, U0=3.5�v /R, V
=5.13�v /R for m=0, �1 and s=1 �i.e., positive B field�. Full lines
are for �= +1 and dashed lines are for �=−1. �b� Bulk LLs which
are approached almost perfectly at high fields in this parameter
regime. Note that the n=0 LL �see Sec. III B� crosses the gap with
a negative slope, whereas the other LLs �n=1,2 ,3� have positive
slope �full lines and dashed lines distinguish the two valleys�. There
is also a flat LL �n=−1� at V /2 similar to the single-layer case.
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meaning of � / ��2lB� is most transparent in the limit of zero
magnetic field where it becomes the inverse decay length of
the wave function.35 Thus states within the bandwidth corre-
spond to a decaying wave outside that is matched to one
propagating and one decaying wave inside of the dot. �This
is true for energies such that only one band is allowed inside
of the dot whereas the other band requires the momentum to
be imaginary.�

The bound-state energy window at B=0 is crossed by the
n=0 bulk LL, as shown in Fig. 8. When QD bound states
cross this bulk LL, the QD becomes “leaky” and electrons
can escape into the bulk. The effective bandwidth defined by
the area between the lines E� and E� is never crossed by a
bulk LL and defines therefore a “safe” zone for QD bound
states. Note, however, that bound states do exist also outside
of this effective bandwidth at finite magnetic field, since the
bulk spectrum �LLs� becomes discrete. This means that eva-
nescent waves continue to exist in the “bulk” region when
they are not degenerate with a bulk LL �much like the edge
states that are present between the LLs in the integer quan-
tum Hall Effect�. However, this regime is not ideal for QDs
due to the leakage via nearby bulk states as described above.

We point out that QDs in bilayer graphene in connection
with a magnetic field again allow for a controlled tuning of
level degeneracies. The values used in our plots correspond
to realistic values of the gap voltage V and the interlayer
coupling t�.14 Besides similarities to the single-layer case
studied in Sec. II, the bilayer QD shows very interesting

additional features. The size of the gap V can influence the
size of the level spacing drastically when the energies are
close to the band edge, where a sombrerolike structure is
formed which is more pronounced at larger V.

IV. APPLICATIONS OF VALLEY SPLITTINGS

In this section we discuss the implications and their use of
the broken valley degeneracy by a magnetic field in gate-
tunable graphene QDs.

A. Consequences for valleytronics

The valley index �= �1 can be thought of as eigenvalues
of the operator � ·�, where � is a unit vector on the Bloch
sphere and � the vector of Pauli matrices.23 The operator � is
called the valley isospin. If the two valleys are uncoupled,
we have �= ẑ. It has been pointed out that the valley isospin
� could be used as a controllable degree of freedom like the
electron spin S is used in spintronics applications which
coined the name valleytronics.19 The main motivation to use
the valley degree of freedom as a new unit of information in
graphene instead of the sublattice pseudospin � is the fact
that the valley degree of freedom is preserved in the absence
of short-range scatterers �whereas � is not�, provided, e.g.,
by the graphene edges. However, the manipulation of the
valley isospin is not as straightforward as for the real elec-
tron spin since the valley isospin does not directly couple to
a magnetic field as does the real spin via the Zeeman inter-
action. However, since the valleys are related by time-
reversal symmetry, the valley degeneracy can also be broken
in principle by applying a magnetic field which we have
shown in this work. However, a magnetic field alone is not
enough since it breaks only degeneracies within different val-
leys. The so-called effective time-reversal symmetry p→−p
and �→−� within each valley should also be broken. This
is achieved by quantum confinement induced by a boundary
that does not couple the valleys,20 which is the case for the
gate-tunable QDs proposed here �see also Sec. II B�.

In this work we have shown that the valley degeneracy,
and more generally the orbital degeneracy, is controllably
and efficiently broken by a magnetic field. In the case of the
valley splitting �K,K�, we can take advantage of the anoma-
lous LLs which are approached by the QD states at large
R / lB. As we have discussed in Secs. II and III, there exists a
flat LL at the gap value that is only present in one of the
valleys �its other valley partner is at negative energy, i.e., in
the valence band�. In the bilayer QD, we have in addition a
state that crosses the gap with increasing magnetic field. We
can estimate typical values for �K,K� by comparison with our
plots for QD bound states. In the single layer, we obtain from
Fig. 3�b� for a dot radius of R=67.48 nm and for B
�4.6 T, a valley splitting �K,K� of about 24.4 meV between
the valley-polarized ground state and the first excited states
�from the other valley�. For the same QD size and for the
same B field, we obtain for the bilayer QD shown in Fig. 7�a�
a splitting between the approached n=0 LL and the n=1 LL
from the other valley of �K,K�8 meV. Both values for
�K,K� are much larger than temperature and can be probed in
tunneling transport through QDs.

0 2 4 6 8 10 12 14
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FIG. 8. �Color online� Effective bandwidth of the bilayer QD
defined by the area between the lines E� and E� �dashed lines� as
a function of magnetic field for V=17.1�v /R and U0=7�v /R, s
=1, t�=41�v /R, and for valley �=−1. The dotted line displays the
n=0 bulk LL �in valley �=−1� that crosses the QD bandwidth cor-
responding to the band gap at zero magnetic field �full lines�. This
bulk LL presents an escape channel for the bilayer QD if bound
states cross this bulk LL. Note that no bulk states overlap with the
effective bandwidth �from the same valley�.
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Such QDs could be used as very efficient valley filters in
transport through the QD. In contrast to earlier proposals of
valley filters in zigzag ribbons in single-layer graphene,19

and topologically confined states in bilayer graphene36 with-
out magnetic field, the present setups would work as filters
that break time-reversal symmetry and therefore function
also in closed QD systems where Coulomb blockade �CB�
effects can be used to operate at the single �valley-�spin level
much like for ordinary spin-filters in QDs.37 CB effects �and
therefore single-electron tunneling� become prominent if the
charging energy exceeds the temperature and for weak cou-
pling to the leads �tunnel resistance�h /e2�. We estimate the
charging energy EC as a function of the QD radius R as EC
=e2 /C with capacitance C=8�0�effR, where �eff= �1+4� /2,
including the dielectric constant for SiO2 and vacuum.8 For
R=67.48 nm, this gives EC�12 meV. The tunneling rate in
and out of the QDs could be tuned by gates. We note that two
valley filters in series can be used as a valley valve,19 where
the valley polarization of one of the QDs should be revers-
ible. This can be achieved by either reversing the sign of the
magnetic field, or more easily, by gates such that one QD can
be tuned from a hole-doped QD to an n-doped QD �and vice
versa�. In this way, the valley isospin of QD states at reso-
nance with the leads can be changed in one QD, thereby
probing the polarization of the other QD. We note that the
presence of such a valley splitting could be probed by elec-
tron transport since the level degeneracy is changed with
increasing magnetic field.20 Since the valley splitting �K,K�
acts like a Zeeman field for the valley isospin, experiments
that measured the relaxation time T1 �Ref. 38� and the read-
out of a single-electron spin39 in GaAs QDs could be per-
formed in a similar way in gate-tunable graphene QDs in
order to measure the valley relaxation time and valley polar-
ization in such QDs �besides the detection measurements for
real spin�.

B. Consequences for spin qubits

The use of the spin-1/2 degree of freedom of single elec-
trons as qubits40 is usually combined with a proposed cou-
pling of adjacent localized spin qubits via the Heisenberg
exchange interaction.41 Carbon may offer relatively long spin
coherence times due to the sparseness of nuclear spins and
potentially also due to the weakness of the spin-orbit cou-
pling in these materials.42,43 However, spin qubits in
graphene QDs �Ref. 21� need to deal with the valley degen-
eracy in these materials which can interfere with exchange
coupling. This can be understood using the following simple
model for two electrons in adjacent graphene QDs. Suppose
that the valley degree of freedom, unlike the spin in this case,
is not well under control, and, because it is degenerate, each
electron is in an incoherent mixture of the two valley states K
and K�, with equal probability, ��= ��K��K�+ �K���K��� /2. The
density matrix of the two electrons in adjacent QDs can thus
be written as ��= ��KK��KK�+ �K�K��K�K�+ �KK���KK��
+ �K�K���K�K��� /4. Including spin, the density matrix is then
�=�� � ������, where ��� is an arbitrary pure two-spin state.
At this point, the spin and valley degrees of freedom are
uncoupled, and while the spin can maintain its coherence, the

valley isospin may at the same time be in an entirely inco-
herent state. The problem arises because there will be a
tunnel-coupling mediated exchange coupling J�0 if the
electrons are both in the same valley �KK� or �K�K��, but
there will be no such coupling �J=0� in the cases where the
electrons are in different valleys, i.e., �KK�� and �K�K�. The
reason for this is that the exchange coupling relies on the
Pauli exclusion principle, which only matters in case that
both electrons can occupy the same orbital. Here, we assume
that the interdot tunneling conserves the valley isospin �how-
ever, we note that a similar conclusion would be obtained in
the nonconserving case�. Suppose we apply the exchange
coupling such that it generates a SWAP operation �denoted
by USWAP� that exchanges the states of two qubits
��	1� , �	2�� ,USWAP�	1	2�= �	2	1�.40 This SWAP operation
will be conditional on the valley state. Assuming an initial
spin state ���= �+−�, where �� �= ��↑ �� �↓ �� /�2, we find,
after the SWAP, the state ��= ��KK��KK�+ �K�K���K�K��� /2
� �−+�+ ��KK���KK��+ �K�K��K�K�� /2 � �+−�. If the valley
degree is traced out, we find that ��= ��−+��−+�
+ �+−��+−�� /2. With this, the phase coherence of both spins
decays ��x

i �=0, i=1,2, due to the coupling to the incoherent
valley degree of freedom. Even if the valley isospin is co-
herent, a valley degeneracy will still lead to spin-isospin en-
tanglement, which for some purposes may be interesting, but
which essentially reduces the spin coherence to some charge
�valley� coherence time which can be expected to be shorter.
If the valley degeneracy can be lifted, as proposed here, one
can avoid this entanglement and possible spin decoherence
processes that arise from it. We note that orbital degeneracies
in the same valley lead to similar problems for the exchange
coupling of neighboring spins. We therefore should operate
at moderate magnetic fields such that the LL regime is not
reached.

V. CONCLUSIONS

We have studied the bound states of QDs in gapped
single-layer and bilayer graphene in the presence of a homo-
geneous magnetic field. Due to the absence of sharp
graphene edges, the valleys are well defined in these QDs.
We have shown that these realistic structures would allow us
to control the valley degeneracy by the magnetic field. This
has important consequences for spin or valley-quantum com-
puting, where the breaking of orbital �or valley� degeneracy
is absolutely crucial. Besides similarities between the two
systems, we also found crucial differences that can be traced
back to an anomalous LL in the gapped bilayer that crosses
the gap and which can provide an escape channel for QD
bound states into the bulk at large magnetic fields if they
cross this LL. In addition, the level spacing size close to the
band edge crucially depends on the strength of the applied
voltage in the bilayer QD, which is due to a “sombrero” form
of the bulk band structure. These features have important
implications for finding the ideal parameter range for useful
QDs. We also discussed possible applications of such QDs
for the emerging fields of valleytronics and spin qubits in
graphene.
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