
Spins and Phonons in Graphene
Nanostructures

Dissertation zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

12. Dezember 2014

Prof. Dr. Guido Burkard

Prof. Dr. Wolfgang Belzig

Mathematisch-Naturwissenschaftliche Sektion
Fachbereich Physik

Tag der mündlichen Prüfung:

Erster Referent:

Zweiter Referent:

vorgelegt von Matthias Droth
an der Universität Konstanz









Acknowledgements

It is my great pleasure to thank Prof. Guido Burkard for supervision of my work and
invaluable years in his research group at the University of Konstanz. I am grateful for the
opportunity to work in an exciting and highly topical field of physics and to present our
results at numerous international conferences. I thank him most sincerely for innumerable
and invaluable discussions about physics and other topics. His instruction and guidance
have taught me a lot.

I have also had great pleasure in the ongoing collaboration with Prof. Vitor Pereira and
highly appreciate his effort explaining physics to me. The visit to the group of Prof. Lieven
Vandersypen has been very instructive and I prize his enthusiasm in introducing me to
the experimental side of spintronics. Both the Quantum Transport group at the Delft
University of Technology and the theory group of the Graphene Research Centre at the
National University of Singapore have been very welcoming and I owe them gratitude for
their help and hospitality.

A lot of people have contributed to my studies. In particular, I also acknowledge discus-
sions with Prof. Wolfgang Belzig, Prof. András Pályi, Prof. Jenni Adams, Prof. Lain-Jong
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Abstract

Quantum information science relies on quantum systems with sufficiently long coherence
times. A spintronics implementation in graphene would benefit from the low density of
nuclear spins in carbon and small spin-orbit interactions. The coupling of the spin to
lattice dynamics puts an upper bound on spin coherence times. In addition, phonons in
graphene are interesting due to the monatomic thickness of the material, accompanied
by the lowest surface mass density of all solid materials. The prospects for quantum
information science, nanoelectromechanical systems, and for nanotechnology in general
inspire us to study the theory of spins and phonons in graphene nanostructures.

We give an introduction to graphene and its properties and also comment on the develop-
ment of research related to graphene and other two-dimensional materials like hexagonal
boron nitride (hBN). We review the basic electronic properties of monolayer graphene and
hBN in detail. Klein’s paradox is most important for the confinement of charge carriers
in graphene. Bilayer systems, in particular a graphene/hBN heterostructure, are also dis-
cussed. We use the continuum model to derive electron-phonon couplings, spin-phonon
coupling, the change of the Fermi velocity under external loading, and the deformation of
the Brillouin zone under uniform strain. Parts of our studies rely on the modern theory of
polarization or on Peierls’ phase. To this end, we also demonstrate the necessary concepts
of the geometric phase.

We use the continuum model to derive the acoustic phonons in graphene nanoribbons
for fixed as well as for free lateral boundaries. In-plane and out-of-plane deformations
are treated separately. Fixed boundaries lead to gapped phonon dispersions and free
boundaries to gapless ones. As expected, our results are in accordance with previous
results for bulk graphene if the phonon wavenumber is much shorter than the ribbon
width.

Building on these results, we calculate the electron spin relaxation in armchair graphene
nanoribbon quantum dots. The combination of spin-orbit interaction and electron-phonon
coupling to in-plane phonons yields an effective spin-phonon coupling. Out-of-plane
phonons are also considered but give no lowest order contribution to the spin relaxation
rate T−1

1 . We find Van Vleck cancellation and interference effects of the deformation
potential and the bond-length change. As a result, spin relaxation times can exceed the
range of seconds, which would be most suitable for graphene-based quantum computing.
For magnetic fields below B=0.5 T, free mechanic boundaries lead to a relaxation rate
that scales as T−1

1 ∝B5. For fixed boundaries, the gapped phonon spectrum bears the
potential to suppress spin relaxation in lowest order.

The bond-length change manifests itself in the low-energy description of hBN, as for
graphene, via a strain-induced pseudomagnetic gauge field. We evolve the sublattice po-
tential adiabatically from its value for graphene to that of boron nitride and use the
modern theory of polarization to calculate the piezoelectric effect of hBN. We find that
all symmetry constraints are met and we provide an estimate of 3 eV for the so far un-
known coupling strength of the strain-induced gauge field in hBN. The resulting values
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of 7.5×10−11 As/m (3×10−13 m/V) for the strength of the converse (direct) piezoelectric
effect are a factor of 2 smaller than those obtained from first-principle calculations for a
relaxed ion situation.

Graphene nanoflakes with vacancies can exhibit interesting magnetic behavior. We de-
scribe such a system with two vacancies with a full tight-binding model that respects
an external magnetic field via Peierls’ phase. This leads to a magnetic field dependence
of the exchange coupling between the localized vacancy states. The magnetic ordering
is antiferromagnetic (J≥0) and, depending on the size of the flake and the position of
the vacancies, can be tuned over several orders of magnitude or even switched on (J>0)
and off (J=0). This in situ tunability of the magnetic behavior is most interesting for
spintronics applications.
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Zusammenfassung

Die Quanteninformatik hängt von quantenmechanischen Systemen mit genügend lan-
gen Kohärenzzeiten ab. Eine spintronischen Realisierung in Graphen würde von der
geringen Kernspindichte in Kohlenstoff und einer schwachen Spin-Bahn-Kopplung prof-
itieren. Die Kopplung des Spins an die Gitterdynamik bestimmt eine Obergrenze für
die Spinkohärenzzeiten. Außerdem sind Gitterschwingungen in Graphen interessant, weil
dieses Material lediglich ein Atom dick ist und die geringste Flächenmassendichte aller
Festkörper besitzt. Die Perspektiven für das Quantenrechnen, für nanoelektromechani-
sche Systeme und für die Nanotechnologie allgemein inspirieren uns, die Theorie über
Spin und Phononen in Graphennanostrukturen zu studieren.

Wir geben eine Einleitung zu Graphen und seinen Eigenschaften und kommentieren auch
die Entwicklung von Forschung mit Bezug zu Graphen bzw. anderen zweidimensionalen
Materialien wie z.B. hexagonales Bornitrid (hBN). Die elektronischen Eigenschaften von
einlagigem Graphen bzw. Bornitrid werden im Detail dargelegt. Das Klein-Paradox
ist besonders relevant wenn es um den räumlichen Einschluss von Ladungsträgern in
Graphen geht. Doppellagige Systeme, insbesondere eine Graphen/hBN Heterostruk-
tur werden ebenfalls diskutiert. Wir benutzen das Kontinuumsmodell um Elektron-
Phonon-Kopplungen, Spin-Phonon-Kopplung, die Änderung der Fermigeschwindigkeit bei
äußerer Belastung und die Deformation der Brillouin Zone unter gleichförmiger Verfor-
mung herzuleiten. In Teilen unserer Studien machen wir uns die moderne Theorie der
Polarisation oder die Peierls-Phase zunutze. Zu diesem Zweck demonstrieren wir die
notwendigen Konzepte der geometrischen Phase.

Wir benutzen das Kontinuumsmodell um die akustischen Phononen in Graphennanobän-
dern sowohl für fixierte als auch für freie laterale Ränder herzuleiten. Deformationen in-
nerhalb und außerhalb der Ebene werden separat voneinander behandelt. Fixierte Ränder
führen zu Phonondispersionen mit Lücke und freie Ränder führen zu Dispersionen ohne
Lücke. Wenn die Phononwellenlänge sehr viel kürzer als die Breite des Nanobandes ist,
stimmen unsere Resultate — wie erwartet — mit bisherigen Resultaten für ausgedehntes
Graphen überein.

Aufbauend auf diesen Resultaten berechnen wir die Spinrelaxation von Elektronen in
Quantenpunkten auf Graphennanobändern mit gestaffelten1 Rändern. Die Kombina-
tion von Spin-Bahn-Wechselwirkung und Elektron-Phonon-Kopplung zu Phononen in
der Graphenebene führt zu einer effektiven Spin-Phonon-Kopplung. Gitterschwingun-
gen aus der Ebene heraus werden ebenfalls berücksichtigt, liefern in niedrigster Ordnung
jedoch keinen Beitrag zur Spinrelaxationsrate T−1

1 . Wir finden Van Vleck-Auslöschung
sowie Interferenz zwischen dem Deformationspotential und dem Mechanismus aufgrund
der anisotropen Änderung der Bindungslänge. Daraus ergibt sich, dass die Spinrelaxation-
szeiten den Sekundenbereich übertreffen können, was sehr passend für graphenbasiertes
Quantenrechnen wäre. Für Magnetfelder unterhalb B=0.5 T führen freie mechanische
Ränder zu einer Relaxationsrate, die wie T−1

1 ∝B5 skaliert. Bei fixierten Rändern birgt
die Energielücke in der Phonondispersion die Möglichkeit, Spinrelaxation in niedrigster

1Diese Übersetzung von armchair (edges)“ ist [Balasubramanian(2011)] entnommen.
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Ordnung zu unterdrücken.

Die anisotrope Änderung der Bindungslänge manifestiert sich in der niederenergetischen
Modellierung von hBN, wie für Graphen, in einem von der Verspannung induzierten pseu-
domagnetischen Eichfeld. Wir ändern das Untergitterpotential adiabatisch vom Wert für
Graphen zu dem von Bornitrid und benutzen die moderne Theorie der Polarisation um den
Piezoeffekt in hBN zu errechnen. Wir finden Übereinstimmung mit allen Symmetriebedin-
gungen und geben einen Schätzwert von 3 eV für die bis dato unbekannte Kopplungsstärke
des von der Verspannung bewirkten Eichfeldes in hBN an. Die resultierenden Werte von
7.5×10−11 As/m (3.0×10−13 m/V) für die Stärke des umgekehrten (direkten) Piezoeffekt
sind um einen Faktor 2 kleiner als jene, die per Ab-initio-Rechnungen für eine Situation
mit relaxierten Ionen ermittelt wurden.

Graphennanoflocken mit Leerstellen können ein interessantes magnetisches Verhalten
zeigen. Wir beschreiben solch ein System mit zwei Fehlstellen per Linearkombination
atomarer Orbitale in zweiter Quantisierung, wobei ein äußeres Magnetfeld über die Peierls-
Phase berücksichtigt wird. Dies führt zu einer Magnetfeldabhängigkeit des Austauschwech-
selwirkung zwischen den an den Lehrstellen lokalisierten Zuständen. Die magnetische
Ordnung ist antiferromagnetisch (J≥0) und kann, je nach Größe der Flocke und Posi-
tion der Leerstellen, über mehrere Größenordnungen eingestellt oder sogar ein- (J>0)
und ausgeschaltet (J=0) werden. Die Einstellbarkeit des magnetischen Verhaltens — im
laufenden Experiment — ist höchst interessant für Anwendungen der Spintronik.
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1. Introduction

Quantum mechanics describes fundamental particles and systems at the nanoscale, that
is, systems where at least one spatial dimension is confined to a length of 1 − 100 nm.
Larger systems may also be described by quantum mechanics but act like a bath into
which the quantum features are dissipated. Unless the system is well isolated from its
surrounding environment, quantum effects can be neglected and classical physics ap-
plies1 [Zurek(2003)]. Quantum mechanics plays a role for many nanoscale technologies,
summarized as nanotechnology [Feynman(1960)]. Areas for nanotechnology applications
lie in medicine, electronics, bio-engineering, material science, energy storage, and many
more. The invention of the scanning tunneling microscope in 1981 was a milestone for
nanotechnology as it allowed for precise imaging of individual atoms and molecules as
well as for their manipulation [Binnig1982Pat, Bai]. Around that time, the commercial
semiconductor industry has reached the sub-micron standard [Soclof1983Pat, Veendrick]
and nanotechnology has drawn great benefit from the industry’s maturity and ongoing
effort to downsize circuitry. According to Moore’s law, the number of transistors on
integrated circuits roughly doubles within every two years [Moore(1965)]. Due to addi-
tional improvements in transistor quality, computing performance doubles about every
eighteen months. This rule of thumb has held for five decades — also because com-
peting semiconductor manufacturers have soon started viewing it as an industry goal
— and remains valid today. Moore’s law is not a law by nature and will come to an
end eventually, maybe in slightly more than a decade when the 1 nm benchmark should
be reached and interfering quantum effects deem further miniaturization uneconomical
[Lloyd(2000), Kish(2002), Thompson(2006)]. Yet computing performance can still in-
crease dramatically2, possibly with the advent of quantum computing.

Quantum computing relies on the quantum bit or qubit as the fundamental carrier of in-
formation rather than on the classical bit (binary digit) employed by classical computing
[Nielsen&Chuang]. Qubits are a generalization of classical bits in that they contain clas-
sical bits as special cases. The concept of quantum computing was first proposed in 1980
and received a major boost when Peter Shor found an algorithm for efficient factoriza-
tion of integers using a quantum computer [Manin(1980), Feynman(1982), Deutsch(1985),
Shor(1994), Shor (1997)]. While quantum effects become a hindrance for classical com-
puters with nanometer-sized transistors, quantum computing aims at exploiting exactly
those effects. A quantum computer should conform a list of requirements known as the
five DiVincenzo criteria [DiVincenzo(1998), DiVincenzo(1999)]. In particular, the ma-

1Bose-Einstein condensates are an example for macroscopic systems that are sufficiently isolated from
their outside environment to exhibit quantum phenomena at the length scale of millimeters, visible
with the naked eye [Anderson(1995)]. Here, we are not concerned with such exotic systems but focus
on solid state physics at the nanoscale.

2Note that originally, Moore’s law refers to the density of transistors and not to performance.
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1. Introduction

chine should

1. have a sufficient number of qubits,
2. allow for initialization of the memory before each computation,
3. have a sufficiently low error rate,
4. feature a universal set of logic gates for computing, and
5. provide reliable output of the final result.

Despite their intuitive nature, meeting these criteria poses great challenges. For example,
the fourth criterion demands not only the use of but control over the quantum state
which is most easily perturbed by decoherence, i.e., uncontrolled influences from the
environment. The third criterion demands that coherence be maintained for a sufficiently
long time, about 104 times the clock cycle3.

One proposed implementation of quantum computing is the Loss-DiVincenzo quantum
computer that uses electron spin states, confined in single electron quantum dots, as
qubits. One- and two-qubit gates can be implemented by adjusting tunneling barriers
and/or by external fields, thus allowing for universal quantum computing [Loss(1998),
Hanson(2007)]. While classical computing encodes information in the charge this pro-
posal of a quantum computing relies on the spin but keeps the electron as the particle
that carries that degree of freedom. Such a spintronics ansatz benefits from the ex-
pertise in controlling electrons in semiconductor heterostructures [Hanson(2007)]. As
stated above, reliable quantum computation requires qubits with coherence times that
exceed the clock time3 by about 104 [DiVincenzo(1999)]. For spin qubits, the most
relevant sources of decoherence are (i) interactions with nuclear spins, (ii) interaction
with lattice vibrations, mediated by spin-orbit coupling, and (iii) charge fluctuations
[Petta(2005), Khaetskii(2001), Zhang(2009)]. Effects (i) and (ii) are typically strong in
III-V semiconductors but weak in carbon-based materials like diamond, carbon nanotubes,
and graphene [Hanson(2007), Trauzettel(2007)].

Among those, graphene has a particularly low spin-orbit interaction [Kuemmeth(2008),
Kane(2005), Min(2006), Gmitra(2009)]. Its unmatched mechanical strength and the low-
est surface mass density of all solid state materials are not only relevant for phonon-
induced decoherence but also make graphene most suitable for nanoelectromechanical
systems with unprecedented sensitivity [Steele(2009), Duerloo(2012), Qi(2012)]. These
prospects motivate our studies of spins and phonons in graphene nanostructures. A de-
tailed discussion of graphene and its prospects follows next.

1.1. Graphene and its potential in nanotechnology

Graphene is a monatomically thin layer of carbon atoms (Fig. 1.1 (a)) and the parent
material for carbon allotropes of all spatial dimensionalities. Mono-, bi-, and few-layer
graphene are (quasi)4 two-dimensional [Geim(2007), CastroNeto(2009)]. Many layers of

3For specific codes, coherence times of 102 clock cycles may suffice [Barends(2014)].
4We consider monolayer graphene as truly two-dimensional but bi- and multilayers not, see Appendix B.
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1.1. Graphene and its potential in nanotechnology

Figure 1.1.: (a) An artist’s interpretation of the graphene lattice as a ball-and-stick
model [CCBYSA3.0]. The atomic distance in graphene is 1.42×10−10 m
[CastroNeto(2009)]. (b) At the time of this writing, the exponential growth
of publications related to graphene continues. The data (orange bullets) are
based on custom range searches for graphene on a freely accessible web search
engine [Scholar]. The last data point represents the results in the year 2014
until October 15th. The red fit is given by p = 2324e0.3426(a−2004), where p
stands for the number of publications per year and a represents the end date
of a year.

graphene stacked atop each other form three-dimensional graphite [Wallace(1947)]. Car-
bon nanotubes correspond to rolled up graphene [Iijima(1991), Suzuura(2002)] and narrow
graphene nanoribbons can be produced by unzipping carbon nanotubes [Kosynkin(2009)].
Both these structures are quasi one-dimensional carbon allotropes. Forming a graphene
sheet to a sphere leads to quasi zero-dimensional fullereni [Kroto(1985)]. Graphene
nanoflakes, also known as nano-islands, are also quasi zero-dimensional. Although fullereni
do not only contain hexagonal rings, all carbon atoms remain sp2-hybridized, in similarity
to graphene. In fact, the ending -ene in graphene has its origins in organic chemistry,
where it is used to indicate sp2-hybridization (e.g. in butene etc.). Diamond, a three-
dimensional allotrope, consists of sp3-hybridized carbon atoms and is thus chemically very
different from graphene.

Three-dimensional graphite is a native element mineral that has been known and used
for centuries, e.g. in pencils. The word graphite, derived from the Ancient Greek γράφω
(pen, to write), literally means writing stone. Its layered crystal structure, which has
been anticipated since 1859, was confirmed around the beginning of the previous century
with the emergence of diffraction techniques [Brodie(1859), Hassel(1924), Bernal(1924)].
When writing with a pencil, pieces of graphite separate along these layers and stick to the
paper. Though invisible to the naked eye, multi- or even monolayer graphene are produced
in this everyday process [Geim(2008)]. For a better understanding of bulk graphite,
Wallace calculated the electronic structure of a single graphite layer, i.e., of graphene
[Wallace(1947)]. The paramount Dirac equation for massless electrons in graphene was
pointed out later on [DiVincenzo(1984), Semenoff(1984)]. According to the Mermin-
Wagner theorem, there can be no crystalline order in two dimensions [Mermin(1966),
Mermin(1968)], implying that graphene would crumple at finite temperatures. However,

3



1. Introduction

this crumpling can be avoided by fixing graphene to some stabilizing structure, e.g. a
substrate [Novoselov(2004), Meyer(2007)]. Atomistic Monte Carlo simulations for free-
floating graphene at room temperature show the formation of ripples with typical heights
of half an atomic distance. These ripples give the material some three-dimensional texture
and keep it from crumpling [Fasolino(2007)].

Multi- and monolayer graphene samples have been fabricated and studied long before 2004
[Ruess(1948), Boehm(1962), Oshima(1997)], yet it was not until then that Konstantin
Novoselov and Andre Geim isolated monolayer graphene via micromechanical exfoliation
— also publicized as Scotch tape technique, in reference to the manufacturer of the adhesive
tape used in the process — and transferred it onto a thin layer of SiO2 atop a silicon wafer.
The SiO2 couples only weakly to the graphene and preserves the Dirac-like, massless
behavior of its electrons. At the same time, the underlying silicon electrode can be
used to tune the chemical potential. This setup enabled the first observation of the
anomalous quantum Hall effect in graphene [Novoselov(2004)], followed by a boom in
graphene research with, as of this writing, an exponential growth of graphene-related
publications and patents, see Fig. 1.1 (b) and [Savage(2012)].

• In graphene, three out of the four valence electrons of carbon form a planar sp2

hybrid perpendicular to the remaining pz orbital. The trigonal sp2 hybrids are
responsible for the hexagonal lattice structure and the in-plane mechanic properties.
The resulting bonding and antibonding σ bands are split far apart and can usually be
neglected when studying the electronic properties of graphene. Due to the hexagonal
structure, the unit cell of graphene contains two carbon atoms, each of which can
be attributed to a sublattice, A and B, respectively. The pz orbitals form bonding
and antibonding π bands that are degenerate at the corners of the Brillouin zone —
usually labelled as K points or Dirac points — and determine the electronic behavior
of graphene [CastroNeto(2009)]. In bi- or multilayer graphene and in graphite, the
pz electrons form interlayer van der Waals bonds and are thus responsible for the
stability of said structures. In monolayer graphene, they also contribute to the
bending rigidity of out-of-plane deformations. Due to the lack of a direct restoring
force, out-of-plane deformations are still very soft. This is in stark contrast to in-
plane deformations where graphene has a tensile strength of 130 GPa, higher than
any other material [Lee(2008)].

• The natural abundance of carbon isotopes is 99% for 12C and 1% for 13C. The
radioactive isotope 14C, important for radiocarbon dating of biological samples, has
an abundance of 10−12 and needs no further consideration for typical nanoscale
applications. The resulting atomic weight of, on average, 12.01 u and the atomic
distance of 1.42 Å in the monatomically thin, hexagonal lattice lead to a surface
mass density of ρ = 7.61 × 10−7 kg

m2 , the lowest value of all solid state materials.

With ρ = 7.65 × 10−7 kg
m2 , the surface mass density of two-dimensional hexagonal

boron nitride (hBN) — a non-dimeric insulator with a hexagonal lattice similar to
graphene — is only slightly higher [CastroNeto(2009), Paszkowicz(2002)].

• Due to the linear electronic dispersion, described by a Dirac-like Hamiltonian, the
electrons in graphene behave quasi-relativistically. Instead of the speed of light
c, the electrons in the π bands move with the Fermi velocity vF ≈ c

300
. The
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strongly reduced velocity and the absence of a bandgap allow for realization of
Klein’s paradox, the tunneling of electrons through barriers with transmission prob-
abilities close or equal to unity [Klein(1929), Katsnelson(2006)]. Though fascinat-
ing, this feature is a hindrance for typical semiconductor applications that rely
on electrostatic confinement of charge carriers. There are (at least) three setups
that lead to a bandgap [Recher(2010)]. (i) Armchair graphene nanoribbons can
be both metallic (i.e. gapless) or semiconducting (i.e. gapped), depending on
the number of atoms across the lateral ribbon direction [Fujita(1996), Brey(2006),
Trauzettel(2007), Ruffieux(2012)]. (ii) Flat monolayer graphene with different po-
tentials for the sublattices A and B. This can be realized by placing graphene on
top of hBN such that the two graphene sublattices feel different potentials from the
atoms in the hBN layer [S lawińska(2010), Struck(2010)]. Due to the lattice mis-
match between graphene and hBN and also due to misalignment of the respective
crystal axes, the sublattice potential might average out on a large scale. Yet experi-
ments show that this is not necessarily the case [Hunt(2013)]. (iii) Bi- or multilayer
graphene with a perpendicular electric field that may be generated with a back gate
[Min(2007), Goossens(2012)].

• It is also found that graphene has an extremely high electron mobility. At room tem-
perature and a technologically relevant carrier density of 1012 cm−2, the mean free
path for intrinsic electron-acoustic phonon scattering is greater than 2µm. This cor-
responds to purely ballistic transport and an electron mobility of 2×105 cm2V−1s−1,
exceeding that of InSb (highest known inorganic semiconductor mobility) and that
of carbon nanotubes (previously highest known organic semiconductor mobility).
These intrinsic values may be reduced by extrinsic effects. For example, SiO2 sub-
strate phonons would limit the room temperature mobility to 4 × 104 cm2V−1s−1

[Chen(2008)]. The electron mobility is limiting factor for high transistor frequen-
cies. Graphene transistors on a SiC substrate have been operated at 100 GHz, twice
as fast as equivalent silicon-based transistors [Lin(2010)]. The according mobilities
lie between 900 and 1520 cm2V−1s−1.

• Due to the linear, gapless dispersion, the light absorption rate of graphene is inde-
pendent of the photon frequency and given by πα = 2.3% per layer, where α = 1/137
is the fine structure constant. The formulation in terms of α allows to measure the
fine structure constant via light absorption [Nair(2008)].

• The heat conductivity in graphene is dominated by acoustic phonons and exceeds the
values of copper and carbon nanotubes, both superb heat conductors. This makes
graphene most suitable for thermal management and power-consuming electronics
applications [Balandin(2008)].

• The low nuclear charge of carbon leads to a small spin-orbit coupling at the atomic
level. Accordingly, both the intrinsic and the extrinsic spin-orbit couplings for
band electrons in graphene are weak when compared to typical semiconductors
[Kane(2005), Min(2006), Gmitra(2009)]. For carbon nanotubes, the orbital mo-
tion around the circumferential direction gives rise to a strong spin-orbit effect
[Kuemmeth(2008)]. This does not occur in graphene, yet the spin-orbit coupling can
be enhanced by out-of-plane deformations that lead to an overlap of π and σ band
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electrons [Konschuh(2010), Balakrishnan(2013), Gmitra(2013)]. A low spin-orbit
coupling is beneficial for electron spin coherence as it mediates an effective spin-
phonon coupling [Khaetskii(2001), Tombros(2007), Rudner(2010), Struck(2010)].
Another source of decoherence is the coupling to nuclear spins. Yet the only car-
bon isotope carrying a nuclear spin is 13C, with an abundance of 1%. Moreover,
the different magnetic momenta of electrons and nuclei suppress the coupling at
magnetic fields above ≈10 mT [Trauzettel(2007)]. Weak sources of decoherence
should make graphene a prime material for spintronics. Some experiments show
that spin lifetimes in graphene are still shorter than expected [Tombros(2007),
Balakrishnan(2013)] and there is an ongoing debate on what effects might be the
cause and how to avoid them [Tombros(2008), Pesin(2012), Gmitra(2013)].

• In addition to the real electron spin that may be used for spintronics, the electron
system has two more binary degrees of freedom. Charge carriers may occupy sub-
lattices A and/or B. This sublattice spin is usually referred to as pseudospin. The
hexagonal structure of the honeycomb lattice is reflected in the reciprocal lattice,
which has also a hexagonal configuration (Fig. 2.1). The Brillouin zone contains
exactly two high symmetry points, K and K ′, at which the π bands of graphene
are degenerate. Consequently, the K- and K ′-points are valleys in the conduc-
tion band dispersion. The valley spin or isospin describes, which valley a certain
state — conduction or valence — occupies and bears the promise of valleytronics
[Rycerz(2007), CastroNeto(2009), Rohling(2012)].

• Magnetic materials are essential for modern technology, yet ideal graphene is non-
magnetic. However, magnetism in graphene can still be realized in several scenarios
[Yazyev(2010)]. (i) According to Lieb’s theorem, the ground state of graphene
structures features a finite magnetization if the number of atoms in sublattice A is
different from the number of atoms in sublattice B [Lieb(1989)]. This is relevant for
quasi zero-dimensional systems like graphene nanoflakes where a small sublattice im-
balance does not average out [Ezawa(2007), Grujić(2013), Leicht(2014)]. (ii) Chiral
graphene nanoribbons feature magnetic edge state, as has been shown theoretically
and experimentally [Yazyev(2008), Yazyev(2011), Tao(2011)]. (iii) Bulk graphene
can become magnetic due to lattice vacancies or due to functionalization, e.g., via
magnetic adatoms or molecules [Yazyev(2007), Palacios(2008), Hong(2013)].

• External magnetic fields induce an anomalous half-integer quantum Hall effect in
graphene [Novoselov(2005), Zhang(2005)]. But also strain can give rise to Landau
level quantization. In the low-energy description of Dirac electrons, the effect of
anisotropic strain on the electron dispersion can be formulated in terms of a valley-
dependent pseudomagnetic gauge field that can far exceed feasible external magnetic
fields [Suzuura(2002), Guinea(2009), Levy(2010)].

Thanks to its particular properties, graphene has many potential applications. Elec-
tronic devices benefit from the high charge carrier mobility and unrivaled heat conduction
[Lin(2010), Balandin(2008)]. Possibly, graphene will supplant silicon in transistor technol-
ogy [Thompson(2006), Lin(2011), Savage(2012)]. For spintronics applications, graphene
bears the promise of long coherence times due to the rarity of nuclear spins in carbon and
a low spin-orbit interaction [Trauzettel(2007), Yazyev(2008), Recher(2010), Tao(2011),
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Goossens(2012)]. Its transparency and flexibility make it suitable for next-generation dis-
plays and devices that can be folded like a sheet of paper [Nair(2008), Bae(2010)]. The
constant light absorption rate over a wide spectral range make it interesting for solar
cells [Wang(2008), Bol2012Pat]. Other energy-related applications include supercapaci-
tors, that benefit from its conductivity and unmatched surface to volume ratio, as well
as batteries, where it is a promising electrode material [ElKady(2012), Hu(2013)]. The
mechanical properties and the low surface mass density make graphene most suitable for
nanoelectromechanical devices that can be used as mass- or pressure sensors with unprece-
dented susceptibility [Steele(2009), Duerloo(2012), Qi(2012)]. Biomedical applications like
drug delivery benefit form the biocompatibility of carbon and graphene nanopores allow
for rapid DNA sequencing [Sun(2008), Min(2011)]. The fact that not even helium can pass
through graphene makes it suitable for functional coatings and barriers [Bunch(2008)].
Other materials applications include aerogels and advanced composites that make use of
its mechanic strength and low weight [Worsley(2010), Kim(2012)], lubricants, or func-
tional fluids like liquid ink [Novoselov(2012), Savage(2012)].

In the wake of graphene, other two-dimensional graphene like flat hBN and transition
metal dichalcogenides have gained attention by the scientific community [Novoselov(2005),
Dean(2010), Wang(2012)]. All these materials feature different properties. By stacking
different two-dimensional materials on top of each other — held together by van der
Waals forces — it is envisioned to tailor physical properties in such van der Waals het-
erostructures [Novoselov(2012), Geim(2013)]. The concept is similar but not limited to
the bandgap engineering in semiconductor alloys by controlling their composition and
might open up a plethora of new possibilities in nanotechnology.

Carbon is environmentally friendly, ubiquitous, and cheap — key assets for commercial-
ization. In 2013, the European Commission appointed the Graphene Flagship with a
budget of one billion EUR over the next ten years to support the transition from aca-
demic research to industry applications [Saini(2014)]. But not only Europe, also the
USA, China, South Korea, and other countries as well as individual companies invest
heavily in graphene and erect multimillion dollar facilities dedicated to two-dimensional
materials. In fact, Europe has recently fallen behind China and the USA in terms of pub-
lications and patents [Savage(2012), Shapira]. South Korea’s Samsung, a key player in
graphene, spends more than twelve billion USD a year on research and development5 and
contributed to major breakthroughs towards mass production of high-quality graphene at
reduced cost [Kim(2009), Bae(2010), Lee(2014)]. In spite of the intense research interest,
commercial graphene electronics is still waiting in the wings and it is not clear if it will
fly above silicon anytime soon. The silicon industry has taken more than half a century
to reach its current status. For graphene technology, the journey has only just begun
[Savage(2012), Shapira].

5This number relates to general, not to graphene-specific research and development [Samsung2014SR].
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1. Introduction

1.2. Outline

After motivating our studies and an introductory part to graphene, we continue with an
overview of established basics and techniques that we rely on throughout this work. In
Chapter 2, we use a tight-binding description to review the fundamental electronic prop-
erties of graphene and hBN as well as their bilayers and a graphene/hBN heterostructure.
The effect of strain on the electron structure is the topic of Chapter 3. In particular, we
discuss electron-phonon couplings and the deformation of the Brillouin zone in the case
of homogeneous strain. Chapter 4 contains an introductory part about geometric phases.
For later use, we discuss electric polarization in the context of adiabatic transport as well
as the connection between Peierls’ phase and a modified tight-binding model.

After reviewing the established groundwork, we turn to the main results of our studies.
In Chapter 5, we use the continuum model to derive the acoustic phonons in graphene
nanoribbons. Due to the monatomic thickness of graphene, this classical model requires
some modifications with implications for the inferred acoustic phonons. Building on these
results, we turn to the electron spin relaxation in armchair graphene nanoribbon quan-
tum dots in Chapter 6. We calculate the relaxation time T1 for different quantum dot
aspect ratios, confinement potentials, and boundary conditions of the acoustic phonons.
In Chapter 7, we use an analytic model to derive the piezoelectric effect in planar hBN.
Our model involves an adiabatic evolution of the sublattice potential as well as the strain-
induced pseudomagnetic vector potential, thus benefiting from the work in the previous
chapters. Graphene nanoflakes are an interesting system for spintronics. In Chapter 8, we
study the exchange coupling between two localized defect states in such systems. A mag-
netic field is included in the tight-binding description via Peierls’ phase. We summarize
our results and give an outlook on ongoing and possible future projects in Chapter 9.

In the appendices, we discuss some additional details. Appendix A contains basics on
qubit coherence, spin qubits in general, and electron spin qubits in carbon in particular.
A detailed derivation of the continuum model for two-dimensional materials like graphene
and hBN is presented in Appendix B. Symmetry constraints on the components of the
piezoelectric tensor of hBN are explained in Appendix C. Finally, we review relevant
groundwork for our ongoing work on the spin relaxation in bilayer graphene quantum
dots in Appendix D.
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2. Electronic structures of graphene
and hexagonal boron nitride

In this section, we derive the electronic structures of graphene and hexagonal boron nitride
(hBN). While pristine graphene has no bandgap and has gained a lot of attention due
to its fascinating electronic features [Wallace(1947), Semenoff(1984), DiVincenzo(1984),
Novoselov(2004), CastroNeto(2009), Katsnelson], hBN is an insulator that can help pre-
serve graphene’s praised electronic properties [Giovannetti(2007), S lawińska(2010)].

real lattice reciprocal lattice

B

A

d

a1a2

d2

d1

d3

b2 b1

ky

M

Γ
K' K kx

y

x

Figure 2.1.: Graphene and hBN are two-dimensional monolayers with a hexagonal lattice
due to sp2-hybridization of the constituent atoms. Together with the dashed
lines, the vectors a1 and a2 indicate a unit cell in the real lattice. The unit
cell contains two atoms that occupy the inequivalent sublattices A and B,
respectively. The atomic distance d equals 1.42 Å for graphene and 1.44 Å
for hBN. Both for graphene and for hBN, the low-energy physics is determined
by the dispersion around the high symmetry points K and K ′ at the corners
of the Brillouin zone. The red dashed line shows the path ΓKMΓ, along
which we plot the dispersion for a variety of situations.

The honeycomb lattice common to both monolayer graphene and hBN is shown in Fig. 2.1.
For graphene, both inequivalent sublattices are occupied by carbon atoms and for hBN,
one sublattice (we choose sublattice A throughout this work) is occupied by a boron atom
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2. Electronic structures of graphene and hexagonal boron nitride

and the other (sublattice B) is occupied by a nitrogen atom. The lattice constant is given
by a =

√
3d, where the atomic distance d equals 1.42 Å for graphene and 1.44 Å for hBN

[CastroNeto(2009), Paszkowicz(2002)]. The lattice vectors of the hexagonal lattice are
given by

a1 =
a

2
(1,
√

3) , a2 =
a

2
(−1,

√
3) . (2.1)

The reciprocal lattice vectors bi have to be orthonormal to the real space lattice vectors.
The choice

b1 =
2π√
3a

(
√

3, 1) , b2 =
2π√
3a

(−
√

3, 1) (2.2)

conforms the requirement ai ·bj = 2πδij. The three nearest neighbor atoms are translated
by

d1 =
d

2
(
√

3, 1) , d2 =
d

2
(−
√

3, 1) , d3 = (0,−d) (2.3)

w.r.t. an A atom and by −di w.r.t. a B atom. The six second-nearest neighbor atoms
are located at

a1 , a2 , a3 = a2 − a1 , a4 = −a1 , a5 = −a2 , a6 = −a3 (2.4)

w.r.t to an atom of any sublattice. In analogy to these linear combinations of a1 and
a2 that connect to the six neighboring unit cells in real space, the neighboring unit cells
in reciprocal space can be found by linear combination of b1 and b2. The perpendicular
bisectors to these connecting vectors define the hexagonal Brillouin zone. Due to the
trigonal symmetry of the real lattice, there are only two inequivalent corners labeled K
and K ′ (Fig. 2.1 (b)), for which we choose

K =
4π

3a
(1, 0) , K ′ =

4π

3a
(−1, 0) . (2.5)

2.1. Monolayer tight-binding model

A detailed derivation of the energy spectrum and the Dirac Hamiltonian of graphene has
already been shown in [Droth(2010)]. Therefore, we focus only on the main steps, here.
Boron, carbon, and nitrogen are consecutive elements in the second period with electron
configurations [He] 2s2 2p1 (B), [He] 2s2 2p2 (C), and [He] 2s2 2p3 (N). In graphene,
the four outer shell electrons of carbon form an sp2-hybrid that leads to the honeycomb
structure and the remaining pz-orbital is responsible for the electronics around the charge
neutrality point [CastroNeto(2009)]. The same happens in hBN, where the nitrogen
atom cedes its fifth outer shell electron to the boron atom, which makes hBN insulating
[S lawińska(2010)]. In bulk, the collective sp2-hybrids form the bonding and antibonding
σ-bands and the pz-orbitals form the bonding and antibonding π-bands. In a tight-binding
description with nearest and second-nearest neighbor hoppings, the π-bands of graphene
and hBN can be described by

H =
N∑
i=1

((
E(A)
pz a

†
iai + E(B)

pz b
†
ibi

)
+ t

3∑
j=1

(
a†ibij + b†iaij

)
+ t′

6∑
l=1

(
a†iail + b†ibil

))
, (2.6)
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where i runs over all N unit cells, the on-site energy for an electron on sublattice A (B)

is E
(A)
pz (E

(B)
pz ), and ai (bi) annihilates an electron in sublattice A (B) of the i-th unit cell.

Nearest neighbors to an A (B) atom in unit cell i are labeled bij (aij) and t is the hopping
between nearest neighbors. Likewise, we use ail, bil and t′ for second nearest neighbors.
It should be noted that the second-nearest neighbor hopping between boron atoms will
be different to the hopping between nitrogen atoms, t′BB 6= t′NN. However, using a single
value simplifies the calculation and still allows for a better fit to results from experiment or
density functional theory (DFT) calculations. Hermitian conjugate terms occur implicitly
by the summation over i. With the Fourier representations of the fields ai and bi,

ai =
1√
N

∑
k

e−ik·Ria(k) , bi =
1√
N

∑
k

e−ik·Rib(k) , (2.7)

where k is the momentum, Eq. (2.6) can be rewritten as

H =
∑
k

(
a†(k), b†(k)

)(E(A)
pz + t′g(k) tf(k)

tf ∗(k) E
(B)
pz + t′g(k)

)
︸ ︷︷ ︸

=H̃(k)

(
a(k)
b(k)

)
(2.8)

where f(k) =
∑3

j=1 e
−ik·dj and g(k) =

∑6
l=1 e

−ik·al . With E0 = (E
(A)
pz + E

(B)
pz )/2 and

∆ = (E
(A)
pz − E

(B)
pz )/2, we find H̃(k) = E0 +H(k), where

H(k) =

(
∆ + t′g(k) tf(k)
tf ∗(k) −∆ + t′g(k)

)
. (2.9)

For convenience, we neglect to write the creation and annihilation operators explicitly
from now on. Moreover, we disregard the energy shift E0 and find that the eigenvalues of
H(k) are given by

E±(k) = ±
√

∆2 + t2(3 + h(k)) + t′h(k) , (2.10)

with h(k) = 2 cos(
√

3dkx) + 4 cos(
√

3dkx/2) cos(3dky/2). The upper (lower) sign denotes
the conduction (valence) band. Fig. 2.2 shows the dispersion relation of (a) graphene and
(b) hBN with parameters specified in the caption.

The term t2(3 + h(k)) vanishes at the corners of the Brillouin zone (K and K ′). That
leads to a splitting of 2∆ between the valence and the conduction band. An expansion
around τK + q, where the valley index τ = +1 (-1) stands for the K (K ′) valley and
|q| � |K yields

h(τK + q) ≈ −3 +
9d2|q|2

4
− τ

9d3(q3
x − 3qxq

2
y)

8
− 27d4|q|4

64
. (2.11)

The third order term is proportional to τ(q3
x − 3qxq

2
y)/|q|3 = τ sin(3φ) = sin(3τφ) with

φ = arctan qy
qx

and reflects the trigonal lattice symmetry that gives rise to a trigonal

warping around the K-points [CastroNeto(2009)]. For graphene, the bandgap is zero
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(a) (b)

(c) (d)

Figure 2.2.: Dispersions E(k) for (a,b) graphene and (c,d) hBN. We plot Eq. (2.10) with
d = 1.42 Å, ∆ = 0, t1 = 2.7 eV and, t2 = 0.2t1 for graphene and with
d = 1.44 Å, ∆ = 3 eV, t1 = 2.3 eV and, t2 = 0.1t1 for hBN. The black
horizontal in (a) and (b) indicates the energy of the pz orbital of carbon,
which we set to zero. In (c) and (d), the energy is measured w.r.t. the mean
of the distinct pz orbitals of boron and nitride. In (a) and (c), the symmetry
of the reciprocal lattice shown in Fig. 2.1 is apparent. The path ΓKMΓ
through the Brillouin zone in (b) and (d) corresponds to the red, dashed line
in Fig. 2.1.

(∆ = 0) and up to second order in q, the energy bands are given by

E(τK + q) ≈ ±t
√

9d2|q|2
4

− 9|q|3
8

sin(3τφ)− 27d4|q|4
64︸ ︷︷ ︸

≈ 3d|q|
2

+ 1

2
3d|q|

2

(
− 9|q|3

8
sin(3τφ)− 27d4|q|4

64

)
+t′
(
−3 +

9d2|q|2

4

)

≈ −3t′ ± 3td

2
↑

=~vF

|q|+
(
∓3td2

8
sin(3τφ) +

9t′d2

4

)
|q|2 +O(|q|3) . (2.12)

The gapless, linear dispersion around the K-points explains the notion of Dirac points.
The Fermi velocity vF is the analog to the speed of light in the linear dispersion of photons.
However, vF = 3td

2~ ≈ 106 m
s

is about a factor 300 smaller than the speed of light. For hBN,
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the low-energy expansion around the K-points is

E±(τK + q) ≈
√

∆2 +
1

2
√

∆2
t2(3 + h(τK + q)) + t′h(τK + q)

≈ ∆− 3t′ +

(
9t2d2

8∆
+

9t′d2

4

)
|q|2 +O(|q|3) . (2.13)

The trigonal warping appears only in higher order. Despite the gapless, non-linear disper-
sion, the K-points of hBN are sometimes also referred to as Dirac points because of the
similarities with graphene. In contrast to the linear spectrum of graphene around τK,
the parabolic dispersion of hBN allows for the definition of an effective mass,

m∗ = ~2

(
∂E(τK + q)

∂|q|2

)−1

≈ ~2

(
9

2
d2

(
t2

∆
+ t′
))−1

. (2.14)

With the same parameters as in Fig. 2.2, we resolve m∗ = 376 keV
c2

= 0.74 me, where c is
the speed of light in vacuum and me = 511 keV

c2
is the bare electron mass.

2.1.1. Low-energy Hamiltonian

Many questions in solid state electronics can be answered by just looking at the top edge
of the valence band and the bottom edge of the conduction band for these are the states
that require the least energy to change occupation. Therefore, we shall delve a little
deeper into the low-energy description of the Hamiltonian Eq. (2.9). At the corners of
the Brillouin zone, the function f(k) vanishes,

f(τK) =
∑
j

e−iτK·dj = e

=−iτ2π/3︷ ︸︸ ︷
−iτ

4π

3
√

3d

√
3d

2︸ ︷︷ ︸
=− 1

2
−τ
√
3

2
i

+

(
−1

2
+ τ

√
3

2
i

)
+ 1 = 0 , (2.15)

and around the K-points, f(k) =
∑3

j=1 e
−ik·dj is given by

f(τK + q) ≈
∑
j

e−iτK·dj(1− idj · q) =

(
−1

2
− τ
√

3

2
i

)(
1− id

√
3qx + qy

2

)

+

(
−1

2
+ τ

√
3

2
i

)(
1− id−

√
3qx + qy

2

)
+ 1(1 + idqy)

= −τ 3

2
dqx + i

1

2
dqy + idqy = −3

2
d(τqx − iqy) . (2.16)

Disregarding the hopping between second-nearest neighbors, the low-energy approxima-
tion of Eq. (2.9) is

HD =

(
∆ ~vF (τqx − iqy)

~vF (τqx + iqy) −∆

)
= ~vF (τσxqx + σyqy) + ∆σz , (2.17)
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where we use the Pauli matrices (σx, σy, σz) in their standard representation to denote
matrices in the (A,B) sublattice basis. For ∆ = 0, i.e. graphene, Eq. (2.17) is well known
as the Dirac Hamiltonian. The eigenenergies E± of H can be calculated as follows∣∣∣∣ ∆− E± ~vF (τqx − iqy)

~vF (τqx + iqy) −∆− E±

∣∣∣∣ = E2
± −∆2 − (~vF )2(q2

x + q2
y) = 0 ,

⇒ E± = ±
√

(~vF )2(q2
x + q2

y) + ∆2︸ ︷︷ ︸
=λ

. (2.18)

Due to the alternative representation HD = (~vF τqx, ~vF qy,∆) · (σx, σy, σz) of the Hamil-
tonian, it is intuitive to represent the first vector in spherical coordinates. Then, the
eigensystem |ψτ±〉 takes the form(

∆∓ λ ~vF (τqx − iqy)
~vF (τqx + iqy) −∆∓ λ

)
·
(
ψτ1,±
ψτ2,±

)
= 0

{~vF τqx = λ sin θ cosφ , ~vF τqy = λ sin θ sinφ , ∆ = λ cos θ}

⇒
(

cos θ ∓ 1 τe−iτφ

sin θτeiτφ − cos θ ∓ 1

)
·
(
ψτ1,±
ψτ2,±

)
= 0 , (2.19)

where the upper (lower) sign stands for the conduction (valence) band. With the ansatz
ψτ1,± = cos θ ± 1, the first row becomes − sin2 θ + sin θτe−iτφψτ2,± = 0 and we resolve
ψτ2,± = sin θτeiτφ. Then the second row is sin θτeiτφ(cos θ ± 1 − cos θ ∓ 1) = 0. With
|ψτ1,±|2 = cos2 θ ± 2 cos θ + 1 and |ψτ2,±|2 = sin2 θ, we find |ψτ±|2 = 2(1 ± cos θ) and the
normalized eigenstates

|ψτ±〉 =

±√1±cos θ√
2

τ sin θeiτφ√
2(1±cos θ)

 ⇒ HD|ψτ±〉 = E±|ψτ±〉 , (2.20)

where the eigenenergies are given by Eq. (2.18).

Assuming periodic boundaries in both x- and y-direction, the density of states in reciprocal
space is Dq = 4

(2π)2/(LxLy)
= A

π2 , where Lx and Ly are the extensions of the sample in x-

and y-direction, respectively, and A = LxLy is the surface area of the sample. The factor
of 4 comes about from spin- and valley- degeneracy. The density of states in energy space,
D(E), is related to Dq via

D(E)|dE| = dN = Dqdq
2 =

A

π2
Sq(E)dq⊥

⇒ D(E) =
A

π2

Sq(E)

|dE/dq⊥|
, (2.21)

where dN is the change of the number of states, Sq(E) is the length of the energy contour
in one valley1 and the differential dq is the length of an outward-pointing, differential q-
vector that is oriented perpendicularly on the contour line with length Sq(E). The energy

1We consider only one valley, since the other valley is already included with the two-fold valley-
degeneracy. Special care has to be taken around the Γ-point, where there is only one contour. Only
half the contour length may be considered in this case.
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2.1. Monolayer tight-binding model

(c) (d)

(a) (b)

(f)(e)

Figure 2.3.: Density of states per surface area (DSA) for the valence band (a) and for the
conduction band (b) of graphene with first and second nearest neighbors in
Eq. (2.10). In (c) and (d), we show the fg results for hBN. The blue line
in (e) shows the DSA in the conduction band of graphene without second
nearest neighbor hopping, i.e., it corresponds to (b) with t′ = 0. Note that
|E−(k)| = E+(k) for t′ = 0. The red line shows an approximation as given by
Eq. (2.22). For hBN (f), this approximation is only useful in the immediate
vicinity of the K point.

shift dE associated with dq⊥ may well be negative, which is why its norm must be taken.
The energy contour may have a complicated form, e.g., due to trigonal warping, such
that it is not straightforward to determine Sq(E). This can be done numerically. In the
low-energy model with nearest neighbors only, the energy contours are circles around K
and K ′ since E±(q) = E±(|q|) in Eq. (2.18). From that equation, we find

(i) |q|(E) =
√
E2−∆2

~vF
, (|E| ≥ ∆) and
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2. Electronic structures of graphene and hexagonal boron nitride

(ii)
∣∣∣ dE

dq⊥

∣∣∣ = 1
2|E|(~vF )22|q| (i)

=
√
E2−∆2

|E| ~vF , (|E| ≥ ∆).

With Sq(E) = 2π|q|, the density of states per surface area, ρ(E) = D(E)
A

, is thus given by

ρ(E) = θ(|E| −∆)
A

Aπ2

2π|q(E)|
|dE/dq⊥|

= θ(|E| −∆)
2|E|

π(~vF )2
. (2.22)

Fig. 2.3 shows the density of states per surface area in graphene and hBN for the bands
given by Eq. (2.10) with neighbors up to second order, up to first order, and only in the
vicinity of K, for the bands given by Eq. (2.18).

In analogy to the real electron spin, the sublattice degree of freedom is interpreted as
pseudospin. The according helicity operator is defined as

h =
σ(∗) · q

2|q|
, (2.23)

with σ = (σx, σy) for the K-valley and σ∗ = (−σx, σy) for the K ′-valley. For graphene, h
commutes with HD as both operators have the same structure,

h = HD
1

~vF2|q|
(∆ = 0)

⇒ [h,HD] ∝ [HD,HD] = 0 . (2.24)

Since the proportionality constant is positive, 1
~vF 2|q| > 0, the eigenvalues of HD and h

to a common eigenstate must have equal sign. Conduction band states (E > 0) will
have positive helicity and valence band states (E < 0) will have negative helicity, that
is, electrons in graphene exhibit chirality. For ∆ 6= 0, HD and h do not commute since
[τσxqx + σyqy, σz] = τqx(−2iσy) + qy(2iσx) 6= 0, unless q = 0.

2.1.2. Klein paradox in graphene

For graphene (∆ = 0), the angle θ in Eq. (2.20) has the value π
2

and the eigenstates
simplify to

|ψτ±〉 =
1√
2

(
±1
τeiτφ

)
. (2.25)

In Fig. 2.4 (a), we sketch a situation where an incident electron or hole of energy E hits
a potential barrier of height V and length D at an angle α and is transmitted through
the barrier with probability T (α). In the different regions shown in the sketch, the wave
function is given by the following expressions

ψτI,±(r) =
1√
2

(
s

τeiτφ

)
ei(qxx+qyy) +

r√
2

(
s

τe−iτφ

)
ei(qxx−qyy) ,

ψτII,±(r) =
a√
2

(
s′

τeiτφ
′

)
ei(q

′
xx+q′yy) +

b√
2

(
s′

τe−iτφ
′

)
ei(q

′
xx−q′yy) ,

ψτIII,±(r) =
t√
2

(
s

τeiτφ

)
ei(qxx+qyy) , (2.26)
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2.1. Monolayer tight-binding model

E

V

E0

D

y

y

x
D

I II III

-

-

(b)(a)

Figure 2.4.: (a) Side view (upper sketch) and top view (lower sketch) of a potential barrier.
A particle hits the barrier at the angle α = φ− π

2
, where φ = arctan qy

qx
. The

transmitted part of the wave function propagates with the same angles. But
in the barrier region, the angles change to the primed ones. (b) According
to the Klein paradox, the transmission probability can be unexpectedly large
[Klein(1929), Katsnelson(2006), Beenakker(2008), Katsnelson]. We plot T (α)
as given by Eq. (2.30) with the parameters E0 = 75 meV, V = 200 meV, and
D = 200 nm.

where s = sgnE, s′ = sgn (E − V ), q′x = qx, and

q′y =

√(
E − V
~vF

)2

− q2
x . (2.27)

Since the Hamiltonian (2.17) is of first order, only the wave function must be continuous
but not necessarily its gradient. The two matching conditions

ψτI,±(x, 0) = ψτII,±(x, 0) ,

ψτII,±(x,D) = ψτIII,±(x,D) (2.28)

on the two-component wave functions fix the four parameters r, a, b, and t, which we
resolve with Mathematica. The complicated expression for T = tt∗ can be simplified to

T (φ) =
sin2 φ sin2 φ′

cos(Dq′y) sin2 φ sin2 φ′ + (1− ss′ cosφ cosφ′)2 sin(Dq′y)
. (2.29)

With cosφ = − sin
(
φ− π

2

)
and sinφ = cos

(
φ− π

2

)
, this expression can be written in

terms of the incident angle α = φ− π
2
,

T (α) =
cos2 α cos2 α′

cos2(Dq′y) cos2 α cos2 α′ + (1− ss′ sinα sinα′)2 sin2(Dq′y)
. (2.30)

17



2. Electronic structures of graphene and hexagonal boron nitride

Notably, T (α) = T (−α) has the same form for electrons and holes, and in both val-
leys. For Dq′y = nπ with an integer n, the barrier becomes completely transparent,
T (α) = 1, independent of α. This is the Klein paradox [Klein(1929), Katsnelson(2006),
Beenakker(2008), Katsnelson]. In Fig. 2.4 (b), we plot T (α) as given by Eq. (2.30). For
|V | � |E|, Eq. (2.27) implies that q′y � q′x and thus φ′ ≈ 0 and T (α) can be simplified to

T (α) ≈ cos2 α

cos2(Dq′y) cos2 α + sin2(Dq′y) + (cos2(Dq′y) sin2 α− cos2(Dq′y) sin2 α)︸ ︷︷ ︸
=0

=
cos2 α

cos2(Dq′y) (cos2 α + sin2 α)︸ ︷︷ ︸
=1

+ sin2(Dq′y)︸ ︷︷ ︸
=1

− cos2(Dq′y) sin2 α

=
cos2 α

1− cos2(Dq′y) sin2 α
. (2.31)

2.2. Bilayer systems

In this section, we discuss several bilayer system, where each layer is either a graphene or
an hBN sheet. Bilayer graphene is can be obtained via mechanical cleavage of graphite
and occurs naturally as a side product when monolayer graphene is produced with the
exfoliation technique. Bilayer graphene is an interesting material on its own because it
resembles graphene is many aspects, e.g. pseudo- and valleyspin, but also allows for easy
generation of a bandgap with an external electric field [McCann(2006), McCann(2006-2)].
As for graphene, mono- and bilayer hBN can be produced by mechanical cleavage of
three-dimensional hexagonal boron nitride. Recently, graphene/hBN bilayers have gained
a lot of interest because experiments indicate that hBN can protect graphene from con-
tamination without compromising its electronic properties [Dean(2010)].

Fig. 2.5 shows two hexagonal monolayers with sublattices A and B in the top layer and
sublattices A′ and B′ in the bottom layer. The atomic distances are identical in both
layers2. While the A atoms are directly on top of the B′ atoms, sublattice B is on top
of the hexagon centers of the lower sheet. In a minimal tight-binding model, we consider
only nearest neighbor hoppings, that is, two independent copies of the Hamiltonian (2.9)
without t′ but with an interlayer hopping t12 between sublattices A and B′,

Hbl(k) =


E

(A)
pz t1f(k) 0 t12

t1f
∗(k) E

(B)
pz 0 0

0 0 E
(A′)
pz t2f(k)

t12 0 t2f
∗(k) E

(B′)
pz

 . (2.32)

One parameter on the diagonal can be eliminated by an energy shift but here, we keep all
parameters for clarity. Depending on the actual system, substitutions can still be useful

2This is not exactly true for the graphene/hBN bilayer and will be discussed in Subsec. 2.2.2.
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2.2. Bilayer systems

A'

A,B'

B

A'B'

AB

d

h

top view side view

Figure 2.5.: Hexagonal bilayers are comprised of two vertically stacked hexagonal mono-
layers. In the most stable AB stacking configuration, an A atom of the top
layer is directly on top of a B atom of the lower layer (which we label B′),
while the B atom of the top layer is on top of the middle of a benzene ring
in the lower layer. Accordingly, the A atom of the lower layer (which we
label A′) is directly underneath the center of a hexagon in the top layer.
The side view shows the interlayer distance h and the intralayer atomic dis-
tance d approximately to scale. In bilayer graphene, h/d = 3.35 Å

1.42 Å
≈ 2.4,

and in bilayer hBN h/d = 3.57 Å
1.44 Å

≈ 2.5 [Rakhmanov(2012), Ribeiro(2011),

CastroNeto(2009), McCann(2006), Ohta(2006)].

later on. In this parametric form it is not possible to diagonalize Eq. (2.32), but at the
corners of the Brillouin zone, Eq. (2.15) holds and the eigenvalues are easily found to be

E1 = E(B)
pz , E2 = E(A′)

pz , E3,4 =
1

2

(
E(A)
pz + E(B′)

pz ±
√

(E
(A)
pz − E

(B′)
pz )2 + 4t212

)
.

(2.33)

2.2.1. Bilayer graphene and bilayer hBN

Bilayer graphene can occur in two different stackings, namely AB stacking and AA stack-
ing. The lattice of AB stacked bilayer graphene corresponds to Fig. 2.5 and has sublattice
A on sublattice B′. In principle, it is also possible that both atoms in the top layer are
directly on top of the two atoms in the bottom layer: A on A′ and B on B′. Yet this AA
stacking is unstable [Rakhmanov(2012)] and hence we will not further discuss it, here.

For unbiased AB stacked bilayer graphene, all pz orbitals have the same energy, which we
set to zero, and the intralayer hoppings are identical, t1 = t2. The resulting eigenenergies
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2. Electronic structures of graphene and hexagonal boron nitride

(a) (b)

(c) (d)

Figure 2.6.: (a) and (b) show the dispersion of bilayer graphene without an external elec-
tric field along the path ΓKMΓ in the Brillouin zone (a) and in the vicinity
of K (b). We plot Eq. (2.34) with d = 1.42 Å, t1 = 3.2 eV, and t12 = 0.4 eV
[Ohta(2006), S lawińska(2010)]. (c) and (d) correspond to (a) and (b), yet we
plot Eq. (2.35) for an electric field EF ≈ 6 V

nm
such that U = 1 eV.

are

E1−4(k) = ±

√
|f(k)|2t21 +

1

2

(
t212 ±

√
4|f(k)|2t21t212 + t412

)
, (2.34)

|f(k)|2 = 3 + 2 cos(
√

3dkx) + 2 cos

(
d

2
(
√

3kx − 3ky)

)
+ 2 cos

(
d

2
(
√

3kx + 3ky)

)
.

In Fig. 2.6 (a) and (b), we plot the dispersion along the ΓKMΓ path through the Bril-
louin zone with the parameters specified in the caption. The interlayer spacing of bi-
layer graphene, h = 3.35 Å, does not enter the model (2.32). The lattice constant is
the same as for monolayer graphene, a =

√
3d = 2.46 Å [Ohta(2006), McCann(2006),

CastroNeto(2009)].

If an external electric field is applied perpendicularly to the graphene bilayer, the electrons
in the top layer will be exposed to a different potential than the electrons in the bottom

layer, which we model with E
(A)
pz = E

(B)
pz = +U and E

(A′)
pz = E

(B′)
pz = −U . Otherwise, the
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2.2. Bilayer systems

(a) (b)

Figure 2.7.: Dispersion of bilayer hBN along the path ΓKMΓ through the Brillouin zone
(a) and in the vicinity of K (b). We plot Eq. (2.36) with d = 1.44 Å,
∆ = 2.1 eV, t1 = 2.4 eV, t12 = 0.6 eV [Ribeiro(2011), Rakhmanov(2012)].
Note that both the upper and the lower bands have a finite splitting at K,
as is easily seen from Eq. (2.33) with t12 6= 0.

system is identical to the unbiased case discussed before. The eigenenergies are now

E1−4(k) = ±

√
U2 + |f(k)|2t21 +

1

2

(
t212 ±

√
4|f(k)|2t21(t212 + 4U2) + t412

)
, (2.35)

and we plot them in Fig. 2.6 (c) and (d) for U = 1 eV, i.e., for an electric field of
EF ≈ 6 V

nm
.

In monolayer hBN, the two sublattices are occupied by two different atoms. This leads to
a rich structure for bilayer hBN [Ribeiro(2011)]. The AA stacking of bilayer graphene has
two analogies in bilayer hBN: boron on boron and nitrogen on nitrogen (AA) and boron
on nitrogen and vice versa (AA′). The AB stacking of bilayer graphene has even three
analogies: boron on boron (AB′), nitrogen on nitrogen (A′B), and boron on nitrogen
(AB). Ribeiro and Peres have found that the AB stacked bilayer hBN is the most stable
configuration and hence, we will only consider this stacking. The interlayer distance of
bilayer hBN is h = 3.57 Å and the lattice constant is a = 2.51 Å. [Ribeiro(2011)]. The
system is similar to unbiased bilayer graphene yet with different energies for boron and

nitrogen atoms, E
(A)
pz = E

(A′)
pz = +∆ and E

(B)
pz = E

(B′)
pz = −∆. The eigenenergies for

bilayer hBN without an external electric field are

E1−4(k) = ±

√
∆2 + |f(k)|2t21 +

1

2

(
t212 ±

√
4|f(k)|2t21t212 + t412

)
, (2.36)

and we plot them in Fig. 2.7. In addition, an external electric field as for biased graphene
can be imposed. The according eigenenergies are

E1−4(k) = ±

√
∆2 + U2 + |f(k)|2t21 +

1

2

(
t212 ±

√
4|f(k)|2t21(t212 + 4U2) + (t212 + 4U∆)2

)
.

(2.37)

21



2. Electronic structures of graphene and hexagonal boron nitride

(a) (b)

Figure 2.8.: Dispersion relation of a graphene/hBN bilayer along the ΓKMΓ path through
the Brillouin zone (a) and in the vicinity of K (b). We apply Eq. (2.32), i.e.,
we assume AB stacking. For this model, it has been shown that the interlayer
coupling to a boron atom is preferred over the coupling to nitrogen. We

use E
(A)
pz = −E(B)

pz = ∆, E
(A′)
pz = −1.40 eV, E

(B′)
pz = 3.34 eV, d = 1.42 Å,

t1 = 2.79 eV, t2 = 2.64 eV, and t12 = 0.43 eV [S lawińska(2010)]. The solid
line corresponds to ∆ = 0, and the dashed (dotted) line to (−)0.01 eV.

Note that Eqs. (2.34), (2.35) and (2.36) are special cases of Eq. (2.37). Unbiased bilayer
hBN is an insulator with a gap of more than 5 eV [Han(2008)] and an external electric
field which substantially changes this bandgap would also have a strong impact on other
bands not considered in this model. Therefore, we will not further discuss bilayer hBN
with U 6= 0.

2.2.2. Graphene/hBN bilayer

S lawińska et al. have modeled this system with Eq. (2.32). Assuming that (i) the pz
orbitals of the two carbon atoms have the same energy, (ii) that the atomic distances in the
two sheets are identical, and (iii) that the interlayer coupling occurs between a carbon and
a boron atom, they can fit the remaining parameters to DFT results [Giovannetti(2007),
S lawińska(2010)]. However, there is in fact a lattice mismatch of about 2% between the
two sheets. For perfect alignment of the two sheets, this leads to a Moiré potential with
a periodicity of 14 nm [Woods(2014)] and it has been shown both experimentally and
theoretically that the Moiré potential leads to a sublattice potential for the graphene
plane [Hunt(2013), Kindermann(2012)]. That is, in principle, one can respect the lattice
mismatch by using the model of S lawińska et al. with an additional sublattice potential
∆ for the graphene plane.

However, there is no consensus on the strength of the sublattice potential. Moreover, the
graphene/hBN bilayer cannot be obtained via mechanical cleavage since there is no parent
material but it must be constructed bottom-up. As a consequence, the two sheets are
usually not perfectly aligned but with a nonzero twist angle between their crystal axes.
This is different from bilayer graphene and bilayer hBN, which can both be obtained
top-down from their parent crystals. As a consequence, the Moiré periodicity as well as
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2.2. Bilayer systems

the sublattice splitting differ from sample to sample [Hunt(2013), Woods(2014)]. In the
model (2.32), sublattice A couples to a boron atom [Giovannetti(2007)] while sublattice
B does not. In a näıve picture, the nitrogen atom should couple equally to A after half
a Moiré period. Yet experiments and DFT calculations show that these influences do
not cancel out and ∆ remains finite [Woods(2014), Hunt(2013), Giovannetti(2007)]. As a
consequence, the sign of the sublattice potential ∆ does also matter.

In Fig. 2.8 we show the dispersion of a graphene/hBN bilayer with E
(A)
pz = −E(B)

pz = ∆,

E
(A′)
pz = −1.40 eV, and E

(B′)
pz = 3.34 eV for three cases, ∆ = 0 and ∆ = ±0.01 eV. Here,

E
(A′)
pz and E

(B′)
pz are the energies of the nitrogen and the boron sites, respectively, shifted

by the energy of the carbon pz orbital. In the cases of finite sublattice splitting, we use
∆ = ±0.01 eV, as found in a recent measurement with small twist angle [Hunt(2013)].
Even for ∆ = 0, it is not straightforward to diagonalize Eq. (2.32) because t1 6= t2, i.e.,
Fig. 2.8 shows numerical results. We find that the sublattice potential ∆ can increase
or decrease the gap present for ∆ = 0, depending on its sign. The interlayer distance is
h = 3.22 Å [Giovannetti(2007)].
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3. The effects of lattice deformations
on electrons in graphene and boron
nitride

In this chapter, we discuss the effects of strain on the electronic structure of graphene
and two-dimensional hexagonal boron nitride (hBN) in terms of the continuum model
(Appendix B). The underlying effect is that the hopping amplitude between two atoms
in Eq. (2.6) depends on their spatial separation and hence changes upon strain. Further-
more, homogeneous strain changes the shape of the unit cell (real space) and hence also
modifies the Brillouin zone (reciprocal space). For in-plane acoustic phonons, we con-
sider two different electron-phonon couplings, namely the deformation potential and the
bond-length change. For out-of-plane acoustic phonons, we discuss the deflection coupling
between phonons and spin, which is mediated by intrinsic spin-orbit coupling.

3.1. Effects on the low-energy Hamiltonian

We focus on low-energy electronic states that are described by Eq. (2.17). For these states,
we derive the effects of bond-length change between nearest neighbors, the change of the
Fermi velocity, and the deformation potential [Suzuura(2002), CastroNeto(2009)].

3.1.1. Bond-length change

We have obtained the Hamiltonian in Eq. (2.17) from Eq. (2.9) by exploiting Eq. (2.15).
However, in the presence of strain, the nearest neighbor hopping tij between atoms i and
j usually depends on the hopping direction and hence cannot be factored out of the sum∑

j tije
−iτK·dj , as we did for Eq. (2.15). The bond-length change between atoms i and j

is given by the projection

δu(ij) =
dj
d
· (u(Ri)− u(Ri + dj))︸ ︷︷ ︸

≈κ(dj ·∇)u(Ri)

≈ dκ d̂j ·
(

(d̂j ·∇)u(Ri)
)
, (3.1)

where d̂j is the unit vector pointing from atom i to atom j and the scalar quantity κ = µ√
2B

follows from microscopic details and depends on the bulk (B) and shear (µ) moduli
[Suzuura(2002), Harrison-2]. The hopping between the two atoms is tij = tij,0 + δtij,
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3. The effects of lattice deformations on electrons in graphene and boron nitride

where tij,0 corresponds to t in the unstrained case of Eq. (2.9) and

δtij(Ri) =
∂tij
∂d

δu(ij) ≈ d
∂tij
∂d︸ ︷︷ ︸

=:β

κ d̂j ·
(

(d̂j ·∇)u(Ri)
)

= βκ d̂j ·
(

(d̂j ·∇)u(Ri)
)
. (3.2)

The sum
∑

j tije
−iτK·dj can now be written as

∑
j(tij,0 +δtij)e

−iτK·dj , where the first term
vanishes because of Eq. (2.15) and the second term gives

A(Ri) = −βκ
∑
j

d̂j · (d̂j ·∇)u(Ri)e
−iτK·dj = −βκ

((√
3

1

) √
3∂x + ∂y

4

(
ux
uy

)
e−iτ

2π
3

+

(
−
√

3
1

)
−
√

3∂x + ∂y
4

(
ux
uy

)
e+iτ 2π

3 +

(
0
−1

)
(−∂y)

(
ux
uy

)
e0

)

= −βκ

(
3∂xux +

√
3∂yux +

√
3∂xuy + ∂yuy

4

−1− iτ
√

3

2

+
3∂xux −

√
3∂yux −

√
3∂xuy + ∂yuy

4

−1 + iτ
√

3

2
+ ∂yuy

)

= −βκ
(
uxx

(
−3

4

)
+ uxy

(
−iτ 3

2

)
+ uyy

3

4

)
= βκ

(
3

4
(uxx − uyy) + iτ

3

2
uxy

)
= Ax − iτAy , ⇒ Ax =

3

4
βκ(uxx − uyy) , Ay = −3

2
βκuxy . (3.3)

The continuity of the deformation field u(r) lies at the heart of the continuum model, so
we can extend A(Ri) continuously to A(r). Our result corresponds to the term tf(k) in
Eq. (2.9), i.e., hopping from sublattice B to sublattice A. For hopping from sublattice A
to sublattice B, we get A∗(r), as one would expect from correspondence with Eq. (2.9).
We thus find that the effect of bond-length change between nearest neighbors can be
written as

HBLC =

(
0 Ax − iτAy

Ax + iτAy 0

)
= σxAx + σyτAy = τσx(τAx) + σy(τAy) , (3.4)

where we have adopted the form of the low-energy Hamiltonian Eq. (2.17) in the last step.
After absorbing the prefactor 1

~vF
in A := (Ax, Ay) and with q̃ = q + τA, we can rewrite

Eq. (2.17) as

H̃D = HD +HBLC = ~vF (τσxq̃x + σy q̃y) + ∆σz , (3.5)

and interpret τA as a pseudomagnetic gauge field that does not break time reversal
symmetry (TRS) because it has different signs in K and K ′. The conservation of TRS is
necessary since (i) HBLC is caused entirely by strain, which conserves TRS and (ii) HD

conserves TRS. In graphene, the coupling constant of HBLC is typically assumed to be
g2 = 3

4
βκ ≈ 1.5 eV [Suzuura(2002), Struck(2010)]. For hBN, we use g2 = 3 eV, as will be

discussed in Chapter 7.
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3.1. Effects on the low-energy Hamiltonian

3.1.2. Change of Fermi velocity

In the above Subsection, we have found that strain can give rise to pseudomagnetic gauge
fields due to bond-length change between nearest neighbors. However, this picture seems
to be incomplete because isotropic strain uxx = uyy 6= 0 = uxy yields A = 0 in Eq. (3.3),
even though the bond lengths between nearest neighbors do change.

Isotropic strain implies that all bond lengths change identically, that is, δu(ij) does not
depend on d̂j in Eq. (3.1). Consequently, neither δtij nor tij = tij,0 + δtij depend on d̂j
and we can factor tij out of the sum tij

∑
j e
−iτK·dj . This situation is identical to the

unstrained case of Eq. (2.15) but with tij instead of tij,0. With a finite momentum q
w.r.t. τK, we obtain the low-energy Hamiltonian of Eq. (2.17), where the Fermi velocity
is determined by

δtij
(∗)
= βκ

(
0
−1

)
· (−∂yu) = βκuyy = βκ|u| ,

~ṽF =
3(tij,0 + δtij)d

2
= ~vF +

3βκ|u|d
2

. (3.6)

In the step (∗), we have evaluated Eq. (3.2) for d̂j = (0,−1). Due to the isotropic

strain, every choice of d̂j yields the same result. The change of the Fermi velocity is
usually neglected since (i) it is linear in strain and (ii) a finite momentum q is required
to observe the effect. Theory and experiment indicate that electron-electron interactions
also change the Fermi velocity. This effect might dominate over the one caused by strain
[Kotov(2012), Elias(2011)].

3.1.3. Deformation potential

The calculation of the bond-length change can also be applied to the hopping between
second-nearest neighbors, i.e., the terms t′g(k) in Eq. (2.9). With

δt′ij(Ri) =
∂t′ij
∂a

δu(ij) ≈ a
∂t′ij
∂a︸ ︷︷ ︸

=:β′

κ′ âj · ((âj ·∇)u(Ri)) = β′κ′ âj · ((âj ·∇)u(Ri)) , (3.7)

where κ′ is scalar quantity similar to κ, we find

φ(r) = −β′κ′
∑
j

âj · (âj ·∇)u(r)e−iτK·aj =
3β′κ′

2
(uxx + uyy) . (3.8)

Because of Eq. (2.4), the result depends neither on the valley (τ) nor on the sublattice.
The resulting Hamiltonian can be written as a scalar and is hence referred to as the
deformation potential,

HVEP = g1(uxx + uyy) , (3.9)

where a value of g1 ≈ 30 eV is usually assumed for the coupling constant in graphene
[Suzuura(2002), Mariani(2009), Struck(2010)]. We are not aware of published values for
g1 in hBN.
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3. The effects of lattice deformations on electrons in graphene and boron nitride

3.2. Distortion of the Brillouin zone

In the case of homogeneous strain u, the periodicity of the lattice is still preserved but the
shape of the unit cell depends on u. The same holds for the Brillouin zone [Pereira(2009)].
An arbitrary but homogeneous strain uij deforms a real space vector v to

v̄ =

(
1 + uxx uxy
uxy 1 + uyy

)
︸ ︷︷ ︸

=1+u

(
vx
vy

)
=

(
(1 + uxx)vx + uxyvy
uxyvx + (1 + uyy)vy

)
, (3.10)

and the length of the deformed vector is approximated by

|v̄|2 =
(
(1 + uxx)

2v2
x + 2(1 + uxx)uxyvxvy + u2

xyv
2
y

)
+
(
u2
xyv

2
x + 2uxy(1 + uyy)vxvy + (1 + uyy)

2v2
y

)
≈ (1 + 2uxx)v

2
x + 2uxyvxvy + 2uxyvxvy + (1 + 2uyy)v

2
y

= (1 + 2uxx)v
2
x + (1 + 2uyy)v

2
y + 4uxyvxvy ,

⇒ |v̄| ≈
√
v2
x + v2

y + 2(uxxv2
x + uyyv2

y + 2uxyvxvy)

≈ |v|+ 1

2|v|
2(uxxv

2
x + uyyv

2
y + 2uxyvxvy)

= |v|+
uxxv

2
x + 2uxyvxvy + uyyv

2
y

|v|
. (3.11)

Throughout our derivation, we neglect terms of order O(u2) and higher. With Eq. (3.10),
the lattice vectors given by Eq. (2.1) become

ā1 =
a

2

(
1 + uxx +

√
3uxy

uxy +
√

3 +
√

3uyy

)
, ā2 =

a

2

(
−1− uxx +

√
3uxy

−uxy +
√

3 +
√

3uyy

)
. (3.12)

The condition āi · b̄j = 2πδij determines the lattice vectors of the reciprocal lattice,

2πδij = 〈bi,aj〉 = 〈bi, u−1uaj〉 = 〈(u−1)†bi, āj〉 = 〈b̄i, āj〉 , (3.13)

i.e., we can identify b̄i with (u−1)†bi. From Eq. (3.10), it is clear that the strain tensor
u acts on vectors like a matrix. In general, this matrix is not unitary, but since u is a
symmetric and real two-by-two matrix, it is straightforward to resolve

(u−1)† = u−1 =

(
1 + uyy −uxy
−uxy 1 + uxx

)
1

1 + uxx + uyy + uxxuyy − u2
xy︸ ︷︷ ︸

≈ 1
1
− 1

12
(uxx+uyy+uxxuyy−u2xy)≈1−uxx−uyy

≈
(

(1 + uyy)(1− uxx − uyy) −uxy(1− uxx − uyy)
−uxy(1− uxx − uyy) (1 + uxx)(1− uxx − uyy)

)
≈

(
1− uxx −uxy
−uxy 1− uyy

)
=: urec . (3.14)

By acting urec on the lattice vectors of reciprocal space, we find

b̄1 =
2π

a

(
1− uxx − uxy√

3

−uxy + 1√
3
− uyy√

3

)
, b̄2 =

2π

a

(
−1 + uxx − uxy√

3

uxy + 1√
3
− uyy√

3

)
. (3.15)

28



3.2. Distortion of the Brillouin zone

(a) (b)

Figure 3.1.: To scale deformed Brillouin zone for a homogeneous strain of (a) uxx = 0.3,
uxy = uyy = 0 and (b) uxx = 0.2, uyy = 0.1, uxy = 0.02. The dotted line
represents the Brillouin zone for u = 0. The Γ-point lies at the origin of our
coordinate system and hence does not change position. The K̄-points lie at
the intersections of the perpendicular bisectors of lattice vectors b̄i and the M̄ -
points are given by M̄ i = b̄i/2, where b̄3 = −(b̄1+b̄2). The Dirac points lie at
τK̄D = τ(K−A), where A = 3βκ

4~vF
(uxx−uyy,−2uxy). Here, we use a value of

3βκ
4~vF

= 0.6/Å, typical for hBN [Pereira(2009), Ribeiro(2009), Ribeiro(2011)].

We leave it to the reader to verify that āi · b̄j = 2πδij indeed holds up to O(u). Next,
we would like to know how the high-symmetry points K and K ′ transform under strain.
Applying urec on τK yields the wrong result since we have obtained urec in an approxima-
tion, which only suffices to find b̄j such that the condition āi · b̄j = 2πδij holds. However,
we can proceed by remembering that the points τK lie at the corners of the Brillouin
zone, i.e., at the intersections of the perpendicular bisectors of lattice vectors b̄i, as shown
in Fig. 3.1. The perpendicular bisector to b̄1 is given by

M̄ 1 + k(1)
x

(
1
−1

b̄1,y/b̄1,x

)
≈ π

a

(
1− uxx − uxy√

3

−uxy + 1√
3
− uyy√

3

)
+ k(1)

x

(
1√

3(uxx − uyy − 1)− 2uxy

)
, (3.16)

where we have used M̄ 1 = b̄1/2. Likewise, the perpendicular bisector to −b̄2 can be
parametrized as

−M̄ 2 + k(2)
x

(
1
−1

b̄2,y/b̄2,x

)
≈ π
a

(
1− uxx + uxy√

3

−uxy − 1√
3

+ uyy√
3

)
+ k(2)

x

(
1√

3(1− uxx + uyy)− 2uxy

)
, (3.17)

and K̄ is the point where both bisectors meet. From the upper components, we resolve
k

(2)
x = k

(1)
x − 2π√

3a
uxy such that the matching condition on the lower components yields

k(1)
x ≈

π

3a
(1 + uxx +

√
3uxy − 2uyy) ,

⇒ K̄ = M̄ 1 + k(1)
x

(
1
−1

b̄1,y/b̄1,x

)
(3.16)
≈ 4π

3a

(
1− uxx

2
− uyy

2

−2uxy

)
. (3.18)
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3. The effects of lattice deformations on electrons in graphene and boron nitride

A similar construction can be used to find K̄
′
= −K̄. This is expected, since K ′ = −K

and strain is centrosymmetric.

We emphasize that for finite strain, the high symmetry points τK̄ at the corners of the
Brillouin zone do not coincide with the Dirac points, where the valence and conduction
bands of graphene become degenerate. In Eq. (3.5), the degeneracy (∆ = 0) occurs for
q̃ = 0, i.e., for q = −τA, where q is measured w.r.t. the corner of the unstrained Brillouin
zone τK. Consequently, the Dirac points in a uniformly strained lattice, which we label
K̄D and K̄ ′D to avoid confusion, are located1 at τK̄D = τ(K −A). In the derivation of
Eq. (3.5), we have assumed that strain changes the hopping amplitude tij but we did not
consider the effect of strain on the exponent of e−iτK·dj . For discussion of this effect, we
refer to [Hasegawa(2006), Wunsch(2008), Pereira(2009)].

3.3. Spin-phonon coupling

Phonons, i.e. quantized lattice deformations u do not have spin and hence cannot cou-
ple to spin directly but only in combination with spin-orbit coupling. The spin-orbit
interaction in graphene is given by

HSOI = λIσzτzsz︸ ︷︷ ︸
=HI

−λR(σxτzsy − σysx)︸ ︷︷ ︸
=−HR

, (3.19)

where HI is the intrinsic or Dresselhaus-type coupling with λI = 12 µeV and HR is
the extrinsic or Rashba-type coupling with an electric-field dependent coupling strength
λR = 5 µeV×E[V/nm] [Kane(2005), Min(2006), Gmitra(2009)]. For a derivation ofHSOI,
we refer to [Droth(2010)].

3.3.1. Coupling to in-plane phonons

The deformation potential Eq. (3.9) and the bond-length change Eq. (3.4) constitute the
coupling of electrons to acoustic in-plane phonons, HEPC = HVEP +HBLC. In combina-
tion with Rashba-type spin-orbit coupling, HEPC can give rise to spin-phonon coupling
via the following admixture mechanism [Khaetskii(2001), Hanson(2007)]. In first-order
perturbation theory, HR changes momentum-spin product states |k, s〉(0) := |k〉|s〉 to

|k ↑〉 = |k ↑〉(0) +
∑
k′ 6=k

|k′ ↓〉(0)
(0)〈k′ ↓|HR|k ↑〉(0)

Ek − Ek′ + gµBB
, (3.20)

|k ↓〉 = |k ↓〉(0) +
∑
k′ 6=k

|k′ ↑〉(0)
(0)〈k′ ↑|HR|k ↓〉(0)

Ek − Ek′ − gµBB
,

where the energy difference in the nominator includes the Zeeman splitting with the g-
factor of graphene, g = 2, and the Bohr magneton µB. The perturbed states include

1We remind the reader that the prefactor 1
~vF needs to be absorbed in A as given by Eq. (3.3).
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3.3. Spin-phonon coupling

contributions from both spin orientations. Consequently, the matrix element

〈k ↓|HEPC|k ↑〉 =
∑
k′ 6=k

(
(HEPC)kk′(HR)↓↑

k′k

Ek − Ek′ + gµBB
+

(HEPC)k′k(HR)↓↑
kk′

Ek − Ek′ − gµBB

)
, (3.21)

where (HR)↓↑
k′k

labels the spin-flipping term in the numerator of Eq. (3.20) and (HEPC)kk′

labels the according (spin-conserving) matrix element of the electron-phonon coupling,
will usually be finite. To ensure conservation of the Zeeman energy, a phonon must be
created or annihilated during the spin-flipping process described by Eq. (3.21).

3.3.2. Coupling to out-of-plane phonons

The intrinsic spin-orbit coupling of graphene, HI = λIσzτzsz, involves the Pauli matrices
σz (pseudospin), τz (valley spin), and sz (real spin). Usually, σz, τz, and sz all refer to the
cartesian coordinates of a flat lattice with n(r) = ez, where n(r) is a vector normal to the
graphene sheet. However, out-of-plane phonons locally tilt the sheet such that in general
n(r) ∦ ez, where n(r) ≈ (−∂xuz,−∂yuz, 1) for small tilts [CastroNeto(2009)]. Curvature
can also contribute significantly to spin-orbit coupling [Kuemmeth(2008)] but this effect
becomes negligible for long-wavelength phonons. Here, we consider such long-wavelength
phonons at the center of the Brillouin zone and hence focus only on a small tilt of the
graphene sheet.

While pseudospin σz and valley spin τz are directly linked to the lattice and hence to the
locally tilted frame Σ′, real spin sz can be linked to an external magnetic field B and
hence to the laboratory frame Σ, see Fig. 3.2 (a) and (b). Due to HI , the electrons feel
an effective magnetic field while they propagate through the lattice. With λI = 12µeV
[Gmitra(2009), Struck(2010)] and in terms of the Zeeman energy szgµBB/2, this effective
magnetic field has a strength of BI = λI

gµBB/2
≈ 0.2 T. For BI � B, the real electron spin

will be linked to the lattice while for B � BI , it will be linked to B. Here, we consider
the latter case where sz is linked to B and hence to the laboratory frame. Thus, in the
locally tilted frame with e′z ‖ n(r), the intrinsic spin-orbit coupling can be written as
HI = λiσ

′
zτ
′
zs
′
z, where σ′z = σz, τ

′
z = τz, and s′z = n(r) · s. Pseudospin and valley spin are

linked to the the locally tilted lattice and hence their description in the locally tilted frame
is identical to their description for a non-tilted lattice in the laboratory frame. Here, real
spin is linked to the laboratory frame and hence its description in the locally tilted frame
involves n(r), see Fig. 3.2 (c) and (d). The intrinsic spin-orbit coupling is thus given by

HI = λIσzτz(sz − ∂xuzsx − ∂yuzsy) , (3.22)

and directly couples acoustic out-of-plane phonons to spin. Now, HI includes sx and sy,
which can flip the spin. This effect is also referred to as deflection coupling [Struck(2010),
Rudner(2010)].

Similar considerations can be made for the extrinsic spin-orbit coupling, which then takes
the form

HR = −λR (τzσx(sy + ∂yuzsz)− σy(sx + ∂xuzsz)) , (3.23)
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3. The effects of lattice deformations on electrons in graphene and boron nitride

laboratrory frame locally tilted frame

(a) (b)

(c) (d)

Figure 3.2.: (a) Due to out-of-plane deformations, the normal vector n(r) is usually not
parallel to ez. For an external magnetic field B � BI , the spin s is easily
expressed in the laboratory frame Σ rather than in the sheet- or locally tilted
frame Σ′. (b) In the locally tilted frame of the graphene sheet, the spin s′(r)
depends on the local tilt, i.e., on n(r). In (c) and (d), we assume a small tilt
with ∂xuz(r) � 1 and ∂yuz(r) = 0. (c) For sx = sy = 0, we get s′z ≈ sz and
(d) for sy = sz = 0, we get s′z ≈ −∂xuzsx. Similar considerations can be made
for the y-coordinate. In total, we find s′z = −∂xuzsx− ∂yuzsy + sz = n(r) · s.

yet the additional terms do not contain sx or sy and thus do not contribute to spin
relaxation.
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4. Two applications of the geometric
phase

In 1956, Shivaramakrishnan Pancharatnam first introduced the notion of the geomet-
ric phase in the context of polarized light [Pancharatnam(1956)]. Today, the geomet-
ric phase is also commonly known as Berry phase, named after Sir Michael Berry who
has rediscovered the concept and applied it to the Aharonov-Bohm effect [Berry(1984),
Ehrenberg(1949), Aharonov(1959)]. Since then, the theory has been generalized and ap-
plied to many different situations.

Here, we give a short introduction to the concept so the calculation of the piezoelectric
effect via a geometric phase as well as Peierls’ phase can be applied in Chapter 7 and
Chapter 8, respectively. For an in-depth introduction to geometric phases, we refer to
[Xiao(2010)] and to [Bohm].

4.1. The polarization via a geometric phase

First, we introduce the evolution of a state w.r.t. an adiabatic control parameter and
then, we discuss adiabatic transport [Xiao(2010)]. The polarization density is linked to
the current density via a Maxwell equation and the continuity equation. If the electronic
Hamiltonian depends on some parameter, the dispersion will usually be affected by a
change of this parameter. In short, the integral of this response over the entire Brillouin
zone can be expressed in terms of a current density that changes the polarization density.

4.1.1. Adiabatic evolution

Let us assume, the Hamiltonian H(R(t)) depends on parameters1 R(t) that change adi-
abatically during some process [Xiao(2010)]. At every instant, the wave function |ψ(t)〉
obeys the Schrödinger equation,

i~∂t|ψ(t)〉 = H(t)|ψ(t)〉 , (4.1)

1The effect of an external magnetic field can be described by a parameter vector in real space. Then, the
Berry connection, Eq. (4.7), equals the magnetic vector potential, and the Berry curvature, Eq. (4.22),
equals the magnetic field B = ∇×A. However, we emphasize that usually, the parameter vector is
not a vector in real space.
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4. Two applications of the geometric phase

and also at every instant, there is a basis of instantaneous eigenstates {|n(t)〉} that suffice
H(t)|n(t)〉 = En(t)|n(t)〉. Within that basis, the wave function can be expressed as

|ψ(t)〉 =
∑
n

e−
i
~
∫ t
0 En(t′)dt′an(t)|n(t)〉 . (4.2)

The exponent with the eigenenergy En(t) would suffice to describe the time evolution of
the eigenstate |n(t)〉 if H(t) was time-independent. Since H(t) changes with time, the
probability density |〈r|n(t)〉|2 will usually also change in time, yet said phase does not
describe this evolution. Obviously, the weight an(t) of a certain component |n(t)〉 of |ψ(t)〉
can also depend on time. Now, we calculate2

〈n|i~∂t|ψ〉 =
∑
l

〈n|i~−i
~
El(t)e

− i
~
∫ t
0 El(t

′)dt′al(t)|l〉

+〈n|i~e−
i
~
∫ t
0 El(t

′)dt′ ȧl(t)|l〉+ 〈n|i~e−
i
~
∫ t
0 El(t

′)dt′al(t)|∂tl〉
= En(t)e−

i
~
∫ t
0 En(t′)dt′an(t)

+i~e−
i
~
∫ t
0 En(t′)dt′ ȧn(t) +

∑
l

i~e−
i
~
∫ t
0 El(t

′)dt′al(t)〈n|∂tl〉 , (4.3)

which — because of Eq. (4.1) — must coincide with

〈n|H(t)|ψ〉 =
∑
l

〈n|e−
i
~
∫ t
0 El(t

′)dt′al(t)El(t)|l〉 = e−
i
~
∫ t
0 En(t′)dt′an(t)En(t) . (4.4)

That is, the two last terms in Eq. (4.3) must cancel each other, which we express as

ȧn(t) = −
∑
l

al(t)〈n|∂tl〉e−
i
~
∫ t
0 [El(t

′)−En(t′)]dt′ . (4.5)

It is always possible to write 〈n|∂tl〉 = Ṙ(t) · 〈n| ∂
∂R(t)
|l〉. In the adiabatic limit, the

parameters R change slowly in time, i.e. Ṙ ≈ 0. This3 implies 〈n|∂tl〉 ≈ 0, such that in
zeroth order, Eq. (4.5) becomes

ȧn(t)
(4.5)
= 0 . (4.6)

This equation leads to the quantum adiabatic theorem: if the system is initially in the n-th
eigenstate, it will stay in that state afterwards [Xiao(2010)]. To proceed, we introduce
the Berry connection

A(n)(R) = i〈n| ∂
∂R
|n〉 , (4.7)

2To ensure readability, we drop the time dependence from all states. All states still do depend on time.
3We stick to the notation used in [Xiao(2010)] but remark that both Ṙ and 〈n|∂tl〉 are generally

dimensionful quantities and hence require some reference w.r.t. which they can be considered small or
large. Here, Ṙ and 〈n|∂tl〉 (and also R̈ in Eq. (4.13)) are sufficiently small if φ̇� ω, where φ̇ = maxiφ̇i
is the maximum of the angular velocities φ̇i that describe the rotation rate of the eigenaxes in the
Hilbert space as H(t) evolves [Messiah]. The frequency ω corresponds to the minimal energy splitting
in the spectrum, ~ω = mini,j 6=i(Ei − Ej).
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4.1. The polarization via a geometric phase

which is a gauge-dependent quantity. Under the gauge change |n〉 7→ eiζ(R)|n〉, the Berry
connection is mapped as follows:

A(n)(R) 7→ ie−iζ(R)〈n| ∂
∂R
|eiζ(R)n〉 = ie−iζ(R)

(
〈n|i∂ζ(R)

∂R
eiζ(R)|n〉+ eiζ(R)〈n| ∂

∂R
|n〉
)

= −∂ζ(R)

∂R
+A(n)(R) . (4.8)

With the right choice of ζn(R), the condition of parallel transport4,

〈n|∂n
∂t
〉 = Ṙ · 〈n| ∂

∂R
|n〉 (4.7)

= Ṙ · A
(n)(R)

i
= 0 , (4.9)

i.e., A(n)(R) ⊥ Ṙ can be satisfied. In particular, Eq. (4.9) does not over-determine the
system. Those states with the right gauge — i.e. those states that obey the parallel
transport condition — shall be denoted {|ñ〉}.

Let |ñ〉 be the initial state, i.e., añ(0) = 1 and añ′ 6=ñ = 0 in Eq. (4.2). In first order,
Eq. (4.5) becomes

ȧñ(t) = −
∑
l̃

al
↑

=δñl

(0)〈ñ|∂tl̃〉e−
i
~
∫ t
0 [El̃(t

′)−Eñ(t′)]dt′ ∝ 〈ñ|∂tñ〉
(∗)
= 0 , (4.10)

ȧñ′ 6=ñ(t) = −〈ñ′|∂tñ〉︸ ︷︷ ︸
=:u(t)

e−
i
~
∫ t
0 [Eñ(t′)−Eñ′ (t′)]dt′︸ ︷︷ ︸

=:v̇(t)

(4.11)

⇒ añ′ 6=ñ(t) = añ′ 6=ñ(0) +

∫ t

0

ȧñ′ 6=ñ(t′)dt′ = 0 +

∫ t

0

˙(uv)dt′ −
∫ t

0

u̇vdt′︸ ︷︷ ︸
=0

= u(t)v(t)

= − 〈ñ′|∂tñ〉
Eñ(t)− Eñ′(t)

i~e−
i
~
∫ t
0 [Eñ(t′)−Eñ′ (t′)]dt′ . (4.12)

In the step (∗), we have exploited the condition of parallel transport, Eq. (4.9). Moreover,
we have used

v(t) =
i~

Eñ(t)− Eñ′(t)
e−

i
~
∫ t
0 [Eñ(t′)−Eñ′ (t′)]dt′ ,

u̇(t) = −∂t
(
Ṙ〈ñ′| ∂

∂R
|ñ〉
)

= −R̈
↑
≈0

· 〈ñ′| ∂ñ
∂R
〉 − Ṙ ·

(
〈Ṙ · ∂ñ

′

∂R
| ∂ñ
∂R
〉+ 〈ñ′| ∂

∂R
|Ṙ · ∂ñ

∂R
〉
)

︸ ︷︷ ︸
O(Ṙ

2
)≈0

≈ 0 . (4.13)

When calculating v̇(t), the term from acting ∂t on the exponent is of order O(Ṙ
0
) and

hence dominates over the term from acting ∂t on the nominator since the time dependence
of the energies stems from the HamiltonianH(R(t)), which implies ∂tEñ(t) = Ṙ· ∂En(R)

∂R
=

4The term parallel transport is intuitive in that under this condition, the state |n〉 is perpendicular to
its gradient |∂tn〉.
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4. Two applications of the geometric phase

O(Ṙ). This justifies the assignment of v(t) in view of v̇(t) in Eq. (4.11). As for integration
constants, we need only be concerned with the expression given by Eq. (4.12), where the
constants are correct in an approximation since añ′ 6=ñ(0) = 0 and 〈ñ′|∂t|ñ〉 ≈ 0 due to the
adiabatic limit3 mentioned below Eq. (4.5). With Eqs. (4.10) and (4.12), the state given
by Eq. (4.2) takes — in first order of ∂t — the form

|ψñ〉 = e−
i
~
∫ t
0 Eñ(t′)dt′añ(t)

↑
=1

|ñ〉+
∑
ñ′ 6=ñ

−〈ñ|∂tñ〉
Eñ(t)− Eñ′(t)

i~e−
i
~
∫ t
0 [Eñ(t′)−Eñ′ (t′)+Eñ′ (t′)]dt′ |ñ′〉

= e−
i
~
∫ t
0 Eñ(t′)dt′

(
|ñ〉 − i~

∑
ñ′ 6=ñ

|ñ′〉 〈ñ′|∂tñ〉
Eñ(t)− Eñ′(t)

)
. (4.14)

When using this equation in a calculation, the states {|ñ〉} can be replaced by states with
some other phase/gauge choice, provided the terms containing these states are gauge
invariant [Xiao(2010)].

4.1.2. Adiabatic transport and electric polarization

The relevant parameters for adiabatic transport are R = (q, t), where q is a wavevec-
tor within the first Brillouin zone and t labels time. For simplicity, we consider a one-
dimensional system and choose the q-space representation. The velocity operator in q-
space is given by

v(q, t) =
∂H(q, t)

~∂q
. (4.15)

At time t and up to first order, the velocity of a state initially (t = 0) in band n and with
wavenumber q is given by

vn(q, t) = 〈ψn|
∂H(q, t)

~∂q
|ψn〉

=

(
〈n|+ i~

∑
n′ 6=n

〈∂tn|n′〉〈n′|
En − En′

)
∂H
~∂q

(
|n〉 − i~

∑
n′ 6=n

|n′〉〈n′|∂tn〉
En − En′

)

= 〈n|∂H(q, t)

~∂q
|n〉 − i

∑
n′ 6=n

(
〈n|∂H

∂q
|n′〉〈n′|∂tn〉

En − En′
−
〈∂tn|n′〉〈n′|∂H∂q |n〉

En − En′

)
, (4.16)

where we have used Eq. (4.14) and dropped the tilde from the states in the second step. For
any set of orthonormal eigenstates {|n〉} of some HamiltonianH, the following expressions
hold:

〈n|∂H
∂R
|n′〉 = 〈n|

(
∂

∂R

∑
m

Em|m〉〈m|

)
|n′〉

=
∑
m

(
∂Em
∂R
〈n|m〉〈m|n′〉+ Em〈n|

∂m

∂R
〉〈m|n′〉+ Em〈n|m〉〈

∂m

∂R
|n′〉
)

=
∂En
∂R
〈n|n′〉+ 〈 ∂n

∂R
|n′〉(En − En′) . (4.17)
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4.1. The polarization via a geometric phase

For the second term in the second line, we have used 0 = ∂
∂R
δnm = ∂〈n|m〉

∂R
= 〈 ∂n

∂R
|m〉 +

〈n|∂m
∂R
〉 ⇒ 〈n|∂m

∂R
〉 = −〈 ∂n

∂R
|m〉. Similarly, we find

〈n′|∂H
∂R
|n〉 =

∂En′

∂R
〈n′|n〉+ 〈∂n

′

∂R
|n〉(En′ − En) =

∂En′

∂R
〈n′|n〉+ 〈n′| ∂n

∂R
〉(En − En′) , (4.18)

and we can rewrite Eq. (4.16) as

vn(q, t) = 〈n|∂H(q, t)

~∂q
|n〉 − i

∑
n′ 6=n

(〈∂qn|n′〉〈n′|∂tn〉 − 〈∂tn|n′〉〈n′|∂qn〉) . (4.19)

The first term can be evaluated using the Hellmann-Feynman theorem [Güttinger(1932),
Hellmann, Feynman(1939)],

∂En(q, t)

∂q
=

∂

∂q
〈n|H(q, t)|n〉 = 〈∂n

∂q
|H(q, t)|n〉+ 〈n|∂H(q, t)

∂q
|n〉+ 〈n|H(q, t)|∂n

∂q
〉

= 〈n|∂H(q, t)

∂q
|n〉+ En

(
〈∂n
∂q
|n〉+ 〈n|∂n

∂q
〉
)

︸ ︷︷ ︸
= ∂
∂q
〈n|n〉= ∂1

∂q
=0

= 〈n|∂H(q, t)

∂q
|n〉 . (4.20)

Our ansatz includes the parallel transport condition given by Eq. (4.9), 〈n|∂n
∂t
〉 = 0. We

can thus include the terms with n′ = n in the second term of Eq. (4.19) and trace out the
projectors

∑
n′ |un′〉〈un′ | = 1,

vn(q, t) =
∂En(q, t)

~∂q
− i (〈∂qn|∂tn〉 − 〈∂tn|∂qn〉)︸ ︷︷ ︸

=Ω
(n)
qt

. (4.21)

The second term is known as the Berry curvature,

Ω
(n)
ab =

∂

∂Ra

A
(n)
b (R)− ∂

∂Rb

A(n)
a (R) (4.22)

= i

(
〈∂n(R)

∂Ra

|∂n(R)

∂Rb

〉 − 〈∂n(R)

∂Rb

|∂n(R)

∂Ra

〉
)
,

whereA(n)(R) is the Berry connection from Eq. (4.7). In contrast to the Berry connection,
the Berry curvature is gauge-independent since the gauge-dependent term in Eq. (4.8) is
canceled in Eq. (4.22), ∂ζn

∂Ra∂Rb
− ∂ζn

∂Rb∂Ra
= 0. We can thus write the average velocity of a

state initially in band n, with momentum q, and at time t as

vn(q, t) =
∂En(q, t)

~∂q
− Ω

(n)
qt . (4.23)

The resulting charge current density j is obtained by summing up the contributions from
all wavenumbers q inside the Brillouin zone (BZ) for all filled bands n,

j = −e
∑
n,q

vn(q, t) = −e
∑
n

∫
BZ

dq

2π

(
∂En(q, t)

~∂q
− Ω

(n)
qt

)
= e

∑
n

∫
BZ

dq

2π
Ω

(n)
qt , (4.24)
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4. Two applications of the geometric phase

where −e is the electron charge. Due to the periodicity of the Brillouin zone, En(q, t) has
the same value at both integration boundaries and the first integral vanishes.

The polarization density P (r) is connected to the current density j(r) via the equation
∇ · P (r) = −ρ(r) and the continuity equation [Ashcroft&Mermin, Marder, Xiao(2010)],

∂t(∇ · P (r)) = −∂tρ(r)
(∗)
= ∇ · j(r)

⇒ ∇ · (∂tP (r)− j(r)) = 0

⇒
∫
V

∇ · (∂tP (r)− j(r)) = 0 . (4.25)

In the last step, we integrate over an arbitrary volume V . Up to a divergence-free part5,
we find ∂tP (r) = j(r). That is, the change of polarization ∆P is given by

∆P (r) =

∫ T

0

∂tP (r)dt =

∫ T

0

j(r)dt ,

=

∫ λf

λi

∂P (r)

∂t

∂t

∂λ
dλ =

∫ λf

λi

∂λP (r)dλ , (4.26)

where we have substituted time t by some arbitrary but adiabatically varying parameter
λ with λ(0) = λi and λ(T ) = λf . By inserting Eq. (4.24) into Eq. (4.26), we obtain the
change of the polarization density [Mele(2002), Xiao(2010)],

∆Pi = e
∑
n

∫ λf

λi

dλ

∫
BZ

dDq

(2π)D
Ω

(n)
qiλ
. (4.27)

We have generalized to a system of dimension D, such that the i-th component of ∆P is
related to the i-th component of the wavevector q via Ω

(n)
qiλ

. The factor ∂λt that occurs in
Eq. (4.26) cancels with ∂tλ, which occurs in the Berry curvature upon substitution of t
with λ in Eq. (4.22).

4.2. Derivation of Peierls’ phase

A magnetic field B can be expressed in terms of a spatially varying vector potential
A(r) that is typically respected by virtue of Peierls’ substitution, i.e., redefinition of the
momentum operator (see below). For tight-binding calculations which do not contain
the momentum operator, the question arises how the magnetic field can be included in
the model. Here, we explain how A(r) can be gauged away locally, with the result of a
modified hopping amplitude tije

iφ where φ is Peierls’ phase [Peierls(1933), Bohm].

5According to [Xiao(2010)] and [Hirst(1997)], the divergence-free part is usually given by the magneti-
zation current, which vanishes identically in the bulk.
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4.2. Derivation of Peierls’ phase

4.2.1. Tight-binding model with modified Wannier states

Typical tight-binding models rely on Wannier states,

wn(r −Ri) = 〈r|wn(Ri)〉

=
1√
Ns

∑
q

e−iq·Riψq(r) , (4.28)

i.e., on superpositions of Bloch states |ψq(r)〉. The number of sites is denoted by Ns.
Due to the different phases eiq·r, the Bloch functions more and more cancel for larger
and larger distances from Ri. That is, the Wannier states are localized at lattice sites
Ri, which makes them suitable for tight-binding calculations [Nolting7, Bohm]. In the
following, we shall use modified Wannier states

|w̃n(Ri)〉 = e−ieA(Ri)·
r−Ri

~ |wn(Ri)〉 . (4.29)

Because |wn(Ri)〉 is localized but still no eigenstate of the position operator r, these
modified states only form a non-orthogonal basis. However, the scalar product

〈w̃n(Ri)|w̃n(Rj)〉 = 〈wn(Ri)|e
ie
(
A(Ri)·

r−Ri
~ −A(Rj)·

r−Rj
~

)
|wn(Rj)〉

= eie
A(Rj)·Rj−A(Ri)·Ri

~ 〈wn(Ri)|eie
A(Ri)−A(Rj)

~ ·r|wn(Rj)〉︸ ︷︷ ︸
(∗)

(4.30)

is still negligibly small for Ri 6= Rj

(i) if |Ri −Rj| � ∆r, where ∆r is the width of the Wannier states |wn(Ri)〉;

(ii) or if |Ri −Rj| . ∆r and eB∆2
r

~ � 1.

In the latter case, the exponent in the expression (∗) is basically constant where the
overlap is large and thus can be put in front of the expression. Since the last condition
of (ii) becomes B � ~

e∆2
r
≈ 104 T for ∆r = 2.5 Å, the basis {|w̃n(Ri)〉}i can be treated

as orthogonal for typical tight-binding calculations. In the following, we assume that
always either condition (i) or condition (ii) holds. We can thus treat {|w̃n(Ri)〉}i as an
orthonormal basis of spatially localized states. Let ã†n,i (ãn,i) be the creation (annihilation)
operator of the modified Wannier state given by Eq. (4.29). Suppose some Hamiltonian
H̃ — whose specific form does not matter at this stage — acts on a modified Wannier
states. The resulting state can be expressed as follows,

H̃|w̃n(Ri)〉 =
∑
j

h̃n(Rj −Ri)|w̃n(Rj)〉 . (4.31)
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4. Two applications of the geometric phase

The coefficients h̃n(Rj −Ri) can be interpreted as the hopping amplitudes t̃
(n)
ij between

sites i and j within the tight-binding model of modified Wannier states,

H̃ã†n,i|0〉 =
∑
j

h̃n(Rj −Ri)ã
†
n,j|0〉 ,

⇒ H̃ = H̃
∑
i

|w̃n(Ri)〉〈w̃n(Ri)| =
∑
i,j

h̃n(Rj −Ri)︸ ︷︷ ︸
=:t̃

(n)
ij

|w̃n(Rj)〉〈w̃n(Ri)|

=
∑
i,j

t̃
(n)
ij ã

†
n,j|0〉〈0|ãn,i =

∑
i,j

t̃
(n)
ij ã

†
n,j ãn,i . (4.32)

For simplicity, we have only specified the initial and final states of the electron involved in
the hopping, |w̃n(Ri)〉 and |w̃n(Rj)〉. Instead ofRi andRj, we may writeRi,1 andRj,1 to
specify the initial and final sites of the hopping electron. The sites of the N − 1 electrons
that do not hop, here, may be denoted as Ri,2 through Ri,N . Implicitly, the notation
|w̃n(Ri)〉 refers to the complete state of N electrons, |w̃n(Ri,1), w̃n(Ri,2), . . . , w̃n(Ri,N)〉.
By expressing these states with the according creation and annihilation operators, one
finds the N − 1-dimensional identity of the subspace not containing the hopping electron
in the last line and the last equality becomes clear. An explicit demonstration can be
found in [Nolting7].

For A = 0, we can drop the tilde from the (un-)modified Wannier states and all other
quantities, and Eq. (4.32) becomes the well-known tight-binding Hamiltonian for zero

magnetic field, H =
∑

i,j t
(n)
i,j a

†
n,jan,i.

4.2.2. Peierls’ substitution and phase

As mentioned before, within Peierls’ substitution, the momentum p = ~
i
∇ is replaced by

an expression which includes the magnetic vector potential A(r),

~
i
∇ 7→ ~

i
∇+ eA(r) . (4.33)

Acting this operator on a modified Wannier state, one finds

(
~
i
∇+ eA(r)

)
|w̃n(Ri)〉 = e−ieA(Ri)·

r−Ri
~

(
~
i

−ieA(Ri)

~
+

~
i
∇+ eA(r)

)
|wn(Ri)〉

≈ eieA(Ri)·
r−Ri

~
~
i
∇|wn(Ri)〉 , (4.34)

where the third term on the r.h.s. of the first equality approximately cancels with the first
term if condition (ii) is valid, i.e. A(r) ≈ A(Ri) in the vicinity of Ri, where |wn(Ri)〉
has its dominant contribution. To demonstrate the concept, we consider the Hamiltonian
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H̃ = p2

2m
such that for A = 0, we get H̃ = H = −~2∆

2m
. With

H̃|w̃n(Ri)〉 =
1

2m

(
~
i
∇+ eA(r)

)2

|w̃n(Ri)〉

(4.34)
≈

~
i
∇+ eA(r)

2m
e−ieA(Ri)·

r−Ri
~

~
i
∇|wn(Ri)〉

=
e−ieA(Ri)·

r−Ri
~

2m

(
~
i

−ieA(Ri)

~
+

~
i
∇+ eA(r)

)
~
i
∇|wn(Ri)〉

≈ e−ieA(Ri)·
r−Ri

~
−~2∆

2m
|wn(Ri)〉 = e−ieA(Ri)·

r−Ri
~ H|wn(Ri)〉 , (4.35)

the action of the Hamiltonian with finite A on a state with finite A (l.h.s.) can be
expressed in terms of these quantities with A = 0 and an additional phase (r.h.s.). The
second approximation is the same as the one used in Eq. (4.34). Using Eq. (4.31) for
A = 0 leads to

H̃|w̃n(Ri)〉
(4.35)
≈ e−ieA(Ri)·

r−Ri
~
∑
j

(4.31)
= H|wn(Ri)〉︷ ︸︸ ︷

hn(Rj −Ri)︸ ︷︷ ︸
=t

(n)
ij

|wn(Rj)〉

= e−ieA(Ri)·
r−Ri

~
∑
j

t
(n)
ij e

ieA(Rj)·
r−Rj

~ |w̃n(Rj)〉

=
∑
j

t
(n)
ij e

i e~ [(A(Rj)−A(Ri))·r+A(Ri)·Ri−A(Rj)·Rj ]|w̃n(Rj)〉 . (4.36)

For |Ri − Rj| � ∆r, the coefficients / hopping amplitudes hn(Rj − Ri) = t
(n)
ij can be

neglected since the overlap of the involved Wannier states is basically zero6. Consequently,
we focus on |Ri −Rj| ∼= ∆r, and — if condition (ii) is valid — approximate the position

operator with the mean of both lattice sites, r ≈ Ri+Rj
2

. The square bracket in the

6Their rapid decay with increasing distance is why hopping amplitudes t
(n)
ij between distant atoms are

usually neglected in tight-binding calculations. In fact, many models rely on nearest neighbor hoppings

only. The decay of the t
(n)
ij is closely connected to the conditions (i) and (ii) at the beginning of this

derivation. If condition (ii) applies, the effect of the magnetic field is small enough to capture it with
the discussed approximations — at least for spatially close sites Ri and Rj . If condition (i) applies,
the approximations do actually not suffice, but this does not matter as the overlap and hence the
hopping amplitude between the two sites can be neglected in this case.
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exponent now becomes

(A(Rj)−A(Ri)) ·

≈r︷ ︸︸ ︷
Ri +Rj

2
+A(Ri) ·Ri −A(Rj) ·Rj

= A(Rj) ·
Rj +Ri − 2Rj

2
+A(Ri) ·

2Ri −Ri −Rj

2

= (A(Rj) +A(Ri)) ·
Ri −Rj

2
;

⇒ H̃|w̃n(R)〉
(4.36)
≈

∑
j

t
(n)
ij e

i e
2~ (A(Ri)+A(Rj))·(Ri−Rj)|w̃n(Rj)〉

≈
∑
j

t
(n)
ij e

−i e~
∫Rj
Ri

A(r)·dr|w̃n(Rj)〉 . (4.37)

The last approximation relies on

A(Ri) +A(Rj)

2
· (Ri −Rj) =

∫ Ri

Rj

A(Ri) +A(Rj)

2
· dr ≈ −

∫ Rj

Ri

A(r) · dr , (4.38)

where dr ‖ Rj −Ri. The Hamiltonian

H̃ =
∑
i

H̃|w̃n(Ri)〉〈w̃n(Ri)|

(4.37)
=

∑
i,j

t
(n)
ij e

−i e~
∫Rj
Ri

A(r)·dr |w̃n(Rj)〉〈w̃n(Ri)|︸ ︷︷ ︸
=ã†n,j ãn,i

=
∑
i,j

t
(n)
ij e

−i e~
∫Rj
Ri

A(r)·dr
ã†n,j ãn,i , (4.39)

has exactly the form of Eq. (4.32) with

t̃
(n)
ij (A) = t

(n)
ij e

−i e~
∫Rj
Ri

A(r)·dr
, (4.40)

where the integral together with the prefactor e
~ is known as Peierls’ phase [Peierls(1933)].

Care must be taken for the direction of the hopping: the hopping amplitude from i to j
is t̃

(n)
ij , but from j to i it is t̃

(n)
ji = (t̃

(n)
ij )∗. If y can be parametrized in x and the Landau

gauge A(r) = −Byex is used, Peierls’ phase can be written as

e

~

∫ Rj

Ri

A(r) · dr = − e
~

∫ xj

xi

By(x)dx = −eB
~

∫ xj

xi

(
∂y

∂x
x+ yi)dx

= −eB
~

(
∂y

∂x

x2
j − x2

i

2
+ yi(xj − xi)

)
= −eB

~
(xj − xi)

(
∂y

∂x

xj + xi
2

+ yi

)
= −eB

2~
(xj − xi)(yj + yi) . (4.41)
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5. Acoustic phonons and spin
relaxation in graphene nanoribbons

In this chapter, we present an adapted version of our manuscript that has been published
in Physical Review B 84, 155404 (2011).

Abstract
Phonons are responsible for limiting both the electron mobility and the spin relaxation
time in solids and provide a mechanism for thermal transport. In view of a possible
transistor function as well as spintronics applications in graphene nanoribbons, we present
a theoretical study of acoustic phonons in these nanostructures. Using a two-dimensional
continuum model which takes into account the monatomic thickness of graphene, we
derive Hermitian wave equations and infer phonon creation and annihilation operators.
We elaborate on two types of boundary configuration, which we believe can be realized
in experiment: (i) fixed and (ii) free boundaries. The former leads to a gapped phonon
dispersion relation, which is beneficial for high electron mobilities and long spin lifetimes.
The latter exhibits an ungapped dispersion and a finite sound velocity of out-of-plane
modes at the center of the Brillouin zone. In the limit of negligible boundary effects,
bulk-like behavior is restored. We also discuss the deformation potential, which in some
cases gives the dominant contribution to the spin relaxation rate T−1

1 .

43Matthias Droth and Guido Burkard, Physical Review B 84, 155404 (2011).
c© 2011 American Physical Society.



5. Acoustic phonons and spin relaxation in graphene nanoribbons

5.1. Introduction

Its interesting electronic, mechanical, and thermal properties have made graphene a
promising candidate for a wide range of applications, including ballistic transistors as
well as [Novoselov(2004), Lin(2010), Lemme(2007)] spintronics and nanoelectromechanical
devices and heat management [Trauzettel(2007), GarciaSanchez(2008), Balandin(2008),
Nika(2009)]. There are, however, a number of challenges: (i) for epitaxial graphene,
which is desirable for a controlled, large-scale production, the strong coupling to a sub-
strate compromises these properties, (ii) graphene has no bandgap, a handicap for typical
semiconductor applications, and (iii) acoustic phonons limit the carrier mobility relevant
for transistor functions [Ouyang(2008), Finkenstadt(2007), Farmer(2009), Betti(2011),
Yoon(2011)].

The first issue can be overcome by removing substrate material from underneath the
carbon layer [Meyer(2007), Nair(2008), Bolotin(2008), Shivaraman(2009), Lima(2010)]
such that a trench is formed and the electronic properties of free-standing graphene are
restored. The second challenge is met by graphene nanoribbons (GNRs), graphene strips
with a width at the nanometer scale (e.g., L ∼ 1µm, W ∼ 30 nm) which can exhibit a
bandgap [Wang(2011), Han(2007)]. Combining these advantages, the free-standing GNR
obtained from epitaxial graphene on a trenched substrate is a very interesting design that
deserves a detailed discussion of its phonons. In this paper, we use a continuum model
to study the acoustic phonon properties and displacement fields u(r) = (ux, uy, uz) (out-
of-plane modes shown in Fig. 5.1) of two different types of GNR that we think can be
realized in experiment: (i) extended graphene that covers a thin trench, resulting in a
GNR parallel to the trench and with fixed lateral boundaries, Fig. 5.2 (a); (ii) a strip of
graphene that stretches over a wide trench, leading to a GNR perpendicular to the trench
and with free lateral boundaries, Fig. 5.2 (b). For both setups, we derive the low-energy
acoustic phonon spectra from a continuum model that respects the monatomic structure
of graphene and write down the quantum mechanical form of these phonons.

Our results can be probed experimentally via established techniques like electron energy
loss spectroscopy or Brillouin light scattering [Oshima(1988), Mohr(2007)]. In addition
to the electron mobility, the phononic behavior is essential for carbon-based nanoelec-
tromechanical systems [GarciaSanchez(2008), Steele(2009)]. A recent example where
the electron-phonon coupling has been observed experimentally is the Franck-Condon
blockade in suspended carbon nanotube quantum dots [Leturcq(2009)]. Phonons also
give rise to spin relaxation within a time T1, which is important for spintronics devices
[Trauzettel(2007), Khaetskii(2001), Kuemmeth(2008), Struck(2010)]. The spin-orbit in-
teraction admixes different spin states (↑, ↓) and electron orbits k [see Eq. (5.16) below].
As a consequence, the electron-phonon coupling HEPC can mediate the Zeeman energy
gµBB = ~ω, where g is the electron g-factor in graphene and µB denotes Bohr’s mag-
neton, to the phonon bath with phonon numbers nω. The rate for spin relaxation via
emission of a phonon with energy ~ω is given by

1

T1

=
2π

~
|〈k↓, nω + 1|HEPC|k↑, nω〉|2ρstates(~ω) , (5.1)

with an explicit dependence on the phonon density of states ρstates. Several mecha-
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5.2. Continuum model in 2D

Figure 5.1.: Displacement field uz of out-of-plane modes. The dimensionless coordinates
are x̄ = x/W , ȳ = y/W , and z̄ = z/W . (a),(b) Fixed boundaries. (c),(d)
Free boundaries. (a),(c) Fundamental mode. (b),(d) First overtone.

nisms contribute to T−1
1 and in some cases the deformation potential [Struck(2010),

Mariani(2009)] gives the dominant contribution. If the Zeeman energy lies within the
energy gap of GNR phonons with fixed boundaries and if the temperature is sufficiently
low, the spin lifetime obtained from Eq. (5.1) diverges due to a vanishing density of states.

5.2. Continuum model in 2D

Low-energy acoustic phonons at the center of the Brillouin zone have a wavelength much
larger than atomic distances and thus can be derived from continuum mechanics. The
carbon atoms in graphene lie within a two-dimensional surface and this property is con-
served upon deformations, making graphene a quasi two-dimensional material in three-
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5. Acoustic phonons and spin relaxation in graphene nanoribbons

(a) fixed
 (   boundaries

(b) free
 (   boundaries

W

W

L

L

x
y

y
x

Figure 5.2.: Two nanoribbon configurations where graphene (blue) is spanned over a
trenched substrate (orange): (a) fixed and (b) free boundaries. The coor-
dinate system is chosen in such a way that the undeformed ribbon lies in the
xy plane and that the y and ribbon axes coincide. We assume the ribbon
length to be much larger than the ribbon width (L� W ) and parallel lateral
boundaries (dark blue) at x = ±W/2.

dimensional (3D) real space. Consequently, all components of the displacement field u(r)
can be nonzero but the components uiz of the strain tensor uik = (∂iuk + ∂kui)/2 vanish
identically. While uxz and uyz are known to vanish for thin plates in the xy plane in
general, the monatomic thickness of graphene implies that uzz must vanish as well. With
uiz ≡ 0, the elastic Lagrangian density of monolayer graphene is given by

L = T − V =
ρ

2
u̇2 − κ

2
(∆uz)

2 − λ

2
u2
ii − µu2

ik , (5.2)

where ∆ = ∂2
x + ∂2

y , the sum convention with uii = uxx + uyy + uzz and u2
ik = u2

xx +
u2
xy + · · · has been used, ρ is the surface mass density, and κ is the bending rigidity

[Landau&Lifschitz, Suzuura(2002), Mariani(2008), Mariani(2009)]. Note that the 3D bulk
elastic constants have been replaced by their 2D analogs λ = 2hµ3Dλ3D/(2µ3D +λ3D) and
µ = hµ3D where h is the plate thickness. The bulk and shear moduli are then given as
B = λ+ µ and µ, respectively.

Application of the Euler-Lagrange formalism to the functional (5.2) leads to the coupled
set of differential equations for in-plane modes

ρ üx = (B + µ)∂2
xux + µ ∂2

yux +B ∂x∂yuy ,

ρ üy = (B + µ)∂2
yuy + µ ∂2

xuy +B ∂x∂yux ,
(5.3)

which are decoupled from the differential equation for the out-of-plane modes,

ρ üz = −κ
(
∂2
x + ∂2

y

)2
uz . (5.4)
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5.3. Classical solution

Assuming nanoribbon alignment with the y-axis, fixed boundaries are described by

ux = uy = 0 (in plane),

uz = ∂xuz = 0 (out of plane) (5.5)

at x = ±W/2; see Fig. 5.2 (a). While these boundary conditions hold for both 2D and
3D lattices, we emphasize that lattice dimensionality does affect free boundaries. For free
edges in 2D it is required that, at x = ±W/2,

∂xux + σ∂yuy = 0
∂xuy + ∂yux = 0

}
(in plane),

∂3
xuz + (2− σ)∂x∂

2
yuz = 0

∂2
xuz + σ∂2

yuz = 0

}
(out of plane), (5.6)

where the quantity σ denotes Poisson’s ratio, Fig. 5.2 (b). Together with Young’s modulus
E = hE3D, σ relates to the bulk and shear moduli as

B =
E

2(1− σ)
, µ =

E
2(1 + σ)

. (5.7)

5.3. Classical solution

Typically, the length of a graphene nanoribbon exceeds its width many times, L �
W [Jiao(2009), Kosynkin(2009), Shivaraman(2009), Li(2008)], thus allowing for a plane
wave ansatz along the y direction with periodic boundaries. Due to their decoupling,
in-plane modes ux/y(x, y, t) = fx/y(x)exp[i(qy − ωt)] and out-of-plane modes uz(x, y, t) =
fz(x)exp[i(qy − ωt)] can be treated separately1.

Exploiting the plane wave ansatz and denoting the i-th derivative of f as f (i), Eq. (5.3)
can be written as Mxy(fx, fy) = −ρω2(fx, fy), where

Mxy :

(
fx
fy

)
7→

(
(B + µ)f

(2)
x − µq2fx + iBqf

(1)
y

−(B + µ)q2fy + µf
(2)
y + iBqf

(1)
x

)
. (5.8)

The general solution of this eigenvalue problem is given by (fx, fy) =
∑4

i=1 ciaiexp[λix],
with a1 = (1, iq/λ1), a2 = (1, iq/λ2), a3 = (1, iλ3/q), a4 = (1, iλ4/q), and λ1,2 =

±
√
q2 − ρω2/(B + µ), λ3,4 = ±

√
q2 − ρω2/µ.

Fixed boundaries are characterized by fx(±W/2) = fy(±W/2) = 0 and by virtue of the
λi, the set of linear equations deriving from these boundary conditions depends on the
parameters q and ω. A numerical treatment of this linear system yields the dispersion
relation [Figs. 5.3 (a) and 5.3 (e)] as well as the coefficients ci for the explicit form of
the in-plane mode with fixed boundaries [Figs. 5.4 (a) and 5.4 (b)]. Other boundary
conditions and the out-of-plane modes can be treated likewise.

1The physical displacement (see Figs. 5.1 and 5.4) is obtained by taking the real part.
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5. Acoustic phonons and spin relaxation in graphene nanoribbons

Figure 5.3.: Dispersion relations obtained from the procedure described in Sec. 5.3. The
wavenumber q is given by q̄ = qW and the frequency ω of in-plane (out-
of-plane) phonons by ω̄xy = ω

√
ρ/E W (ω̄z = ω

√
ρ/κW 2). (a) In-plane

modes with fixed boundaries. (b) In-plane modes with free boundaries. (c)
Out-of-plane modes with fixed boundaries. (d) Out-of-plane modes with free
boundaries. (e)-(h) Dispersion relations (a)-(d) at the center of the Brillouin
zone. (a),(c),(e),(g) Modes with fixed boundaries exhibit a gap. (b),(d),(f),(h)
Modes with free boundaries are gapless. (a),(b) Despite the coupling of trans-
verse and longitudinal modes, we find predominantly longitudinal and trans-
verse modes on lines which we label LA (dashed blue line) and TA (dash-
dotted red line), respectively. (c),(d) Independent of the boundaries, out-
of-plane modes disperse quadratically for large wave numbers (dashed green
line). (h) Free out-of-plane modes feature a branch with linear dispersion at
the zone center (dashed orange line).
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5.4. Mode orthonormality and quantization

The eigenvalue problem obtained from Eq. (5.4) is Mzfz = (ρω2/κ − q4)fz, where the
map Mz and its eigenfunctions and eigenvalues are given by

Mz : fz 7→ f (4)
z − 2q2f (2)

z (5.9)

and fz =
∑4

i=1 die
λix with λi = ±

√
q2 ± ω

√
ρ/κ.

5.4. Mode orthonormality and quantization

In order to quantize the vibrational spectrum of the graphene nanoribbon in terms of
phonon creation and annihilation operators, the eigenfunctions of the original differential
operators [Eqs. (5.3) and (5.4)] must be orthogonal. While orthogonality of eigenmodes
with different wavenumbers q follows from the plane wave ansatz, eigenmodes with same
q require orthogonal functions (f(α,q),x, f(α,q),y) and f(α,q),z. The index (α, q) labels the
phonon branch α and the wavenumber q of a specific eigenmode.

The map (5.8) is Hermitian and hence has orthogonal eigenfunctions if and only if the

scalar product
∫ +W/2

−W/2 dx
(
f ∗x , f

∗
y

)
Mxy(fx, fy)

T is real for all vector functions (fx, fy) in

the domain of Mxy. One easily shows via partial integration that Mxy is Hermitian if
and only if the boundary terms satisfy

(B + µ)f ∗xf
(1)
x + µf ∗y f

(1)
y + iBqf ∗xfy

∣∣+W
2

−W
2

∈ R (5.10)

and that both fixed and free boundaries do indeed satisfy this condition. The general
in-plane displacement field is

u‖ =
∑
α,q

r(α,q)

(
f(α,q),xex + f(α,q),yey

)
eiqy , (5.11)

where the harmonic time dependence has been absorbed in the normal coordinate. Using
the orthogonality relations mentioned above, one can resolve the normal coordinate and
derive the Lagrangian and the canonical momentum. The identification

r(α,q) =
√

~/2ρLWω(α,q)(b(α,q) + b†(α,−q)) , (5.12)

where b†(α,q) (b(α,q)) creates (annihilates) an (α, q)-phonon, complies with coordinate-mo-
mentum commutation relations, and allows for a quantum mechanical formulation of
Eq. (5.11). Quantization of the out-of-plane modes is achieved in the very same way. The
Hermiticity of Mz follows from

f ∗z f
(3)
z − f ∗(1)

z f (2)
z − 2q2f ∗z f

(1)
z

∣∣+W
2

−W
2

∈ R (5.13)

and, as above, fixed as well as free boundaries do satisfy this condition. The general
out-of-plane displacement is given by

u⊥ =
∑
α,q

r(α,q)f(α,q),zeze
iqy . (5.14)
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5. Acoustic phonons and spin relaxation in graphene nanoribbons

Figure 5.4.: Displacement vector field (ux, uy) of in-plane modes. Size and color of the
arrows indicate the magnitude of the local deformation. We use the dimen-
sionless coordinates x̄ = x/W and ȳ = y/W . (a),(b) Fixed boundaries.
(c),(d) Free boundaries. (a),(c) Predominantly longitudinal modes. (b),(d)
Predominantly transverse modes.

5.5. Discussion of phonon spectra

As specific values for sound velocities, etc., depend on the elastic constants, we shall first
discuss these constants before turning to the properties of acoustic phonons. Due to their
decoupling, in-plane and out-of-plane phonons can be treated separately. For each case
we will consider fixed and free boundaries.

5.5.1. Elastic constants

For graphene, most elastic constants remain to be settled by experiment and some seem
to exhibit a temperature dependence, which we do not take into account here. Moreover,
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5.5. Discussion of phonon spectra

a consistent set of constants must respect Eq. (5.7). The Zeeman energy for typical
laboratory magnetic fields (∼ 1 T) marks ∼ 1 K as the temperature range where the
phonon properties can be probed via electron spin relaxation.

Cited values for Poisson’s ratio σ of graphene range from 0.145 to 0.416 [Reddy(2006)] but
accumulate around σ = 0.16, which we use in our calculations [Lee(2008), Faccio(2009),
Kudin(2001)]. Young’s modulus of a quasi two-dimensional material, E = E3Dh, follows
from its corresponding 3D bulk value and its associated thickness h. While the most com-
mon literature value of E3D for graphene is 1 TPa [Lee(2008), Faccio(2009), Kudin(2001)],
a much smaller value, 0.5 TPa, has been found in at least one experiment [Frank(2007)].
We use E = 3.4 TPaÅ, the product of 1 TPa and the interlayer spacing of graphite,
3.4 Å. Substituting our choices for σ and E into Eq. (5.7), we find B = 12.6 eV/Å2 and
µ = 9.1 eV/Å2 for the bulk and shear moduli, respectively, in agreement with literature
values [Gazit(2009), Kudin(2001)]. All these values are in agreement with results of sim-
ulations for zero temperature [Zakharchenko(2011)].

The bending rigidity of graphene, κ, is mainly determined by the out-of-plane pz orbitals
such that it cannot be inferred from other elastic constants. It has been shown that κ
decreases with increasing temperature [Liu(2009)]. Literature values for zero tempera-
ture range from 0.85 to 1.22 eV and we choose κ = 1.1 eV [Fasolino(2007), Gazit(2009),
Liu(2009), Kudin(2001)].

The mass density of graphene, ρ = 7.61 × 10−7 kg/m2, follows directly from the atomic
weight of natural carbon, 12.01 u, and the interatomic distance in graphene, 1.42 Å.

5.5.2. In-plane phonons

The dispersion relation of in-plane modes with fixed boundaries is gapped and features
infinitely many branches with different energies originating from the zone center, Figs. 5.3
(a) and 5.3 (e). The gap relates to the energy necessary for fixing the boundaries and
is given by 2.1 ~

√
E/ρ /W . For W = 30 nm, this gap will be 1.0 meV, corresponding to

a magnetic field of 8.4 T. For large wave numbers, all branches converge to a common
line, which we label TA. A second line, labeled LA, is supported by different branches
throughout the dispersion relation. Due to coupling at the ribbon boundaries there are no
purely transverse or longitudinal modes. However, we do find that the modes on the TA
(LA) line have predominantly transverse (longitudinal) character, Figs. 5.4 (a) and 5.4 (b).
The corresponding sound velocities are vLA = 22 km/s and vTA = 14 km/s, independent
of the ribbon width. These values and the ratio vLA/vTA = 1.6 are in good agreement
with previous calculations for bulk graphene (19.5 km/s, 12.2 km/s) [Falkovsky(2008)] and
carbon nanotubes (19.9 km/s, 12.3 km/s) [Suzuura(2002)]. Nevertheless, we point out that
our sound velocities are proportional to

√
E/ρ, a value that is still under discussion for

graphene. The approach to linear, bulk-like behavior is expected for large wave numbers,
where the finite ribbon width appears like bulk for short-wavelength phonons.

For free boundaries, the dispersion relation of in-plane modes is ungapped and the two
branches that start at zero energy converge slightly below the TA line, Figs. 5.3 (b)
and 5.3 (f). The sound velocities and linear behavior for large wave number do not
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5. Acoustic phonons and spin relaxation in graphene nanoribbons

depend on boundary conditions, as one would expect from the same argument as above.
Predominantly transverse and predominantly longitudinal modes are shown in Figs. 5.4
(c) and 5.4 (d). The typical zero-point motion amplitude of in-plane modes is 40 fm.

5.5.3. Out-of-plane phonons

The dispersion relation of out-of-plane modes with fixed boundaries is shown in Figs. 5.3
(c) and 5.3 (g). The gap due to the fixed boundary conditions is given by 22.4 ~

√
κ/ρ /W 2,

which yields 7.9µeV for W = 30 nm. The corresponding magnetic field is 68 mT. There
are infinitely many branches that correspond to different transverse excitations, Figs. 5.1
(a) and 5.1 (b). Again, away from the zone center, all branches approach bulk behavior,
that is, a quadratic dispersion for out-of-plane modes [Falkovsky(2008)].

Similarly, the out-of-plane modes with free boundaries disperse quadratically as in the
bulk, for large wave numbers, Figs. 5.3 (d) and 5.3 (h). The dispersion relation is gapless
and one branch exhibits a finite sound velocity at the zone center. This sound velocity
amounts to about 70 m/s for W = 30 nm, is proportional to

√
κ/ρ /W , and hence goes to

zero for large W , again in agreement with bulk graphene. The typical zero-point motion
amplitude of out-of-plane modes is 0.4 pm.

5.6. Deformation potential and spin relaxation

Several mechanisms contribute to spin relaxation: out-of-plane modes via direct spin-
phonon coupling and in-plane phonons via the deformation potential and bond-length
change [Struck(2010)]. Due to inversion symmetry, piezoelectric coupling does not oc-
cur in graphene. Here, we discuss the deformation potential, which gives the dominant
contribution to T−1

1 under certain conditions.

We find that any given in-plane phonon branch α couples either via bond-length change or
via the deformation potential, depending on whether its displacement field is even or odd
in the x coordinate2. The branch that originates from ω̄xy = 3.2 in Fig. 5.3 (e), labeled α0,
has a flat dispersion at the zone center and couples to the spin only via the deformation
potential2. As a consequence of the density of states in Eq. (5.1), this mechanism will
give the dominant contribution if the magnetic field is tuned to a value where the Zeeman
energy is close to the Van Hove singularity of α0 and coupling to out-of-plane modes is
weak. Van Hove singularities also occur for out-of-plane modes at different values of ω̄z,
Figs. 5.3 (c) and 5.3 (g). However, ω̄xy and ω̄z scale differently with W , which allows us
to choose a ribbon width where there is a singularity for in-plane modes (α0) but not for
out-of-plane modes. This situation will be discussed below.

2After publication of this work, we have found that, in fact, both the deformation potential and the
bond-length change couple only to branches with a displacement field odd in x. In lowest order,
even branches do not give rise to electron-phonon coupling. Up to certain special cases that do not
matter, here, the deformation potential is the dominant coupling on the odd branches α0 and α1

[Droth(2013)].
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5.6. Deformation potential and spin relaxation

For the branch labeled α1 in Fig. 5.3 (f), which is linear near the zone center, the spin
couples to phonons only via the deformation potential, as well2. Even though its density
of states is finite, we discuss its contribution to Eq. (5.1) as it is in accordance with
previous results for semiconductor quantum dots [Khaetskii(2001)].

In leading order, the deformation potential depends only on in-plane phonons,

HEPC = gD∇ · u‖(x, y) , (5.15)

where gD ≈ 30 eV is the coupling strength [Struck(2010), Suzuura(2002)] and ∇ =
(∂x, ∂y). The deformation potential is independent of the electron spin (↑, ↓) but it does
couple different electron orbits (k). As a consequence, HEPC couples to spin indirectly
when Rashba-type spin-orbit interaction, HR, is taken into account. In lowest order, the
spin-orbit-perturbed electronic states are given by

|k↑〉 = |k↑〉(0) +
∑
k′ 6=k

|k′ ↓〉(0)
(0)〈k′↓|HR|k↑〉(0)

Ek − Ek′ + gµBB
, (5.16)

where the superscript (0) indicates unperturbed product states. Using these spin-orbit
admixed states, we find

〈k↓|HEPC|k↑〉

=
∑
k′ 6=k

[
(HEPC)kk′(HR)↓↑k′k
Ek − Ek′ + gµBB

+
(HEPC)k′k(HR)↓↑kk′

Ek − Ek′ − gµBB

]
, (5.17)

where we denote the numerator in Eq. (5.16) as (HR)↓↑k′k and the spin-conserving transi-
tions of HEPC accordingly. This is the matrix element required to calculate the relaxation
rate in Eq. (5.1).

We find that for a given k′, the two terms in Eq. (5.17) exactly cancel each other at B = 0.
This effect is known as Van Vleck cancellation and is expected for time-reversal-symmetric
systems. Moreover, (HR)↓↑k′k vanishes if both k and k′ are even or odd at the same time.

For fixed GNR edges, the phonon spectrum is gapped. In the range 3.2 ≤ ω̄xy ≤ 3.3, the
branch α0 shows an almost flat dispersion3. Its sound velocity increases as vα0 ∝ q2 such
that the corresponding density of states behaves as (ρstates)α0 ∝ q−2. The matrix element
(5.17) varies as q B0.5: the dipole approximation gives rise to one order in q and Van
Vleck cancellation to one order in B [VanVleck(1940), Trauzettel(2007), Struck(2010),
Droth(2010)], reduced by ω−0.5 ∝ B−0.5 due to the prefactor in Eq. (5.12). In total, the
contribution to the spin relaxation rate given by Eq. (5.1) is proportional to the magnetic
field. Due to the Van Hove singularity of α0 at ω̄xy = 3.2, we expect that T−1

1 ∝ B is the
dominant behavior in the range 3.8 ≤ B ≤ 4.0 T (12.8 ≤ B ≤ 13.2 T) for W = 100 nm
(W = 30 nm), where the density of states of out-of-plane modes is relatively small. These
are accessible laboratory magnetic fields and hence allow for experimental examination of
our results.

3After publication of this work, we have found that instead of α0, only the branch originating at ω̄xy ≈ 2
yields a finite coupling. The subsequent discussion on T−11 ∝ B does not apply for α0, see section VII
B in [Droth(2013)].
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5. Acoustic phonons and spin relaxation in graphene nanoribbons

If the magnetic field is tuned to a value where the Zeeman energy lies within the gap
of both in-plane and out-of-plane phonons [Figs. 5.3 (e) and 5.3 (g)], the electron spin
cannot flip due to phonon emission. Then, multiple-phonon processes, where the Zeeman
energy corresponds to the difference between an absorbed and an emitted phonon, become
important. Again due to the gap, these processes can be frozen out if the temperature
T is low enough. As discussed in Sec. 5.5, the very soft out-of-plane modes have a
much smaller gap, which therefore imposes a tighter condition and which scales as W−2.
Assuming W = 30 nm, the spin lifetime inferred from Eq. (5.1) diverges for B < 68 mT
and T � 90 mK. Very narrow GNRs with W = 10 nm are studied experimentally, as well
[Wang(2011)]. Accordingly, the requirements for such a ribbon would be B < 0.61 T and
T � 0.8 K.

GNRs with free edges have ungapped phonon spectra. Due to energy conservation, the
Zeeman energy must match the phonon energy, such that only the two lowest branches in
Fig. 5.3 (f) are accessible for low magnetic fields (B . 100 mT). The branch α1 couples
only via the deformation potential and the other branch is a pure shear mode. Due to its
linear dispersion, we find B ∝ ω ∝ q and a constant density of states for α1. The matrix
element in Eq. (5.17) scales as B2.5: one order in B arising each from the Van Vleck
cancellation, dipole approximation, and the gradient4 in Eq. (5.15), again reduced by the
prefactor ω−0.5 ∝ B−0.5 in Eq. (5.12). Consequently, for low magnetic fields, the contri-
bution of deformation potential and spin-orbit coupling to the spin relaxation rate given
by Eq. (5.1) scales with B5. In semiconductors, T−1

1 ∝ B5 holds, as well [Khaetskii(2001)].

5.7. Conclusion

Acoustic phonons are relevant for many GNR applications and can be probed with estab-
lished techniques [Oshima(1988), Mohr(2007)]. Using a continuum model that accounts
for the monatomic thickness of graphene, we derive boundary conditions that lead to
Hermitian wave equations. We focus on two types of boundary configurations: fixed and
free boundaries. We explicitly give the corresponding classical solutions and, ensuring
Hermiticity, infer a quantum theory with ribbon phonon creation and annihilation opera-
tors. Free boundaries lead to ungapped dispersion relations. In contrast, fixed boundaries
lead to a gapped phonon dispersion of both in-plane and out-of-plane modes, which is
most suitable for achieving high mobilities as well as long spin lifetimes. Regardless of the
boundary configuration, all dispersion relations approach bulk behavior for wavelengths
small compared to the ribbon width. Sound velocities that relate to transverse and lon-
gitudinal acoustical in-plane ribbon modes are in good accordance with values for bulk
graphene. We also study phonon-induced spin relaxation in GNRs. We find that, if the
Zeeman energy is tuned close to a Van Hove singularity of the density of states of in-plane
phonons, the deformation potential can be the dominant effect for spin relaxation. In this
case, it should be possible to probe our predicted behavior for T1 experimentally. If the
Zeeman energy lies within the gap of both in-plane and out-of-plane phonons with fixed
boundaries and for low enough temperatures, coupling to the lattice is inhibited such that
the spin lifetime obtained from Eq. (5.1) diverges.

4In the case of α0, the gradient only gives a constant as λi ∝ ω ≈ const., there.
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6. Electron spin relaxation in graphene
nanoribbon quantum dots

In this chapter, we present an adapted version of our manuscript that has been published
in Physical Review B 87, 205432 (2013).

Abstract
Graphene is promising as a host material for electron spin qubits because of its predicted
potential for long coherence times. In armchair graphene nanoribbons (aGNRs) a small
bandgap is opened, allowing for electrically gated quantum dots, and furthermore the
valley degeneracy is lifted. The spin lifetime T1 is limited by spin relaxation, where the
Zeeman energy is absorbed by lattice vibrations, mediated by spin-orbit and electron-
phonon coupling. We have calculated T1 by treating all couplings analytically and find
that T1 can be in the range of seconds for several reasons: (i) low phonon density of states
away from Van Hove singularities; (ii) destructive interference between two relaxation
mechanisms; (iii) Van Vleck cancelation at low magnetic fields; (iv) vanishing coupling to
out-of-plane modes in lowest order due to the electronic structure of aGNRs. Owing to
the vanishing nuclear spin of 12C, T1 may be a good measure for overall coherence. These
results and recent advances in the controlled production of graphene nanoribbons make
this system interesting for spintronics applications.
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6.1. Introduction

Graphene has attracted intense scientific interest for its mechanical, electronic, and other
properties [Wallace(1947), Novoselov(2005), Nair(2008), Meyer(2007)]. Within the plane
of its two-dimensional lattice it is extremely rigid while out-of-plane deformations are rel-
atively soft due to the lack of a linear restoring force [Fasolino(2007), Gazit(2009)]. The
absence of a bandgap leads to a quasi-relativistic behavior of the electrons that can be de-
scribed by a Dirac-like Hamiltonian [Katsnelson(2006), CastroNeto(2009)]. However, for
typical semiconductor applications like transistors or spintronics devices, it is favorable to
work with a bandgap [Novoselov(2004), Farmer(2009), Hanson(2007), Trauzettel(2007)].
Due to Klein’s paradox, a bandgap is necessary to confine charge carriers electrostatically
in graphene [Klein(1929), Katsnelson(2006)]. There are different situations that lead to a
bandgap in graphene and some of them have already been studied in view of spintronics
applications [Trauzettel(2007), Recher(2010)].

Armchair graphene nanoribbons (aGNRs) can exhibit a bandgap and in addition al-
low for coupling of qubits in non-adjacent quantum dots (QDs) [Brey(2006), Han(2007),
Braun(2011)]. Such a non-local coupling of qubits is ideal for fault-tolerant quantum com-
puting and thus for scalability [Trauzettel(2007), Svore(2005)]. Over the past years, there
has been substantial progress towards the goal of controlling the GNR edge termination
within the production process and the controlled production of aGNRs might become
feasible in the near future [Jiao(2009), Wang(2011), Zhang(2013)].

Spintronics applications like the Loss-DiVincenzo quantum computer require spin co-
herence times much longer than typical operation times [Loss(1998), DiVincenzo(1998)].
When the qubit is represented by the real electron spin, carbon materials are consid-
ered promising due to the small atomic spin-orbit coupling and weak interaction with
nuclear spins in carbon [Trauzettel(2007), Bulaev(2008), Struck(2010)]. While the cur-
vature significantly enhances intrinsic spin-orbit coupling and hence spin relaxation in
carbon nanotubes, this effect should not occur in flat graphene [Kane(2005), Min(2006),
Bulaev(2008), Kuemmeth(2008), Gmitra(2009)]. The natural abundance of 13C, the only
stable carbon isotope with a finite nuclear spin I = 1/2 is only 1%. The concentration
of nuclear spins can be further decreased by depleting this isotope. For magnetic fields
above the 10 mT-regime, flip-flop processes between nuclear spins and electronic spins
become suppressed due to the different magnetic moments, µB � µnuc. We expect that
T2 is dominated by T1 and that the spin relaxation time is a good measure for overall
coherence, T1 ≈ T2/2.

In this paper, we calculate the spin relaxation time T1 for electrons that are confined in
an aGNR QD. The finite width of the quasi one-dimensional aGNR leads to confinement
in the transverse (x-) direction. As we will discuss in Sec. 6.3, aGNRs of appropriate
width have a bandgap. This allows to avoid Klein’s paradox and confine electrons in the
longitudinal (y-) direction by means of an electrostatic potential V (y). In a perpendicular
magnetic field Bez, the two possible spin states of an electron inside the QD are split by
the Zeeman energy gµBB = ~ω, where g = 2 is the electron g-factor. Fig. 6.1 shows a
sketch of the system.

Due to energy conservation, the Zeeman energy must be transferred to the lattice upon
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B1 D B2

e-

Figure 6.1.: Sketch of the system and definition of the coordinate frame. The GNR has
armchair terminations in the x-direction. The width of the sketched aGNR
is characterized by m = 3 and µ = −1 which leads to a bandgap that allows
for electrostatic confinement in the y-direction. The potential V (y) defines
the two barrier regions B1, B2 (shaded) and the dot region D, that lies sym-
metrically between the barrier regions. The interatomic distance in graphene
is a = 1.42 Å.

spin relaxation. For typical lab magnetic fields B . 20 T, the Zeeman energy corresponds
to low-energy acoustic phonons at the center of the Brillouin zone [Droth(2011)]. We
consider two cases separately: (i) free and (ii) fixed boundaries. The electron-phonon
coupling HEPC comprises the deformation potential as well as the bond-length change
and couples in-plane vibrational modes to the electronic state. By including the spin-
orbit interaction HSOI, the spin thus becomes connected to the vibrational state of the
system. The coupling to the out-of-plane modes is considered, as well. Yet such a coupling
either vanishes identically due to the electronic structure in aGNRs or appears only in
higher order.

This paper is organized as follows: In Sec. 6.2, we present our model and in Sec. 6.3, we
recapitulate the bound states of aGNR QDs and explain the extended, quasi continuous
states. Acoustic GNR phonons are shortly reviewed in Sec. 6.4. The effective spin-phonon
coupling mechanisms that lead to T−1

1 via Fermi’s golden rule are clarified in Sec. 6.5. In
Sec. 6.6, we comment on the actual evaluation of T1. The results are presented in Sec. 6.7
and discussed in Sec. 6.8.

6.2. Model

The Hamiltonian of the system is

H = Helec +Hphon +HSOI +HEPC , (6.1)
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6. Electron spin relaxation in graphene nanoribbon quantum dots

where Helec and Hphon describe the unperturbed electronic system and the unperturbed
vibrational system, respectively. The spin-orbit interaction HSOI leads to an admixture of
opposite spin states such that the electron phonon coupling HEPC can induce a spin flip.
Denoting the Fermi velocity by vF and the pseudospin by σ, the unperturbed electronic
part of the system obeys the Hamiltonian

Helec =−i~vF

(
σx∂x+σy∂y 0

0 −σx∂x+σy∂y

)
+V (y) (6.2)

with eigenstates |k〉. The pure vibrational modes are described by

Hphon =
∑
α,q

~ωα,q
(
nα,q +

1

2

)
, (6.3)

where the summation runs over all phonon branches α and wavenumbers q. The angular
frequency ωα,q of a vibrational mode is implicitly determined by α and q and nα,q is the
occupation number operator. The eigenstates are the occupation number states |nα,q〉.

Since HEPC does not couple to the spin, the spin-orbit interaction HSOI needs to be
included in order to obtain a spin relaxing mechanism via admixture of electronic states
[Khaetskii(2001)]. For this admixture, we consider both bound states confined inside the
dot and extended, quasi continuous states energetically above the confinement potential.

As will be discussed in more detail,HSOI perturbs the electron-spin product states |k〉|s〉 =
|k s〉(0), where s =↑, ↓. We denote the first order perturbed states by |k s〉. Finally, the
electron-phonon coupling leads to finite matrix elements 〈k ↓|HEPC|k ↑〉. This allows us
to use Fermi’s golden rule in order to calculate the spin relaxation rate

T−1
1 =

2π

~
∑
α,q

|〈k↓, nα,q + 1|HEPC|k↑, nα,q〉|2ρstates(~ωα,q) , (6.4)

where ρstates(~ωα,q) is the phonon density of states at the respective energy. The result is
a function of three parameters: (i) length-to-width ratio (aspect ratio) L/W of the QD,
(ii) potential depth ∆V of the QD, and (iii) perpendicular magnetic field B. We find that
T1 can be as large as several seconds if ρstates is small and the two mechanisms in HEPC

interfere destructively.

6.3. Electronic states

Due to the aGNR edges where the wavefunction vanishes on both sublattices, electronic
states in an aGNR have transverse wavenumbers

qn = π(n− µ/3)/W , (6.5)

where n = 0,±1,±2, ... and W = (3m + µ)
√

3a is the ribbon width [Brey(2006)]. The
width depends on m ∈ N and µ ∈ {−1, 0,+1}. The interatomic distance is a = 1.42 Å.

58 Matthias Droth and Guido Burkard, Physical Review B 87, 205432 (2013).
c© 2013 American Physical Society.



6.3. Electronic states

(a)

DB1 B2

1.0
0.0

(a)

(b)

Figure 6.2.: Electron states in an aGNR QD. (a) Sketch of a bound state and (b) QD
bound state energy spectrum given by roots of Eq. (6.12). (a) Due to armchair
boundaries, the minimum transverse wavenumber is q0 = ±π/3W for µ = ∓1.
As a consequence, the conduction band is separated from the valence band
by a gap of Egap = 2~vF|q0|. All energies shall be measured w.r.t. the middle
of this bandgap inside the QD region. In the barrier regions, both bands
are shifted by the barrier height ∆V . The resulting QD hosts at least one
bound state. All bound states have the form given by Eq. (6.11) and decay
exponentially for y → ±∞. The arrows underneath the Greek letters indicate
the directed character of the according part of the wavefunction. The plotted
probability density |ψ(y)|2 belongs to the lowest bound state for L/W = 5
and ∆V = 1.8~vFq0. (b) Bound states exist for roots of Eq. (6.12) and can
be plotted in a ∆V -E-plot. There is at least one bound state for all values
of ∆V . As ∆V is increased, more bound states fit into the energy gap until
the lowest state can leave the QD via valence states in the barrier regions.
Notably, Eq. (6.12) has exactly one root for every value of E ≥ ~vFq0. We
enumerate the bound states by j = 0, 1, 2, . . .. The circled position on the
j = 0 line marks the state plotted in panel (a). For the shown plot, the aspect
ratio is L/W = 5.
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6. Electron spin relaxation in graphene nanoribbon quantum dots

Due to Eq. (6.5) and E = ±~vF

√
q2
n + k2, where vF is the Fermi velocity and k is the

longitudinal electronic wavenumber, there is a bandgap Egap = 2~vF|q0|. Since Egap = 0
for µ = 0, we assume µ = ±1 from now on. Note that µ is determined by the number
of atoms across the GNR, Fig. 6.1. Spinors with different transverse quantum number
n are orthogonal such that we shall focus on the lowest transverse wavenumber with
|q0| = π/3W . The resulting gap Egap = 2~vFπ/3W allows to avoid Klein’s paradox and
confine charge carriers electrostatically in a finite square potential [Trauzettel(2007)]

V (y) =

{
0 : y ∈ D (dot region),
∆V : y ∈ B1 ∪ B2 (barrier regions).

(6.6)

The barrier region B1 extends from the left end of the aGNR to y = 0 and the barrier
region B2 extends from y = L to the right end. The dot region D lies symmetrically
between the barrier regions. The resulting potential landscape is shown in Fig. 6.2 (a)
together with a bound state, which will be discussed in the next subsection. The length
of the QD is denoted by L and assumed to be much smaller than the overall ribbon
length, L � LGNR. For concreteness, we assume an overall GNR length of LGNR =
50W [Jiao(2009), Wang(2011)]. The finite square potential needs to be considered in the
electronic dispersion relation, which becomes

E = V (y)± ~vF

√
q2

0 + k2 . (6.7)

Provided that the barrier height ∆V does not exceed a critical value 2~vF|q0| + ∆V1,
we can easily order bound states and extended states by their energies. The critical
value and ∆V1 will be explained in the next subsection - for now, we only assume that
∆V does not exceed it. Then, a state with energy E ∈ [~vF|q0|, ~vF|q0| + ∆V ] is bound
since its longitudinal wavenumber k is real in the dot region and complex in the barrier
regions, thus leading to an evanescent behavior. For E > ~vF|q0|+ ∆V , the longitudinal
wavenumber is real in all regions. This leads to extended waves. Both bound and extended
states contribute to the admixture mechanism and thus shall be discussed in more detail.

6.3.1. Bound states

To describe bound states in aGNRs, one can assume an infinite ribbon [Trauzettel(2007)].
On one hand, LGNR will always be finite in reality. On the other hand, bound states
are mainly localized in the dot region 0 ≤ y ≤ L and decay exponentially in the barrier
regions, as shown in Fig. 6.2 (a). As mentioned above, we assume L � LGNR, such that
the overall ribbon still appears approximately infinite for bound states. This allows us to
follow the description with LGNR →∞ for bound states [Trauzettel(2007)].

Accordingly, we denote the four component envelope wavefunction by

ψ = (ψ
(K)
A , ψ

(K)
B ,−ψ(K′)

A ,−ψ(K′)
B ) (6.8)

and assume plane waves along the ribbon, ψ
(±)
n,k (x, y) = χ

(±)
n,k (x)e±iky, where

χ
(+)
n,k = a(+)

n (1, zn,k, 0, 0)eiqnx + b(+)
n (−zn,k, 1, 0, 0)e−iqnx

+c(+)
n (0, 0,−zn,k, 1)eiqnx + d(+)

n (0, 0, 1, zn,k)e
−iqnx (6.9)
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and

χ
(−)
n,k = a(−)

n (zn,k, 1, 0, 0)eiqnx + b(−)
n (1,−zn,k, 0, 0)e−iqnx

+c(−)
n (0, 0, 1,−zn,k)eiqnx + d(−)

n (0, 0, zn,k, 1)e−iqnx . (6.10)

With zn,k = ±(qn + ik)/
√
q2
n + k2, and longitudinal wavenumbers kD =

√
(E/~vF )2 − q2

n

(dot region), κB = kB/i =
√
q2
n − ((E − e∆V )/~vF )2 (barrier regions), bound states have

the form

ψ =


αnχ

(−)
n,κBe

κBy : y ∈ B1,

βnχ
(+)
n,kD

eikDy + γnχ
(−)
n,kD

e−ikDy : y ∈ D,

δnχ
(+)
n,κBe

−κB(y−L) : y ∈ B2.

(6.11)

The matching conditions at the interfaces B1/D and D/B2 (that is, at y = 0, L) are
discussed in [Trauzettel(2007)] and can be met for roots of the transcendental equation

tan(kDL) =
kDκB

±
√
q2
n − κ2

B

√
q2
n + k2

D − q2
n

. (6.12)

For |q0| = π/3W and L/W = 5, Fig. 6.2 (b) shows these roots as a function of the
barrier height ∆V . There is a finite number of longitudinal excitations for any given
∆V . The different bound states can be enumerated by j = 0, 1, 2, ... and have distinct
coloring in our figure. The j-th bound state has j nodes inside the dot region. For a
given excitation, ∆V can be increased until the valence band reaches the energy of the
lowest state which can now leave the QD via valence states in the barrier regions. Note
that this occurs exactly when the argument on the l.h.s. of Eq. (6.12) equals a multiple
of π. For the ground state, this means kD ∈ [0, π/L] such that the maximum ground
state energy is E0,max = ~vF

√
q2

0 + (π/L)2. States of higher energy belong to the j-th
longitudinal excitation (j > 0) which begins at ∆Vj = ~vF(jπ/L). For ∆V < ∆V1, the
ground state is the only bound state. This will be important for the evaluation of T1, see
Secs. 6.6 and 6.7.

The critical value for ∆V mentioned before is ∆V = 2~vF|q0|+ ∆V1. If the barrier height
surpasses this value, the lowest state inside the QD can leave it via valence states in the
barrier region. That is, the state becomes extended thus affecting the ordering of bound
and extended states. Throughout this paper we assume that ∆V does not exceed this
threshold such that the ground state belongs to j = 0.

6.3.2. Extended states

We assume LGNR = 50W for the overall length of the GNR such that possible wavenum-
bers are kEB = 0,±2π/LGNR, ...,±π/a with lattice constant a. Since energy is conserved,
the wavenumber becomes

kED =

√(√
q2
n + k2

EB + ∆V/~vF
)2

− q2
n (6.13)
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B1B1 D B2

Figure 6.3.: Sketch of an extended state. The potential landscape, the aspect ratio L/W ,
and the barrier height ∆V are the same as in Fig. 6.2 (a) for bound states.
The plotted probability density belongs to an extended state that is incident
from the left as described by Eq. (6.14) and for which kEB = 20π/LGNR. The
arrows underneath the Greek letters indicate the direction of propagation of
the according part of the wavefunction.

in the dot region. Depending on the sign of kEB, the state is incident from y < 0, leading
to

ψ=


εnχ

(+)
n,kEB

eikEBy + αnχ
(−)
n,kEB

e−ikEBy : y ∈ B1,

βnχ
(+)
n,kED

eikEDy + γnχ
(−)
n,kED

e−ikEDy : y ∈ D,

δnχ
(+)
n,kEB

eikEB(y−L) : y ∈ B2,

(6.14)

see Fig. 6.3, or it is incident from y > L, which is described by

ψ=


αnχ

(−)
n,kEB

e−ikEBy : y∈B1,

βnχ
(+)
n,kED

eikEDy + γnχ
(−)
n,kED

e−ikEDy : y∈D,

δnχ
(+)
n,kEB

eikEB(y−L) + εnχ
(−)
n,kEB

e−ikEB(y−L) : y∈B2.

(6.15)

The matching conditions at y = 0, L can always be met. In contrast to bound states,
extended states are propagating waves in the barrier regions.
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6.4. Acoustic GNR phonons

The phonon energies we are interested in need to match the Zeeman splitting, ~ω = gµBB,
where ω is the phonon frequency, g the electron g-factor, and µB denotes Bohr’s magneton.
For typical lab magnetic fields B . 20 T, this implies low-energy acoustic phonons at the
center of the Brillouin zone which can be modeled by continuum mechanics [Droth(2011),
Landau&Lifschitz]. In this model, deformations are described by the displacement field
u(r). While the components uxz and uyz of the strain tensor uik = (∂iuk + ∂kui)/2 are
known to vanish for thin plates in general, the monatomic thickness of graphene implies
that uzz must vanish, as well. With uiz ≡ 0, the elastic Lagrangian density of monolayer
graphene is given by [Suzuura(2002), Mariani(2009), Droth(2011)]

L = T − V =
ρ

2
u̇2 − κ

2
(4uz)2 − B + µ

2
u2
ii + µu2

ik , (6.16)

where4 = ∂2
x+∂2

y , the sum convention with uii = uxx+uyy+uzz and u2
ik = u2

xx+u2
xy+ · · ·

has been used, ρ is the mass density, and κ is the bending rigidity. The bulk (B) and
shear (µ) moduli can be expressed by Poisson’s ratio σ and Young’s modulus E . The
numerical values of elastic and other constants we use are listed in Table 6.1. Eq. (6.16)
shows that in-plane vibrations u‖ decouple from out-of-plane vibrations u⊥. By assuming
ui(x, y) = f i(x) exp[i(qy − ωt)] for a single mode and imposing free or fixed conditions
as discussed in [Droth(2011)], we obtain the according phonon dispersions (Fig. 6.4) and
the explicit displacement fields. The latter can be quantized and then take the form

u|| =
∑
α,q

rα,q(f
x
α,qex + f yα,qey)e

iqy ,

u⊥ =
∑
α,q

rα,qf
z
α,qeze

iqy , (6.17)

where q is the phonon wavenumber, α labels the phonon branch, and

rα,q =
√

~/(2ρLWωα,q)(bα,q + b†α,−q) (6.18)

is the normal coordinate. The operator bα,q (b†α,q) annihilates (creates) a phonon on branch
α with wavenumber q.

As discussed in the following section, we can neglect coupling to out-of-plane modes and
focus on in-plane modes. The dimensionless frequency of in-plane modes ω̄xy is related

to the physical frequency by ω̄xy = ω
√
ρ/E W . In the continuum model, all branches

extend to infinity but we are only interested in the range ω̄xy ∈ [0, 5] since for a typical
GNR width of W = 30 nm, ω̄xy = 5 relates to a magnetic field of 20 T. The dimensionless
wavenumber q̄ is obtained from the physical wavenumber via q̄ = qW . For symmetry
reasons explained in Sec. 6.6, not all branches contribute to spin relaxation but only
those which are explicitly labeled in Fig. 6.4.

In the case of free boundaries, the branches α2, α4, and α5 are relevant. While α2 extends
throughout the considered interval, α5 only exists above ω̄xy = 4.16, and α4 needs further
discussion. Its minimum is 3.05 and occurs at a finite value q̄0 where the density of states
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Figure 6.4.: Phonon dispersion for (a) free and (b) fixed boundaries. The dimensionless
frequency ω̄xy is connected to the physical frequency by ω̄xy = ω

√
ρ/E W ,

where the radicand contains elastic constants listed in Table 6.1. We restrict
our interest to the frequency range ω̄xy ∈ [0, 5] since for W = 30 nm, the
upper bound already relates to a magnetic field of 20 T. The scale on the
r.h.s. shows the magnetic field for W = 30 nm. Due to parity w.r.t. x, only
the labeled branches (αi for free and α̃1 for fixed boundaries) assist in spin
relaxation. (a) The phonon spectrum is gapless for free boundaries. The
branch α4 has a minimum and hence a diverging density of states for finite
q̄. Its constituent parts α4,1 and α4,2 shall be treated separately. (b) Fixed
edges lead to gapped phonon spectrum. For W = 30 nm, this gap corresponds
to 8.25 T. In our range of interest, the branch labeled α̃1 provides the only
channel for spin relaxation.

has a Van Hove singularity. We consider two parts: for q̄ < q̄0, we label the branch α4,1

and its label for q̄ > q̄0 is α4,2. The range of α4,1 is ω̄xy ∈ [3.05, 3.18] and α4,2 extends
from its minimum to infinity.
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For fixed boundaries, we only need to consider the branch α̃1. It extends from ω̄xy = 2.06
to infinity. We emphasize that for a typical GNR width of 30 nm, single phonon processes
do not occur up to 8.25 T as there are no phonons below ω̄xy = 2.06 for fixed boundaries.

6.5. Coupling mechanisms

Phonons do not couple to the electron spin directly. The relevant mechanism usu-
ally involves the spin-orbit interaction [Khaetskii(2001), Bulaev(2008), Struck(2010)]. In
graphene, the spin-orbit interaction is given by

HSOI = HI +HR = λIτzσzsz + λR(τzσxsy − σysx) (6.19)

and we will consider it in order to obtain an indirect spin-phonon coupling [Kane(2005),
Min(2006), Gmitra(2009)]. The intrinsic (Dresselhaus) term HI has coupling strength λI
and the Rashba (or extrinsic) term HR couples with strength λR. The valley is denoted by
τz, pseudospin by σ, and real spin by s. In the following, we show how the real electron
spin can be connected to the vibrational state of the system by taking the spin-orbit
interaction into account.

6.5.1. Coupling to in-plane modes

In first order perturbation theory, HR corrects the electron-spin product states |k〉| ↑〉 =
|k↑〉(0) to

|k↑〉 = |k↑〉(0) +
∑
k′ 6=k

|k′↓〉(0)
(0)〈k′↓|HR|k↑〉(0)

Ek − E ′k + gµBB
, (6.20)

and |k ↓〉 accordingly. We emphasize that the summation index k′ runs over both bound
and extended states. The potential depth and the aspect ratio determine how many
bound states exist, Fig. 6.2 (b). For extended states, we consider all wavenumbers inside
the first Brillouin zone, kEB = 0,±2π/LGNR, ...,±π/a.

The second term in Eq. (6.20) admixes states with opposite spin such that the electron-
phonon coupling HEPC can induce a spin flip [Khaetskii(2001)]

〈k↓ |HEPC|k↑〉 =
∑
k′ 6=k

[
(HEPC)kk′(HR)↓↑k′k
Ek − Ek′ + gµBB

+
(HEPC)k′k(HR)↓↑kk′

Ek − Ek′ − gµBB

]
, (6.21)

where we denote the numerator in Eq. (6.20) as (HR)↓↑k′k and the spin-conserving tran-
sitions of HEPC accordingly. We find that for a given k′, the two terms in Eq. (6.21)
exactly cancel each other at B = 0. This effect is known as Van Vleck cancelation and is
expected for time-reversal-symmetric systems [VanVleck(1940)]. Moreover, (HR)↓↑kk′ van-
ishes if both k and k′ represent bound states and the longitudinal excitation indices jk,
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6. Electron spin relaxation in graphene nanoribbon quantum dots

jk′ (see Fig. 6.2) are both even or both odd. In the electron phonon coupling Hamiltonian
HEPC, we consider the deformation potential HVEP as well as bond-length change HBLC:

HEPC = HVEP +HBLC , (6.22)

HVEP = g1∇ · u‖ ,

HBLC = g2


0 Ax−iAy 0 0

Ax+iAy 0 0 0
0 0 0 Ax+iAy
0 0 Ax−iAy 0

 ,

where g1,2 are coupling constants, (Ax, Ay) = (uxx−uyy,−2uxy), and the basis of Eq. (6.8)
has been used [Suzuura(2002), Mariani(2009), CastroNeto(2009)].

6.5.2. Vanishing out-of-plane deflection coupling

Low-energy acoustic phonons at the center of the Brillouin zone have a wavelength much
larger than the lattice constant and produce a local tilt of the GNR. In the local ribbon
frame Σ′ where n = e′z is the vector normal to the ribbon plane the local spin matrix
is described by s′z = sz − ∂xuzsx − ∂yuzsy. As a consequence, the intrinsic spin-orbit
interaction

HI = λIτzσz(sz − ∂xuzsx − ∂yuzsy) (6.23)

becomes dependent on out-of-plane phonons such that these could flip the spin. This is
known as deflection coupling [Rudner(2010), Struck(2010)]. However, there is a propor-
tionality to τz in Eq. (6.23). Since the electronic states we use have the property that the
wavefunction has equal weight on each valley1, the contributions from K and K ′ add up
to zero and the deflection coupling between spin and out-of-plane modes vanishes.

If the spin-orbit admixed states of Eq. (6.20) are used, there is a finite overlap only
between both admixed parts such that the resulting mechanism is proportional to λIλ

2
R

and hence negligible.

Compared to in-plane phonons, both deformation potential and bond-length change ap-
pear only in higher order such that we neglect these mechanisms for out-of-plane phonons.

6.6. Evaluation of T1

Using Eq. (6.4), we calculate the spin relaxation rate for the electron in the lowest bound
state (ground state) of the QD. For concreteness, we assume µ = −1 in Eq. (6.5). Ac-
cording to Eqs. (6.11), (6.14), and (6.15), both bound and extended states have a finite
probability density in the barrier regions. However, bound states are localized in the dot
region and decay exponentially in the barrier regions. In particular the ground state,
plotted in Fig. 6.2 (a), has a very low probability density in the barrier regions. Its

1See Sec. 6.3 in this paper and Eqs. (34), (35) in the supplementary information of [Trauzettel(2007)].
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overlap with another bound state in the barrier regions is negligible. Only high-energy
extended states have a significant contribution outside the dot region. Yet the overlap
of an extended state with the ground state outside the dot region will still be small and
since they are energetically far apart, the contribution from the barrier regions can be
neglected. As a consequence, we can restrict the integrals in Eq. (6.21) to the dot region.

As discussed in Sec. 6.4, we consider phonons with free boundaries as well as phonons
with fixed boundaries. Not all branches contribute to spin relaxation: Because of mirror
symmetry w.r.t. x = 0, HBLC and HVEP are even or odd in x, depending on what phonon
branch they belong to. Due to their similar form2, the mechanisms are either both even
or both odd for a given branch. The x-dependencies of the electronic states in the matrix
element (HEPC)k′k cancel out, ei(q0−q0)x = 1, such that the x-integral vanishes if Eq. (6.22)
is odd in x. The branches α2, α4, and α5 in Fig. 6.4 (a) and α̃1 in Fig. 6.4 (b) have
couplings HEPC that are even in x and hence can relax the spin.

For a given relaxation channel (α, q), both mechanisms HVEP and HBLC are combined in
Eq. (6.4) coherently. Moreover, the couplings via bound states and extended states in
Eq. (6.20) are added up in a coherent way. We are interested in the relaxation of the spin
in the ground state, which corresponds to j = 0 in Fig. 6.2 (b) and hence restrict the
barrier height to ∆V ∈ [0, 2~vFq0 +∆V1]. If ∆V exceeds this upper bound, valence states
become available in the barrier regions and the lowest state inside the QD can leave the
dot region. For ∆V < ∆V1 on the other hand, the ground state is the only bound state
such that the perturbation in Eq. (6.20) comes about only due to extended states, which
fully determine the spin relaxation in this case.

For spin relaxation, Eq. (6.4) is proportional to nα,q + 1 and we assume nα,q = 0, i.
e. sufficiently low temperature, kBT � ~ω = gµBB. By kB we denote Boltzmann’s
constant. Assuming a magnetic field of B = 1 T, this means T � 1.3 K. For T & 15 K,
spontaneous emission can be neglected since nα,q � 1 and one obtains the spin relaxation
by multiplying our results with the expectation value of the Bose distribution

〈nα,q(B, T )〉 =

(
e
gµBB

kBT − 1

)−1

. (6.24)

The spin relaxation time T1 is a good measure for overall coherence when pure dephasing,
which comes from coupling to nuclear spins, is negligible. Due to the low density of
nuclear spins in natural carbon and the very different magnetic moments µB � µnuc,
we expect that flip-flop processes with nuclear spins can be neglected for magnetic fields
above 10 mT. For a typical GNR width of W = 30 nm, 10 mT correspond to ω̄xy = 0.0025.
As a consequence, we restrict our calculations to the interval ω̄xy ∈ [0.0025, 5]. The upper
bound corresponds to a magnetic field of 20 T. All plots that show rates are cut off at
these boundaries.

2Both mechanisms contain derivatives ∂x,y. Due to the plate equation used in continuum mechanics
(see Eq. (3) in [Droth(2011)]), fx(x) is odd when fy(x) is even and vice versa. While the derivative
∂x applied to an even function returns an odd function and vice versa, the derivative ∂y corresponds
merely to a multiplication with iq.
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6. Electron spin relaxation in graphene nanoribbon quantum dots

6.7. Results

To calculate T1, we need to use the specific values of the elastic constants that define
the phonon spectrum. Young’s modulus for the two-dimensional lattice of graphene is
obtained by multiplying the bulk value with the thickness associated with graphene,
E = E3Dh, where h = 3.4 Å. For further discussion of the elastic constants, we refer to
[Droth(2011)]. Table 6.1 gives an overview of the constants we use in our calculation. The
Rashba type spin-orbit coupling is linear in the electric field and thus can be adjusted by
an external electric field or by using a suitable substrate [Min(2006)]. The spin relaxation

σ = 0.16 [Lee(2008), Faccio(2009), Kudin(2001)]
E = 3.4 TPa Å [Lee(2008), Faccio(2009), Kudin(2001)]

B = 12.6 eV/Å
2

[Kudin(2001), Gazit(2009)]

µ = 9.1 eV/Å
2

[Kudin(2001), Gazit(2009)]

ρ = 7.61× 10−7 kg/m2 ∗
g1 = 30 eV [Suzuura(2002), Mariani(2009), Struck(2010)]
g2 = 1.5 eV [Mariani(2009), Struck(2010)]
λR = 40× 10−6 eV [Min(2006), Gmitra(2009), Struck(2010)]
vF = 8.8× 105 m/s [CastroNeto(2009), Gmitra(2009), Struck(2010)]

Table 6.1.: Numerical values of the parameters we use in our calculation.
∗ This value follows directly from the atomic weight of natural carbon, 12.01 u,
and the interatomic distance in graphene, 1.42 Å.

time T1 depends on three parameters: (i) the aspect ratio L/W of the QD, (ii) the
potential depth ∆V of the QD, and (iii) the applied perpendicular magnetic field B ∝
ω̄xy. Moreover, the phonon spectrum and hence the spin relaxation depends on the
mechanical boundary conditions. We discuss free boundary conditions separately from
fixed boundaries.

6.7.1. Free boundary conditions

For symmetry reasons explained above, only the phonon branches with labels α2, α4

(consisting of parts α4,1 and α4,2), and α5 in Fig. (6.4) (a) need to be considered. The
respective rates of these relaxation channels are shown in Fig. 6.5 for an aspect ratio of
L/W = 5 and a barrier height of ∆V = 1.8~vFq0. The allocation of panels to branches
is as follows: panel (a) belongs to branch α5, (b) to α4,1, (c) to α4,2, and (d) to α2. Each
panel shows four separate contributions to T−1

1 that come about from the two mechanisms
in Eq. (6.22) and the admixture of bound states or of extended states in Eq. (6.20) for
each mechanism. The coherent sum of all four contributions is displayed by the grey
line. The deformation potential usually dominates over the bond-length change since its
coupling constant is 20 times larger, Table 6.1. For ∆V = 1.8~vFq0, extended states
are energetically far away from the ground state such that the contribution from the
deformation potential with admixture of bound states dominates in Fig. 6.5. Oscillations
in individual rates may be due to the phonon phase eiqy that is integrated with the matrix
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combined bVEP bBLC eVEP eBLC

(a)

(b)

(d)

20.019.218.417.616.8

12.712.512.3

201612840

20.018.016.014.0

(c)

nm

Figure 6.5.: Partial rates for various relaxation channels. For L/W = 5 and ∆V =
1.8~vFq0, all contributions to the four relaxation channels α5 (a), α4,1 (b),
α4,2 (c), and α2 (d) are shown. The contributions stem from HVEP with ad-
mixture of bound (labeled “bVEP”) states or extended states (“eVEP”) and
from HBLC with the same admixtures (“bBLC” and “eBLC”, respectively).
These contributions are added up coherently to the “combined” relaxation of
the respective channel.
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full bound extended

(a)

20.016.012.08.04.00
nm

(b)

Figure 6.6.: The relaxation rates for different dot depths ∆V . By summing up the com-
bined relaxation rates (see Fig. 6.5) of all channels available for a certain ω̄xy,
the full relaxation rate (grey line) is obtained. The lines labeled “bound”
and “extended” are obtained in a similar way by considering only bound or
extended states, respectively. At ω̄xy = 3.05, T−1

1 is discontinuous due to
the advent of the relaxation channel α4 that has a diverging density of states
at this point, Fig. 6.4 (a). Panel (a) accords to parameters L/W = 5 and
∆V = 1.8~vFq0 as in Fig. 6.5. Clearly, the energetically far off extended states
play a negligible role for such a deep dot. In panel (b), the barrier height is re-
duced to 0.2~vFq0 such that extended states are about as important as bound
states.

elements (HEPC)k′k and rotates according to the phonon dispersion when ω is changed.
Panels (c) and (d) show that the matrix elements (HVEP)k′k and (HBLC)k′k may interfere
destructively, thus decreasing T−1

1 by several orders of magnitude, yet typically not to
zero.

In all these plots, the bottom scale shows ω̄xy and the top scale shows the magnetic field
B that corresponds to ω̄xy, assuming a width of W = 30 nm. Note, that T−1

1 does not
depend on B and W separately, but only on the product BW ∝ ωW ∝ ω̄xy.
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full bound extended

(a)

20.016.012.08.04.00
nm

(b)

Figure 6.7.: This plot shows the same quantities as Fig. 6.6, yet for the aspect ratio
L/W = 2. Again, the influence of extended states depends on the barrier
height: ∆V = 2.0~vFq0 in (a) and ∆V = 0.9~vFq0 in (b). The extended
states dominate in the latter case.

Fig. 6.6 (a) shows the full spin relaxation rate for the situation of Fig. 6.5, that is, the
combined rates of all relaxation channels α2, α4,1, α4,2, and α5 (grey lines in Fig. 6.5)
are summed up to the full relaxation rate T−1

1 (grey line in Fig. 6.6 (a)). The rate with
the label “bound” (“extended”) is obtained in a similar fashion, but only contributions
with admixture of bound (extended) states are considered, here. For ∆V = 1.8~vFq0,
the admixture of bound states dominates the admixture of extended states by several
orders of magnitude. Yet by lowering ∆V , the influence of extended states can be close
to (Fig. 6.6 (b)) or even surpass the influence of the bound states. Fig. 6.7 shows two
cases for an aspect ratio of L/W = 2. In panel (a), the barrier height is ∆V = 2.0~vFq0

and extended states are basically irrelevant compared to the relaxation via bound states.
However, panel (b) shows that for ∆V = 0.9~vFq0, the major contribution comes from
the extended states.
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(a)
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Figure 6.8.: Spin relaxation rate T−1
1 for an aGNR with aspect ratio L/W = 5 and free

edges. (a) The rate is shown as a function of barrier height ∆V and phonon
frequency ω̄xy. The orange cut corresponds to the grey line in Fig. 6.6 (a)
and is repeated in panel (b) with a doubly logarithmic scale that highlights
the B5 dependence in the interval ω̄xy ∈ [0.0025, 0.5].

Fig. 6.8 (a) shows T−1
1 as a function of parameters ∆V and ω̄xy ∝ B, and for a fixed aspect

ratio of L/W = 5. In contrast to ω̄xy, the barrier height hardly changes the qualitative
picture. The orange cut at ∆V = 1.8~vFq0 is repeated in panel (b) in a doubly logarithmic
plot that highlights the B5 dependence in the range ω̄xy ∈ [0.0025, 0.5]. In this range, only
the branch α2 is available and has a linear dispersion B ∝ ω ∝ q. The matrix elements
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Figure 6.9.: The relaxation rate T−1
1 for (a) free and (b) fixed mechanic boundaries. (a)

This case is similar to Fig. 6.8 (a) yet with aspect ratio L/W = 2. (b) Fixed
boundary conditions and L/W = 2. Due to the gapped phonon spectrum, the
rate T−1

1 vanishes below ω̄xy = 2.06 for our model and with fixed boundaries.
Moreover, T−1

1 is not discontinuous in ω̄xy as the branch α̃1 never becomes
flat for finite q̄, see Fig. 6.4 (b).
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(HEPC)k′k have one power in B due to (i) the gradients ∝ q in Eq. (6.22), (ii) dipole
approximation ∝ q, and (iii) Van Vleck cancelation ∝ B, each. Because of the prefactor
∝ ω−0.5 in Eq. (6.18), we find (HEPC)k′k ∝ B2.5. As α2 is linear and hence ρstates ∝ B0 for
this low-field regime, this explains T−1

1 ∝ B5. Destructive interference of matrix elements
(HVEP)k′k and (HBLC)k′k can lead to a very small but nonzero relaxation rate.

Fig. 6.9 (a) shows a plot similar to Fig. 6.8 (a), yet for L/W = 2. The qualitative picture is
much different from the aspect ratio L/W = 5. Figs. 6.6 - 6.9 (a) all show discontinuities
at ω̄xy = 3.05 that stem from the branch α4, for which the density of states has a Van
Hove singularity at q̄0 while the coupling HEPC remains finite, Fig. 6.4 (a).

6.7.2. Fixed boundary conditions

Most importantly, fixed boundaries result in a gapped phonon spectrum. This means that
spin relaxation involving only one phonon cannot occur for magnetic fields that correspond
to ω̄xy < 2.06. Note, that for a typical width W = 30 nm, ω̄xy = 2.06 corresponds to a
magnetic field of 8.25 T. However, phonon scattering may still take place below this
threshold. In contrast to our claim in [Droth(2011)], only the branch α̃1 contributes to
the spin relaxation rate. Gradients, dipole approximation, and Van Vleck cancelation play
the same role as for free boundaries, yet due to the gap the frequency ω is not proportional
to some power of q such that there is no power law that connects T−1

1 and B as for free
boundaries.

Fig. 6.9 (b) shows an analog to panel (a), yet for fixed boundaries. For aspect ratios larger
than in Fig. 6.9 (b), oscillations occur which can again be explained with the phonon phase
eiqy that rotates according to the phonon dispersion when ω changes. These oscillations
arise only if the dot length is large enough.

6.8. Discussion

The spin relaxation times we find in our work range from 10−7 seconds to beyond the
second range. For cases where T1 is very long, it can be expected that other mechanisms
not considered here will dominate. Our results depend on the aspect ratio L/W , the
barrier height ∆V , and the Zeeman splitting gµBB ∝ ω̄xy but also on the mechanic
boundary conditions that lead to different phonon dispersions. By choosing/adjusting
these degrees of freedom properly, T1 can be in the range of seconds. We attribute such
long relaxation times to several effects:

(i) GNRs are quasi one-dimensional systems similar to carbon nanotubes. Both the
phonon and the electron density of states are thus limited compared to bulk graphene
[Bulaev(2008)].

(ii) Destructive interference between the deformation potential and the bond-length change
as well as oscillations due to the phonon phase eiqy that rotates according to the phonon
dispersion when ω changes both reduce the relaxation rate T−1

1 by several orders of mag-
nitude for specific magnetic fields.
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(iii) In contrast to other graphene QD systems, the electronic states in aGNRs are invari-
ant under time reversal symmetry which leads to Van Vleck cancelation [VanVleck(1940),
Trauzettel(2007), Struck(2010)]. As a result, Eq. (6.21) vanishes for B = 0.

(iv) Deflection coupling to out-of-plane modes vanishes as the evenly distributed weights
on K and K ′ spinor components cancel out. As a result, only the very rigid in-plane
modes need to be considered. This rigidity leads to a generally small density of phonon
states ρstates [Trauzettel(2007), Rudner(2010)].

(v) Phonons do not couple to spin directly so that spin-orbit coupling needs to be included.
However, spin-orbit coupling in graphene is weak compared to other systems (e.g. carbon
nanotubes) [Trauzettel(2007), Bulaev(2008), Gmitra(2009)].

(vi) The admixture of electronic states in Eq. (6.20) includes bound and extended states.
However, only every second bound state contributes; for parity in y-direction, jk and jk′
may not be even or odd at the same time, Fig. 6.2 (b). States that are energetically far
apart from the ground state play a small role in the sum which is usually the case for
extended states, depending on ∆V . As a consequence, the admixture of these electronic
states is suppressed [Khaetskii(2001), Trauzettel(2007)].

(vii) Due to parity in x-direction, not all phonon branches contribute to spin relaxation
but only those with explicit labels in Fig. 6.4, for which Eq. (6.22) is even in x. This
limits the number of relaxation channels [Droth(2011)]. It is an open question how strong
the avoided relaxation channels contribute to T−1

1 if this symmetry is broken.

(viii) We assume phonon vacuum in Eq. (6.4). A finite temperature can be included by
multiplying the rate T−1

1 with the expectation value of the Bose distribution 〈nα,q(B, T )〉
as explained in Sec. 6.6.

The carbon isotope 12C has no nuclear spin and the natural abundance of 13C, which has
spin 1/2, is only 1%. Thus, pure dephasing which comes from coupling to nuclear spins is
likely to play a minor role in graphene devices and T1 ≈ T2/2 becomes a good measure for
overall coherence. Our results show that electronic spin qubits in aGNRs are promising
for spintronics applications like the Loss-DiVincenzo quantum computer. With view to
recent advances in controlling the edge termination of GNRs it will be interesting to see
whether aGNR spintronics can be realized in experiment.
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7. Piezoelectricity in planar boron
nitride via a geometric phase

The work presented in this chapter is based on a collaboration with Vitor Pereira from
the Graphene Research Centre at the National University of Singapore. The manuscript
is in preparation.

Abstract
Due to their low surface mass density, two-dimensional materials with a strong piezoelec-
tric response are interesting for nanoelectromechanical systems with high susceptibility.
In contrast to graphene, the two sublattices in two-dimensional hexagonal boron nitride
(hBN) are occupied by different types of atoms, which allows for piezoelectricity. Recently,
the piezoelectric tensor of extended hBN has been calculated via density functional theory
(DFT). While an analytical description of piezoelectricity does exist for hBN nanotubes,
this is, to our knowledge, not the case for two-dimensional hBN. We set up a Hamiltonian
that involves the strain-induced pseudomagnetic field and derive the piezoelectric tensor
using the modern theory of polarization. Our findings are in exact agreement with sym-
metry arguments and give an analytical explanation for the piezoelectric electron-phonon
coupling in planar hBN. We also provide an estimation of the coupling strength and find
a piezoelectric response similar to reported DFT results.
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7.1. Introduction

Two-dimensional materials have become a subject of intense research efforts since the
experimental discovery of graphene about one decade ago [Novoselov(2004), Eda(2008),
CastroNeto(2009), Lin(2010)]. In addition to the monolayer of graphite, also transi-
tion metal dichalcogenides, hBN and other two-dimensional materials have gained a lot
of attention due to outstanding electronic, magnetic, structural, and other properties
[Novoselov(2005-2), Dean(2010), Radisavljevic(2011), Duerloo(2012)]. The prospect of
stacking individual monolayer materials with different properties on top of each other
holds the promise of a new paradigm on solid state physics as this modular concept of lay-
ered Van der Waals heterostructures might enable tailoring physical properties akin to the
bandgap engineering of semiconductor heterostructures [Novoselov(2012), Geim(2013)].

A key role in such heterostructures would likely fall to hBN. While graphene is praised
for its electronic properties, these are prone to interactions with a substrate and to con-
tamination [Nomura(2006), Chen(2008), Chen(2008-2)]. With a large bandgap at the
charge neutrality point of graphene and a lattice mismatch of less than 2%, hBN has
the potential to preserve graphene’s outstanding properties within such heterostructures
[Robertson(1984), Dean(2010), S lawińska(2010), Britnell(2012), Paszkowicz(2002)]. Both
graphene and hBN feature a honeycomb lattice with two atoms per unit cell. In contrast
to graphene, the two sublattices of hBN are occupied with different atoms, boron (B) and
nitrogen (N), see Fig. 7.1. This results in an ionic bond between the pz orbitals and a
bandgap [Robertson(1984), Watanabe(2004), Topsakal(2009), Bhowmick(2011)] of ≈6 eV.
In addition, the inversion symmetry of the graphene lattice is lifted in hBN, thus allowing
for piezoelectricity [Mele(2002), Duerloo(2012)].

Piezoelectricity is the response of the electronic state of a material when subjected to
external stress. Depending on the material, the piezo effect can provide a strong cou-
pling between the electronic and the mechanic state of matter. It has been shown that
this coupling can be used to cool a nanoelectromechanical system (NEMS) into its me-
chanical quantum ground state [O’Connell(2010)]. Its strong piezoelectric response, high
mechanical stability, and easy handling make hBN a prime material for novel technolog-
ical applications. Due to its two-dimensional lattice, hBN has the lowest surface mass
density of all piezoelectric crystals and might allow for NEMS with as yet unknown sus-
ceptibility [Bunch(2007)]. Moreover, hBN could provide the electromechanical coupling
in a layered graphene/hBN heterostructure and thus mediate a mechanical interaction
with the electronic properties of graphene.

In this article, we use the modern theory of polarization to calculate the piezoelec-
tric tensor of hBN with the geometric phase approach [Vanderbilt(1990), Mele(2002),
Xiao(2010)]. It has been shown for hBN nanotubes, that the dominant contribution
(≈80%) to the polarization comes from the π valence band and that the contribution
from the σ valence bands has the same sign [Sai(2003)]. In a simple model, the π band of
hBN is described by a linear Hamiltonian similar to the one of graphene, yet with a mass
term that gives rise to a sublattice splitting [Hunt(2013)]. This ansatz has also been used
to describe the chirality dependent piezoelectric response of hBN nanotubes [Mele(2002)].
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Figure 7.1.: The lattice of hBN does not posses an inversion center and hence allows
for piezoelectricity. Strains uij that lift the trigonal symmetry generate a
change in the polarization ∆P that is perpendicular to the strain-induced
pseudomagnetic vector potential A.

Strain can be included in the Dirac-like Hamiltonian by virtue of Peierls’ substitution with
a valley-dependent pseudomagnetic vector potential [Suzuura(2002), CastroNeto(2009)].
The effect on the electron dispersion can be expressed in terms of a Berry curvature whose
integral over the Brillouin zone yields the change of the electric polarization. We also
provide an estimate for the so far unknown coupling constant of the pseudomagnetic vector
potential in hBN. Using this ansatz, we calculate the components of the piezoelectric
tensor. All symmetry constraints are satisfied and the numerical values are similar to
those obtained via DFT calculations [Duerloo(2012), Nye]. Independently from our model,
we find that the pseudomagnetic vector potential is perpendicular to the strain-induced
polarization.

7.2. Model

In the vicinity of the high-symmetry points, the π bands of hBN are described by a
Dirac-like Hamiltonian with a sublattice potential,

H = ~vF (qxσx + τqyσy) + ∆σz , (7.1)

where ~vF = 3
2
|t|d, with the hopping amplitude t and the atomic distance d, q is the

electron momentum w.r.t. the high-symmetry points K (τ = +1) and K ′ (τ = −1), and
the sublattice pseudospin is denoted by Pauli matrices σ. The sublattice potential ∆
arises due to the different on-site energies of boron (+∆ > 0) and nitrogen (−∆) atoms.
For this Hamiltonian, the effect of strain on the electronic spectrum can be modeled with
Peierls’ substitution q 7→ q̃ = q+ τA, where τA is the valley-dependent pseudomagnetic
vector potential, (

Ax
Ay

)
=

3βκ

4~vF

(
uxx − uyy
−2uxy

)
. (7.2)
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Here, β = d ∂t
∂d

describes the variation of the hopping amplitude w.r.t. bond-length
change, κ depends on microscopic details, and uij is the strain tensor [Suzuura(2002),
CastroNeto(2009)]. In Sec. 7.5, we will discuss the entire prefactor / coupling strength
in more detail. Via A, strain will affect the electron dispersion and thus give rise to a
finite Berry curvature in the parameter space (qx, qy, λ), where λ parametrizes the the
sublattice potential ∆. As is well known, graphene is described by Eq. (7.1) without the
term ∆σz and, being centrosymmetric, does not exhibit piezoelectricity. In a gedanken-
experiment, we can evolve λ adiabatically from 0 (graphene) to ∆ (hBN). For nonzero
A, the polarization changes during this evolution. According to the theory of adiabatic
transport, this change is given by [Mele(2002), Xiao(2010)]

∆Pi = 2e
∑
τ

∫ ∆

0

dλ

∫
BZ/2

d2q

4π2
Ω

(τ)
qi,λ

, (7.3)

where for a given valley τ , we only integrate half the Brillouin zone around that valley.
Integration of the entire Brillouin zone is restored by the summation over τ . Moreover,
we have included the prefactor 2 because of spin degeneracy of Eq. (7.1). The Berry
curvature is given by

Ω
(τ)
qiλ

= i

(
〈∂uτ
∂qi
|∂uτ
∂λ
〉 − 〈∂uτ

∂λ
|∂uτ
∂qi
〉
)
, (7.4)

where |uτ 〉 is an eigenstate of Eq. (7.1) with q 7→ q̃.

7.3. Integration of the Berry curvature

With the substitution q 7→ q̃ and with units ~vF = 1, Eq. (7.1) can be written as
H = pτ · (τσx, σy, σz). In spherical coordinates, pτ = (q̃x, q̃y, λ) is represented by pτ =
|E|(sin θ cosφ, sin θ sinφ, cos θ), where E± = ±|E| = ±(q̃2

x + q̃2
y + λ2)1/2 are the eigenen-

ergies of H. Graphene corresponds to λ = 0 and hBN to λ = ∆. Only filled states
contribute to the polarization. The valence eigenstates |uτ 〉 of H are given by

|uτ 〉 =
1√
2

(
−
√

1− cos θ
τeiτφ sin θ√

1−cos θ

)
. (7.5)

Using the representation of ∇pτ in spherical coordinates and ∂qi = (∂qi q̃i)∂q̃i = ∂q̃i , one
obtains the Berry curvature for the valence eigenstates,

Ω
(τ)
qxλ

= −τ sin θ sinφ

2|E|2
= −τ q̃y

2|E|3
. (7.6)

Without the prefactor −e/4π2, the integral of Ω
(τ)
qxλ

over λ in Eq. (7.3) yields∫ ∆

0

dλ
τ q̃y
|E|3

=
τ∆q̃y

(q̃2
x + q̃2

y)
√

∆2 + q̃2
x + q̃2

y

. (7.7)
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7.4. Tensor components and symmetry

For each valley, we integrate Eq. (7.7) over a square [(-W,-W),(+W,+W)] centered around
the high symmetry points K and K ′, respectively. The area of each square is exactly half
the area of the Brillouin zone, i.e. W = 3−3/4π/d. For the integral over qx, we find∫ ∆

0

dλ

∫ +W

−W
dqx

τ q̃y
|E|3

= −τ arctan
∆(−W + τAx)

q̃y
√

∆2 + (−W + τAx)2 + q̃2
y

+τ arctan
∆(W + τAx)

q̃y
√

∆2 + (W + τAx)2 + q̃2
y

. (7.8)

The integral of Eq. (7.8) over qy results in a lengthy expression, that vanishes for Ay = 0
but is finite for Ay 6= Ax = 0, i.e., Ax can be neglected in lowest order. With Ax = 0, the
integration over qy simplifies and Eq. (7.3) becomes

∆Px = − e

π2

∑
s=±1

(
∆ arcoth

sW√
(Ay − sW )2 +W 2 + ∆2

+sW arcoth
∆√

(Ay − sW )2 +W 2 + ∆2

−(Ay − sW ) arctan
sW∆

(Ay − sW )
√

(Ay − sW )2 +W 2 + ∆2

)
, (7.9)

where we have already added up the contributions from both valleys. It follows that the
derivative of ∆Px w.r.t. Ay is given by

∂Px
∂Ay

=
e

π2

(
arctan

W∆

(Ay −W )
√

(Ay −W )2 +W 2 + ∆2

− arctan
W∆

(Ay +W )
√

(Ay +W )2 +W 2 + ∆2

)
. (7.10)

The expression for ∂Py
∂Ax

— which is found with the same routine, starting from Eq. (7.6) —
is identical but with Ay replaced by Ax and an overall minus sign.

7.4. Tensor components and symmetry

The components of the (converse) piezoelectric tensor dijk (eijk) are given by

dijk =
∂Pi
∂σjk

, eijk =
∂Pi
∂εjk

, (7.11)

where σjk is the stress tensor and εjk = ∂kuj. The symmetric part of εjk is the strain
tensor ujk = (∂kuj + ∂juk)/2. The lattice of hBN belongs to the point group 6̄m2 (D3h),
which implies that

d211 = −d222 = d112 , (7.12)

d21 = −d22 = d16/2 ,
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7. Piezoelectricity in planar boron nitride via a geometric phase

while all other components vanish identically. In the second line, we use the matrix
notation, i.e., d21 = d211, d22 = d222, and d16 = 2d112. In contrast to the stress tensor, εjk
is not symmetrized and hence e16 = e112,

e211 = −e222 = e112 , (7.13)

e21 = −e22 = e16 .

We point out that for the point group 6̄m2, the orientation of the coordinates plays a role
[Duerloo(2012), Nye]. Here, we use the standard orientation with a mirror plane perpen-
dicular to the x-axis, see Fig. 7.1. The piezoelectric effect and the converse piezoelectric
effect are connected by the fourth-rank elastic tensor, eij = dikCjk, in matrix notation.
From Eq. (7.2), it is clear that

e112 =
∂Px
∂εxy

=
∂Ay
∂εxy

∂Px
∂Ay

= − 3βκ

4~vF
∂Px
∂Ay

. (7.14)

Since the expression for ∂Py/∂Ax is analog to Eq. (7.10) but has a different sign, the
symmetry constraints given by Eq. (7.13) are indeed satisfied. All other components are
zero. With this equation and eijk = eikj, the change of polarization upon strain is given
by ∆Px = e112εxy + e121εyx = 2e112uxy and ∆Py = e211εxx + e222εyy = e112(uxx − uyy),
i.e. ∆P ∼ (2uxy, uxx − uyy) ⊥ A.

7.5. Estimation of the coupling strength — Result

The coupling strength 3
4
βκ in Eq. (7.2) depends on the parameter κ and, via β = d ∂t

∂d
, on

the variation of the hopping t upon bond-length change. As in graphene, the π band comes
about due to electron hopping between the pz-orbitals of the two sublattices. Because of
the difference in electronegativity between boron and nitrogen atoms, there is an electron
transfer from B to N. The bond thus gains an ionic character, in contrast to the purely
covalent bond in graphene [Robertson(1984), Topsakal(2009)]. This leads to the term
∆σz in Eq. (7.1). In analogy to graphene, we assume an exponential decay of the hopping
amplitude [Pereira(2009), Ribeiro(2009)],

t(d) = t0e
−α d−d0

d0 , (7.15)

where t0 = t(d0) denotes the hopping for the equilibrium bond length d0. We fit the decay
parameter α to the sparsely available data of t for different d. The work [Giraud(2012)]
contains a tight-binding calculation of hBN with up to third-nearest neighbors and the
results are consistent with typical results from DFT calculations, see e.g. [Topsakal(2009),
S lawińska(2010), Duerloo(2012)]. Both the first- and the third-nearest neighbor hopping
(t(1) and t(3), respectively) occur between B and N. With t0 = t(1) = t(1.44 Å) = −2.16 eV
and t(3) = t(2.88 Å) = −0.08 eV [Giraud(2012)], we find α = 3.3, i.e., a value very similar
to the one in graphene [Ribeiro(2009)]. Assuming t0 = −2.3 eV, we infer from Eq. (7.15)
that β = −αt0 = 7.6 eV [Robertson(1984), S lawińska(2010), Ribeiro(2011)].
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7.6. Discussion

The parameter κ depends on microscopic details. Within a valence-force-field model, it
is given by [Suzuura(2002), Harrison]

κ =
µ√
2B

=
1− σ√
2(1 + σ)

, (7.16)

where we have expressed the bulk (B) and shear (µ) moduli in terms of Poisson’s ratio σ
and Young’s modulus (which cancels out) in the second step [Droth(2011)]. Poisson’s ratio
is related to the components of the elastic tensor via σ = C12/C11 [Peng(2012)]. Typical
values for hBN are C11 = 300 N/m and C12 = 53 N/m, leading to κ = 0.5 [Duerloo(2012),
Peng(2012)]. This results in a coupling strength of 3

4
βκ = 3 eV in Eq. (7.2).

With the parameters listed in Table 7.1, evaluation of Eqs. (7.10) and (7.14) leads to
e112 = 7.5 × 10−11 As/m. Since e21 = d21(C11 − C12) in matrix notation, this relates to
d211 = 3.0× 10−13 m/V.

β = 7.6 eV κ = 0.5 W = 2.39 Å
−1

~vF = 5.0 eVÅ ∆ = 3.2 eV C11 − C12 = 247 Nm−1

Table 7.1.: Numerical values of the parameters we use in our calculation. The parameters
β and κ have been discussed in Sec. 7.5 and W = 3−3/4π/d follows from the
atomic distance d = 1.44 Å [S lawińska(2010), Paszkowicz(2002)]. The prefac-
tor of the Hamiltonian, ~vF = 3|t|d/2, is determined by said value for d and
|t| = 2.3 eV [Robertson(1984), S lawińska(2010), Ribeiro(2011)]. The given
sublattice potential corresponds to a bandgap of 6.4 eV [Watanabe(2004),
S lawińska(2010), Bhowmick(2011), Topsakal(2009)]. For the elastic constants,
we have used C11 = 300 N/m and C12 = 53 N/m [Duerloo(2012)].

7.6. Discussion

We have calculated the piezoelectric tensor of flat hBN via the approach of a geometric
phase taking into account only the π valence band by virtue of a low-energy, Dirac-like
Hamiltonian. Strain is included in the model as a pseudomagnetic gauge field. We find
e112 = 7.5 × 10−11 As/m for the converse piezoelectric effect and d211 = 3.0 × 10−13 m/V
for the direct effect. All symmetry constraints on the tensor elements are satisfied. Due to
symmetry, the strain-induced polarization is always perpendicular to the strain-induced
gauge field, regardless of our model. We also provide an estimate for the so far unknown
coupling strength of the gauge field in hBN and find 3

4
βκ = 3 eV.

To our knowledge, no experimental data for piezoelectricity in flat hBN has been pub-
lished. However, we can compare our values to the DFT results in [Duerloo(2012)]. Our
values are about a factor of 2 (5) smaller than the DFT results for relaxed (clamped)
ions. There are several reasons why our calculation might possibly miss the physical val-
ues. First, our model involves only the π valence band but not the lower lying bands. For
hBN nanotubes, the π states contribute about 80% to the effect [Sai(2003)]. Second, our
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7. Piezoelectricity in planar boron nitride via a geometric phase

estimation for the coupling strength of the gauge field in hBN — which appears linearly in
our model — while plausible, relies on sparse data, thus compromising reliability. Merely
by doubling the coupling strength, we can fit our results to the relaxed ions DFT results
of [Duerloo(2012)]. Third, the low-energy approximation with a Dirac-like Hamiltonian
might fall short of a calculation that relies on the dispersion within the entire Brillouin
zone.
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8. Magnetic-field tunable
antiferromagnetism in graphene
nanoflakes

The work presented in this chapter has been submitted to Physical Review B for publica-
tion. A preprint version of our manuscript is available on arXiv.org under the identification
number 1405.5451.

Abstract
Graphene nanoflakes are interesting because electrons are naturally confined in these
quasi zero-dimensional structures, whereas confinement in bulk graphene would require a
bandgap. Vacancies inside the graphene lattice lead to localized states and the spins of
such localized states may be used for spintronics. We perform a tight-binding description
of a nanoflake with two vacancies and include a perpendicular magnetic field via Peierls’
phase. The tunnel coupling strength and from it the exchange coupling between the
localized states can be obtained from the energy splitting between numerically calculated
bonding and antibonding energy levels. This allows us to estimate the exchange coupling
J , which governs the dynamics of coupled spins. We predict the possibility of switching
in-situ from J > 0 to J = 0 by tuning the magnetic field. In the former case, the ground
state will be antiferromagnetic with Néel temperatures accessible by experiment.
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8. Magnetic-field tunable antiferromagnetism in graphene nanoflakes

8.1. Introduction

Beyond the outstanding mechanical, optical, and electronic characteristics common to
bulk graphene [Novoselov(2004), Lee(2008), Nair(2008), Kuzmenko(2008), Eda(2008),
Lin(2010)], graphene nanoflakes are predicted to feature magnetic properties, as well
[Fernández-Rossier(2007), Ezawa(2007), Yazyev(2010)]. These qualities make such nano-
islands of graphene very interesting for spintronics and other applications [Trauzettel(2007),
Petta(2005), Hong(2013)]. Lattice defects can be generated on purpose by means of ion
or electron beam irradiation [Krasheninnikov(2007), Robertson(2013)] and are expected
to give rise to magnetic moments of about one Bohr magneton. The associated mag-
netic ordering can in principle be ferromagnetic as well as antiferromagnetic [Lieb(1989),
Yazyev(2007), Palacios(2008), Uchoa(2008), Grujić(2013)] and recent progress in spin sen-
sitive measurements allows to probe these predictions [Wiesendanger(2009), Decker(2013),
Nair(2012)]. In practice, however, modifying the magnetic properties of defect-induced
magnetic graphene typically requires the preparation of new devices. Graphene nanoflakes
can be grown using chemical vapor deposition, typically with zigzag boundaries and hexag-
onal symmetry of the entire flake [Luo(2011), Phark(2011), Subramaniam(2012)]. In addi-
tion, it has been reported that the interaction of the nano-island edges with the substrate
smoothens the boundary and enhances the symmetry of the electronic wave functions
[Hämäläinen(2011)]. In analogy to the hydrogen molecule, two localized states in a dou-
ble quantum dot (DQD) can hybridize to form bonding and antibonding eigenstates of
the combined system. In return, the localized states can be obtained by taking the even
and odd superpositions of bonding and antibonding states. The exchange coupling J
describes the coupling between the two localized spins [Burkard(2006), Schrieffer(1966)].
In this article, we calculate J as a function of the magnetic field and for different realistic
flake configurations.

A typical graphene nanoflake with zigzag edges, hexagonal symmetry, and two lattice va-
cancies is sketched in Fig. 8.1. Each vacancy gives rise to localized states and thus serves
as a quantum dot [Pereira(2006), Xiong(2007)]. The entire flake with two vacancies is
therefore a realization of a DQD. If the vacancies are located at positions rvac = (0,±y),
the flake retains some symmetry which, in our case, also applies to the probability densities
of the electronic states. The complete eigensystem is found by numerical diagonalization
of a tight-binding Hamiltonian where nearest neighbors up to third order are taken into
account and a perpendicular magnetic field B ‖ ez is included via Peierls’ phase. Interac-
tions are effectively taken into account in a second step when calculating J . The retained
symmetry allows us to superpose the eigenstates in a meaningful way. We calculate the
exchange coupling J as a function of the magnetic field and for different flake configu-
rations, which we specify by the number of benzene rings per edge, b, and the distance
between the vacancies and the flake center, d, as shown in Fig. 8.1. We find that J can be
tuned over several orders of magnitude within one device and can even vanish for certain
flake configurations by changing the magnetic field. For finite J , the ground state of the
system is antiferromagnetic and Néel temperatures up to ≈ 8 K put our results in reach of
experimental analysis via spin-polarized scanning tunneling microscopy or SQUID mag-
netometry [Wiesendanger(2009), Decker(2013), Nair(2012)].
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8.2. Tight-binding model

Figure 8.1.: Schematic of a hexagonal graphene nanoflake where grey dots indicate the
locations of carbon atoms. The flake is specified by the number of benzene
rings along each edge, b, and the distance d (in units of the atomic distance
a = 1.42 Å) of the vacancies, located at rvac = (0,±y), from the cartesian
origin in the flake center. The sketched island has a (b = 4, d = 2) configura-
tion. The vacancies (red dots) give rise to localized spin states (green shade)
whose mutual dynamics is described by the exchange coupling J . A magnetic
field B ‖ ez can be applied perpendicularly to the flake plane.

8.2. Tight-binding model

We consider a tight-binding Hamiltonian with hopping between neighbors up to third
order,

H =
∑
〈i,j〉

t
(1)
ij c
†
icj +

∑
〈〈i,j〉〉

t
(2)
ij c
†
icj +

∑
〈〈〈i,j〉〉〉

t
(3)
ij c
†
icj , (8.1)
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where the hopping from atom j to a neighbor of n-th order, i, depends on the magnetic
field B ‖ ez via Peierls’ phase,

t
(n)
ij (B) = t

(n)
ij (0) exp

[
i
e

~

∫ Rj

Ri

A(r) · dr
]

= t
(n)
ij (0) exp

[
i
eB

2~
(yi + yj)(xi − xj)

]
. (8.2)

We use the Landau gauge A(r) = −Byex and zero field hopping amplitudes t
(1)
ij (0) =

2.8 eV, t
(2)
ij (0) = 0.7 eV, and t

(3)
ij (0) = 0.3 eV. The operator c†i (ci) creates (annihilates)

an electron at site Ri. At zero magnetic field, the symmetries of the Hamiltonian are the
same as the lattice symmetries, as seen in Fig. 8.1: the mirror symmetries Mx : x 7→ −x
and My : y 7→ −y as well as the rotation by π, R2 : (x, y) 7→ (−x,−y). At finite fields
only the twofold rotation R2 remains.

The numerically obtained eigenstates have an arbitrary phase. However, we find that it
is possible to multiply any eigenstate |n〉 with a phase such that 〈r|n〉 = 〈n|Mxr〉. While
the probability density |〈r|n〉|2 remains unaffected, these phase rotations do matter for
the probability densities of even and odd superpositions of two eigenstates. In order to
obtain states localized at rvac by forming these superpositions, it is necessary to perform
these phase rotations on the (anti-)bonding eigenstates.

8.3. Localized states and exchange coupling

The graphene nanoflake with vacancies can be interpreted as a symmetric, unbiased DQD.
Such a system can be described by the Hamiltonian

HDQD =

(
Ē t
t∗ Ē

)
(8.3)

where the localized states {|+y〉, |−y〉} form the basis, t is the hopping amplitude from
site to site and Ē is the degenerate eigenenergy for t = 0. An arbitrary gauge is taken
into account via the phase φ, that is, t = |t|eiφ. The eigensystem of Eq. (8.3) is

E± = Ē ± |t| , (8.4)

|ψ±〉 = (|+y〉 ± e−iφ|−y〉)/
√

2 . (8.5)

Thus, the hybridized bonding (|ψ−〉) and antibonding (|ψ+〉) states are superpositions of
the localized states and their energy splitting is given by ∆ = 2|t|.

The diagonalization of the tight-binding Hamiltonian Eq. (8.1) yields the bonding and
antibonding eigenstates and the according energy spectrum. If two states |ψ±〉, bonding
and antibonding, are selected, then the according localized states |±y〉 are obtained by
superposing these (anti-)bonding states. This corresponds to undoing the superposition
in Eq. (8.5). The magnitude of the hopping between the localized states is easily obtained
from the energy splitting between the (anti-)bonding states: |t| = ∆/2. To do this, we
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8.4. Results

need to select a pair of bonding and antibonding states and superpose them after rotating
them with phases as described at the end of Sec. 8.2.

We find that if hopping amplitudes beyond nearest neighbors are taken into account
and B is finite1, no degeneracies occur (except for spin, which will only be considered
later). Since R2 commutes with the Hamiltonian Eq. (8.1), the energy eigenstates are
also eigenstates of R2, with eigenvalues +1 (even) and −1 (odd). We consider any two
states |n〉, |m〉 with (i) eigenenergies that lie next to each other in the discrete energy
spectrum, En = Em−1, and with (ii) opposite symmetry under the twofold rotation,
〈n|R2|n〉〈m|R2|m〉 = −1. We refer to the lower-energetic state as bonding and the higher
energetic one as antibonding, see Eq. (8.5). In addition to R2, the lattice also possesses
the symmetries Mx and My. We find that the probability density of any eigenstate,
|〈r|n〉|2, also possesses these symmetries. Since the localized states are localized in the
upper/lower half of the flake, their probability densities should only posses the symmetry
Mx. This symmetry fixes the relative phase in the superposition of the bonding and
antibonding states.

The procedure described so far allows us to find the localized states |±y〉 for any selection
of (anti-)bonding states. To describe the spin physics in the DQD, we include spin σ =↑, ↓
and an on-site Coulomb repulsion U . It is well known that the system has six possible
states: three spin triplets and three spin singlets [Burkard(2006)]. In the weak tunneling
regime |t| � U , the triplet state |T0〉 = 1√

2
(c†+y↑c

†
−y↓+ c†+y↓c

†
−y↑)|0〉 and singlet state |S〉 =

1√
2
(c†+y↑c

†
−y↓− c

†
+y↓c

†
−y↑)|0〉 decouple from the other states and are effectively described by

the Hamiltonian [Burkard(2006), Schrieffer(1966)]

HTS ≈
(

0 0
0 −J

)
, J =

4|t|2

U
, (8.6)

where the basis is {|T0〉, |S〉} and the Coulomb repulsion is U = e2/4πε0|r|, with the
elementary charge e and the vacuum permittivity ε0. For |r|, we use the standard deviation
of the probability density of the corresponding localized state. The Zeeman term gµBB·Σ,
where g is the electron g-factor in graphene, µB is the Bohr magneton, and Σ = σ+y+σ−y
is the total spin, commutes withH as well asHTS and hence does not affect the calculation
of J .

8.4. Results

Since the nanoflake consists of a total number of N atoms, the tight-binding Hamiltonian
Eq. (8.1) has dimension N×N . Because of spin degeneracy, the N sorted eigenenergies En
are only filled up to EN/2 (counting from the bottom of the spectrum) by the pz electrons.
With doping, states in the range EN/2 ±∆V , where we assume ∆V ≈ 300 meV, become
accessible2.

For a given flake, we calculate t for all pairs of numerically computed (anti-)bonding

1For B = 0, the Hamiltonian does not only possess the symmetry R2 but alsoMx andMy, as described
below Eq. (8.2). To avoid degeneracies, we use a vanishingly small magnetic field of 10−7 T instead
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(a)

(b) (d)

(c)

Figure 8.2.: Results for a (b = 15, d = 11) flake. (a) Two pairs of (anti-)bonding states
satisfy the criteria (i-v). For the corresponding localized states, we plot the
energy Ē (w.r.t. EN/2) vs. |t|. The hopping amplitude |t| is maximal for the
pair {|3〉, |4〉}. (b-d) Probability densities of (b) the localized state |+y〉, (c)
of |4〉, and (d) of |3〉. The probability density of |−y〉 looks similar to the one
of |+y〉, yet mirrored about the x-axis.

states, {|n〉, |m〉}, that satisfy three criteria, two of which have been introduced before:
(i) the states need to lie next to each other in the spectrum, m = n+ 1 and (ii) they need
to have opposite symmetry 〈n|R2|n〉〈m|R2|m〉 = −1. In addition, (iii) the states should
become accessible via doping, |En,m − EN/2| ≤ ∆V . To calculate the exchange coupling
as described by Eq. (8.6), it is important that moreover (iv) no third state is involved in
the superposition of localized states, min({En − En−1, Em+1 − Em}) > ∆ and that (v)
terms higher than O(|t|/U) can be neglected, |t| � U .

of B = 0.
2The Fermi energy EF is related to the carrier density n via EF = ~vF

√
πn, where ~ is the reduced

Planck constant and vF ≈ 106 m/s is the Fermi velocity. High carrier densities have been reported
e.g. in [Lin(2010)].
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d
b

10 15 20 30 40

1
3.498
0.056

(1)
5.150
0.184

(1)
0.914
0.008

(1)
1.833
0.050

(3)
0.426
0.003

(2)

2 - (0)
3.494
0.084

(3) - (0)
2.937
0.123

(1)
0.457
0.004

(4)

4 - (0)
5.048
0.171

(1) - (0)
0.555
0.004

(1)
0.426
0.003

(3)

5 - (0)
0.239
0.000‡

(1)
3.216
0.095

(2)
1.177
0.020

(3)
0.448
0.004

(5)

7 - (0)
5.048
0.171

(1)
4.922
0.211

(2)
1.081
0.018

(6)
1.162
0.026

(2)

8
9.002
0.346

(1)
0.239
0.000‡

(1)
3.076
0.086

(2)
0.779
0.009

(2)
2.387
0.100

(5)

10 - (0)
5.048
0.171

(2)
0.739
0.006

(1) - (0)
1.185
0.026

(6)

11
3.301
0.047

(1)
11.125
0.762

(2)
3.298
0.102

(1)
0.526
0.004

(1)
0.460
0.004

(3)

13
7.839
0.297

(1) - (0)
1.555
0.026

(3)
0.783
0.007

(1)
1.162
0.026

(5)

14 - (0)
2.428
0.037

(2)
2.002
0.038

(3)
0.302
0.001

(2)
0.562
0.006

(5)

Table 8.1.: Results for various flakes with parameters (b, d) (see Fig. 8.1). For vanishing
magnetic field1, we list the maximum hopping amplitude |t| (upper number)
and the maximal exchange coupling J (lower number) in meV. We underline
(underdash) J if J(B) = 0 can be reached for B < 15 T (B > 15 T). The
integer in parentheses behind |t| and J indicates the number of (anti-)bonding
pairs that satisfy the criteria (i-v). The numbers in boldface correspond to the
case shown in Fig. 8.2 (a).
‡ The more accurate value is 0.00047 meV.

To simplify our notation, we now count eigenstates and eigenenergies w.r.t. the middle
of the spectrum. That is, instead of EN/2+n we will just write En. Fig. 8.2 illustrates our
results for a (b = 15, d = 11) nanoflake. For this flake and at vanishing1 magnetic field, two
pairs of states fulfill the criteria (i-v), namely {|3〉, |4〉} as well as {|11〉, |12〉}. In Fig. 8.2
(a), we plot the hopping amplitude that belongs to the corresponding localized states
against the energy Ē of those localized states (Eq. (8.4)). Among the states satisfying
the criteria (i-v), the states |3〉 and |4〉 lead to the highest hopping amplitude, namely
|t| = 11.1 meV. Figs. 8.2 (b-d) show the probability densities of (b) the localized state
|+y〉 and its parent states (c) |4〉 and (d) |3〉. The probability density of the localized
state |−y〉 is not shown but can be obtained by applying the mirror symmetryMy to the
probability density of |+y〉.

For vanishing1 magnetic field and any given combination of b and d, we now pick the pair
of (anti-)bonding states that satisfies the criteria (i-v) and which has the highest hopping
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(c)
b=40, d=10
      @ 8.4 T

(b)
b=20, d=7
      @ 34.6 T

(a)
b=15, d=11
      @ 62.6 T

E4

E3

E16

E15

E30

E29

Figure 8.3.: The exchange coupling J (solid blue line and left axis) and the eigenenergies
(dashed orange line and right axis) of the corresponding (anti-)bonding states
are plotted against a magnetic field perpendicular to the plane of the flake.
The flake parameters (b, d), the energy levels Em and En, as well as the mag-
netic field at which one flux quantum passes through the flake are indicated
in the plots. The behavior of J(B) is very specific. Depending on the case,
J can be tuned only weakly (a), over an order of magnitude (b), or can be
switched off (J = 0) by tuning the spectrum into a degeneracy (c).
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amplitude. This maximal hopping amplitude |t| and the maximal exchange coupling J
are listed in Table 8.1 for b = 10, 15, 20, 30, 40 and d = 1, 2, 4, 5, 7, 8, 10, 11, 13, 14. The
upper numbers in the table indicate |t| and the lower numbers indicate J , both in meV.
The ensuing integer in parentheses shows the number of (anti-)bonding pairs that satisfy
the criteria (i-v) for this combination of b and d. Since J is always positive, it is clear from
Eq. (8.6) that the singlet state |S〉 is favored. The resulting antiferromagnetism should
be stable up to the Néel temperature TN

∼= J/kB, where kB is Boltzmann’s constant. The
value of TN for a given (b, d) configuration can be obtained by multiplying the according
numerical value of J in Table 8.1 with 11.6 K.

Depending on d, the lattice site of the vacancy at (0,+y) can have a nearest neighbor site
either at (0, y+a) or at (0, y−a), see Fig. 8.1. The former case leads to a repetitive pattern
of |t| and J for e.g., b = 15 and d = 4, 7, 10 and the latter case applies for e.g., b = 15 and
d = 5, 8. Such patterns occur for various parameters, yet some of them are concealed in
Table 8.1 because the conditions (i-v) do not apply or the according hopping amplitude |t|
is not maximal for a given (b, d) configuration. Throughout a pattern, we find resembling
probability densities of the localized states and numerically close but different values for
|t| and J . In all cases listed in Table 8.1, the flake edges play a non-negligible role, see
e.g. Fig. 8.2 (d). As a consequence, |t| and J vary strongly in b and d. For large enough
b and d, we expect that the influence of b vanishes, and a smooth decay of |t| and J w.r.t.
d, yet we do not reach this regime.

The Hamiltonian Eq. (8.1) and hence its spectrum {En} and the exchange coupling J
depend on the magnetic field B. In Fig. 8.3, we plot J and the eigenenergies of the
corresponding (anti-)bonding states {|En〉, |Em〉} against B. Typically, the properties of
an electronic state change for magnetic fields of the order of B = Φ0/A, where Φ0 = h/2e
is the magnetic flux quantum with Planck’s constant h and A is the surface area occupied
by the state, which we approximate by the surface area of the flake.

We find that the Coulomb repulsion U depends only weakly on the magnetic field while
the splitting ∆ = Em − En and hence |t| depend strongly on B. That is, J(B) is mainly
determined by the behavior of Em(B) − En(B). Depending on the (b, d) configuration,
the exchange coupling J can be tuned over a certain range (Figs. 8.3 (a,b)) and if a
degeneracy Em(B) = En(B) occurs, it is even possible to switch the coupling on (J > 0)
and off (J = 0) by tuning the system towards or away from the degeneracy (Fig. 8.3
(c)). In Table 8.1, we underline (underdash) J of those flake configurations, for which a
degeneracy, i.e. J(B) = 0, can be reached with a magnetic field smaller (greater) than
15 T.

8.5. Conclusion and outlook

We have set up a tight-binding model for hexagonal graphene nanoflakes with zigzag
edges and two vacancies at positions rvac=(0,±y). Symmetry allows us to infer the ex-
plicit form of the localized vacancy states from the bonding and antibonding eigenstates.
This system is a realization of a DQD. In the weak tunneling regime, the triplet |T0〉
and the singlet |S〉 are split by the exchange coupling J and their dynamics decouples
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from other spin states. We have calculated J for states that can be reached via doping
leading to a shift of the chemical potential by less than ±300 meV and that satisfy the
remaining criteria (i-v) described above. A perpendicular magnetic field is included in the
tight-binding model via Peierls’ phase and can be used to tune J by orders of magnitude,
depending on the flake configuration (b, d). In particular, it thus is possible to tune the
system into a degeneracy where J=0. This in-situ tunability of the exchange coupling
can be very useful for spintronics and quantum information related applications as it
allows for the modification of the magnetic properties without preparing a new device.
The ground state spin configuration is antiferromagnetic. Depending on the lattice con-
figuration, we have found Néel temperatures up to 8.8 K, which allows for experimental
testing of our results. Ferromagnetic ordering, J<0, is conceivable by including non-local
Coulomb interaction [Burkard(1999)]. Our calculation can be extended to include spin-
orbit coupling or additional potentials that model a Moiré pattern or boundary effects.
Assigning both vacancies to the same sublattice results in reduced symmetry. These cases
might be treatable with a modified, less symmetry-dependent calculation.
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9. Final remarks

Now, we sum up the results of our theoretical studies and point out the main results. We
also discuss our ongoing work and promising areas of research for future projects.

9.1. Conclusion

Graphene is a novel, monatomically thin material with many interesting properties. A
historical sketch of its discovery, properties, and its potential for nanotechnology have been
outlined in Chapter 1. In particular, the low density of nuclear spins and an intrinsically
weak spin-orbit interaction make it a promising material for spintronics applications like
the Loss-DiVincenzo quantum computer. The lowest surface mass density of all crystals
combined with its outstanding mechanic properties might enable nanoelectromechanical
systems with yet unknown sensitivity. These prospects have motivated (and still do) our
studies of spins and phonons in graphene nanostructures. In the wake of graphene, other
two-dimensional materials like hBN have gained attention. The outstanding electronic
properties of graphene are prone to surface contamination but might be protected in
layered graphene/hBN heterostructures.

In Chapter 2, we have reviewed the electronic properties of graphene and hBN via tight-
binding models. In the first part about monolayers, we have calculated the dispersion
relations within the entire Brillouin zone and we have derived approximate Hamiltonians
for momenta close to the high symmetry points K and K ′. For graphene, this yields
the well-known Dirac-Hamiltonian. We have also calculated the density of states and
the effective mass. The Klein paradox makes it challenging to confine charge carriers
in electrostatically defined graphene QDs. We have used a minimal tight-binding model
to describe bilayer graphene without and with a perpendicular electric field. The latter
case is interesting for applications as it leads to a field-tunable bandgap that can be
used to avoid Klein tunneling. Moreover, we discuss bilayer hBN and a graphene/hBN
heterostructure.

The effect of strain on the electronic structure of hexagonal lattices has been the topic
of Chapter 3. Two types of electron-phonon coupling, namely the bond-length change
and the deformation potential, have been inferred from the low-energy tight-binding de-
scription. In addition, strain also affects the Fermi velocity and the spin-orbit interaction
mediates a coupling between the electron spin and out-of-plane deformations. Homoge-
neous strain preserves the lattice periodicity but changes the shape of the unit cell, which
translates to a deformed Brillouin zone.

In Chapter 4, we have introduced basics of the geometric phase, also known as Berry’s
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phase. We have reviewed the adiabatic evolution of a system and the derivation of electric
polarization via adiabatic transport. Moreover, we have reviewed the derivation of Peierls’
phase via a tight-binding model with modified Wannier states and Peierls’ well-known
substitution.

We have used the continuum model to derive the acoustic phonons in graphene nanorib-
bons in Chapter 5. Due to the monatomic thickness of graphene, this model requires some
modifications. In contrast to bulk graphene, nanoribbons have only one quasi continuous
direction and the boundary conditions at the edges parallel to this direction play a sig-
nificant role. We have found the classical solutions and have formulated them in terms of
orthonormal eigenmodes. Via the Lagrangian and the canonical momentum, this leads to
the quantized form. The dispersion relations of both in-plane and out-of-plane phonons
are gapped for fixed boundary conditions and gapless for free boundary conditions. We
have also inferred sound velocities that are in agreement with reported values. In the
limit of infinite ribbon width (compared to the phonon wavelength), all our findings are
in agreement with bulk graphene. We have also commented on preliminary results for the
spin relaxation time.

A detailed study of electron spin relaxation in armchair graphene nanoribbon quantum
dots has followed in Chapter 6. Coupling of the spin to in-plane phonons has been consid-
ered via Rashba-type spin-orbit interaction and an electron-phonon coupling comprising
the deformation potential and the bond-length change. In lowest order, out-of-plane
phonons play no role since the effective spin-phonon coupling differs only in the sign for
K and K ′, and the electronic states have equal weight on both valleys. We have evaluated
the spin relaxation rate for different QD aspect ratios, confinement potentials, and for
fixed as well as for free boundary conditions of the lattice vibrations. We have found Van
Vleck cancellation and destructive/constructive interference of the two in-plane electron-
phonon couplings. As a result, the spin relaxation times range from T1=10−7 s to beyond
seconds. For free boundaries and magnetic fields up to B=0.5 T, we have found that the
spin relaxation time T1 scales as T−1

1 ∝B5. In agreement with our previous work, fixed
boundaries (gapped phonon spectrum) bear the opportunity to suppress spin relaxation
in lowest order.

In Chapter 7, we have used an analytic model to derive the piezoelectric effect in planar
hBN. Our model involves an adiabatic evolution of the sublattice potential as well as
the strain-induced pseudomagnetic vector potential, which is based on the bond-length
change and thus benefits from our previous work. The Berry curvature has been inte-
grated analytically and we have found that the resulting components of the piezoelectric
tensor conform all symmetry constraints. Their numerical values depend on the previously
unknown coupling strength of said vector potential (in hBN), for which we have provided
a first estimate. Our estimated coupling strength of 3 eV, relates to e112=7.5×10−11 As/m
for the converse piezoelectric effect and to d211=3.0×10−13 m/V for the direct piezoelectric
effect. Reported DFT results for relaxed (clamped) ions are about a factor 2 (5) greater
than our values. Experimental data is not available, yet we have indicated why the true
values might possibly be greater than ours.

Graphene nanoflakes are an interesting system for spintronics. In Chapter 8, we have
studied the exchange coupling between two localized defect states in such systems. We
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have made a full tight-binding ansatz that includes a perpendicular magnetic field via
Peierls’ phase. Each vacancy gives rise to a localized state such that the entire system
with two vacancies can be interpreted as a double quantum dot. We have relied on
symmetry and further criteria to identify localized vacancy states. The on-site Coulomb
repulsion has been respected by means of a Schrieffer-Wolff transformation that leads to
an effective Hamiltonian in the subspace of singlet |S〉 and triplet |T0〉. These states are
split by the exchange coupling J , which depends on the magnetic field. Since J≥0, the
spin ordering is always antiferromagnetic. The according Néel temperatures can be as
high as 8.8 K. Moreover, we have found that — depending on the exact shape of the flake
— J(B) can be tuned in situ over several orders of magnitude by adjusting the magnetic
B-field. In some cases, we have even found that the antiferromagnetism can be switched
on (J>0) and off (J=0) by tuning B.

9.2. Outlook

The field of graphene-related research still grows exponentially and both the public and
the private sectors make massive investments in graphene and other two-dimensional
materials. The production of high-quality graphene at an industrial scale and low cost will
remain crucial for commercial applications but steady advances of production techniques
in the past and the ongoing research effort indicate that further progress can be expected.

Relating to our studies, the production of atomically precise armchair graphene nanorib-
bons (aGNRs) has been a rather recent accomplishment [Ruffieux(2012)]. Yet the con-
struction of electrostatically defined quantum dots in such atomically precise aGNRs still
poses a huge challenge and it is unclear until when our results from Chapter 6 can be
tested in experiment. Electrostatically defined quantum dots in bilayer graphene have al-
ready been realized [Goossens(2012)]. We thus envisage the calculation of spin coherence
in bilayer graphene quantum dots. Basics of this project are presented in Appendix D.

Other two-dimensional materials like hBN have gained attention only recently so the
absence of experimental data on the piezoelectricity of planar hBN is not surprising. To
our knowledge, the only available data come from DFT calculations [Duerloo(2012)] and
our theoretical study in Chapter 7, where we have used a low-energy approximation. The
full description of π bands in hBN would likely lead to a more accurate result. Since the
Hamiltonian remains two-by-two, the Berry curvature can still be integrated efficiently
numerically.

Graphene nanoflakes with perfect hexagonal symmetry can already be realized and va-
cancies can be induced on purpose via electron or ion bombardment [Hämäläinen(2011),
Krasheninnikov(2007)]. One possible extension of our work on the B-field tunable ex-
change coupling in such flakes (Chapter 8) would include non-local Coulomb interaction.
We expect that the magnetic ordering can also be ferromagnetic in this case. It would be
of great interest for spintronics to tune from ferromagnetic to antiferromagnetic ordering
in situ with an external magnetic field.
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A. Spin qubits and coherence

Quantum information relies on the use of quantum bits or qubits as the basic unit of
quantum mechanical information. Qubits are more general than classical bits in that a
qubit is an arbitrary (yet normalized) superposition of the quantum states |0〉 and |1〉,

|ψ〉 = α|0〉+ β|1〉 . (A.1)

The coefficients α and β should obey |α|2 + |β|2 = 1 to ensure a normalized state. Conse-
quently, a qubit can contain much more information than a classical bit and quantum com-
puting aims at exploiting this feature [Shor(1994), Shor (1997), Loss(1998), Gisin(2002),
Nielsen&Chuang]. In the following, we first introduce qubit coherence and then, we turn
to a special realization of qubits in the form of spin qubits. We also make a short comment
on electron spin qubits in graphene [Droth(2010)].

Qubit coherence
Coherence refers to the stability of a relative phase that determines the interference of
waves. A well-known example is the coherent light of a laser, where phase stability leads
to constructive interference over long distances. Decoherence is the loss of coherence.
Due to the wave functions used in quantum mechanics, coherence is intrinsically linked
to qubits.

The third DiVincenzo criterion requires that the decoherence time of qubits be about 104

times longer than the clock cycle [DiVincenzo(1999)]. While coherence is no condition for
classical computing, it is absolutely crucial to quantum computing. The advantages of a
quantum computer come at the necessity for coherent qubits (and many other require-
ments). The qubit state in (A.1) can be rewritten as1

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 , (A.2)

where θ determines the ratio |α/β| and φ is the relative phase. Both angles are real
numbers and together, they parametrize the Bloch sphere as shown in Fig. A.1 (a). The
poles correspond to the only two states available for a classical bit. Qubits, in contrast,
can take a state anywhere on the entire sphere [Nielsen&Chuang].

The qubit state is prone to unwanted interactions with the environment. As part of a
larger system, the qubit interferes with other quantum states. Unless the system is very
well isolated from its outer environment — which is usually not the case2 — there will be

1A common phase of both summands has no physical meaning and is set to zero.
2A counterexample are Bose-Einstein condensates.
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(a) (b) (c)

Figure A.1.: (a): Each point on the Bloch sphere corresponds to a qubit state. The
angle θ determines the contributions from |0〉 and |1〉 while φ denotes their
relative phase. (b): For E0 > E1 the higher energy state |0〉 decays to |1〉
on the relaxation timescale T1. This means that an initial superposition will
eventually lose its |0〉 component and hence the relative phase φ. (c): The
phase may also fade without energy exchange, thus leading to a mixture of
qubit states. Such effects further increase the decay rate of the off-diagonal
elements in (A.3), which is characterized by the dephasing timescale T2. If
relaxation induced dephasing is the only contribution it follows that T2 =
2T1.

an uncontrollable interference with unknown quantum states which affects the qubit and
cannot be undone completely. However, a partial recovery of the initial qubit state can
be achieved [Petta(2005)].

The meaning of the timescales T1 and T2, which characterize the coherence of an initially
well-defined qubit, can be illustrated on the Bloch sphere. If there is an energy difference3,
say E0 > E1, the transition |0〉 → |1〉 involves the exchange of energy and is described by
the relaxation time T1, Fig. A.1 (b). The dephasing time T2 relates to the fading out of
the relative phase φ, thus leading to a mixed state, see Fig. A.1 (c). No energy exchange
is necessary but the process is still irreversible if it leads to an increase of entropy.

For concreteness, consider a qubit state that is initially represented by the density matrix

ρ(t=0) = |ψ〉〈ψ| =
(

cos2 θ
2

cos θ
2

sin θ
2
e−iφ

cos θ
2

sin θ
2
eiφ sin2 θ

2

)
=

(
|α|2 αβ∗

βα∗ |β|2
)

(A.3)

and corresponds to a pure state. Due to interference with other, possibly mixed quantum
states, the phase φ smears out uniformly and the density matrix becomes a mixture of
states of all phases,

ρ(t→∞) =

∫ 2π

φ=0

dφ

2π
|ψ〉〈ψ| =

∫ 2π

φ=0

dφ

2π

(
cos2 θ

2
cos θ

2
sin θ

2
e−iφ

cos θ
2

sin θ
2
eiφ sin2 θ

2

)
=

(
|α|2 0

0 |β|2
)
.

(A.4)

3This is the case for e.g. Zeeman-split spin qubits.
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The off-diagonal elements vanish since eiφ + ei(φ+π) = 0. This is called dephasing. Unaf-
fected by this consideration, the relaxation |0〉 → |1〉 demands

ρ(t→∞) =

(
0 0
0 1

)
. (A.5)

Here, the off-diagonal terms vanish, as well, and this means that relaxation is always
accompanied by dephasing4. On the other hand, dephasing can occur independently of
relaxation. It can be shown that T2 ≤ 2T1, making T2 the more restrictive time for qubit
coherence. The equality holds if relaxation induced dephasing is the only contribution to
T−1

2 , [Chirolli(2008), Levitt].

Spin qubits
For real applications, qubits need to be represented by physical systems with a binary
degree of freedom to which the values 0 and 1 can be assigned. A great many proposals
for physical implementations have been made from pretty much all disciplines of physics
[DiVincenzo(1998), DiVincenzo(1999)]. These proposals include internal states of ions
in a trap [Cirac(1995)], atoms in optical lattices [Brennen(1999), Jaksch(1999)], nuclear
magnetic resonance [Chuang(1998), Vandersypen(2001)] and superconducting electrons
in a Josephson Junction [Wallraff(2004)], to name just a few.

Loss and DiVincenzo have proposed a solid state implementation using the electron spin
states in coupled quantum dots (QDs) [Loss(1998)]. This can be called a spintronics im-
plementation in that it is envisioned to exploit as many techniques of standard electronics
as possible but with the electron spin replacing the electron charge as the relevant physical
quantity. We remark that nuclear spins can also be used as qubits and also belong to
the field of spintronics [Kane(1998), Childress(2006)]. Nuclear and electronic spins qubits
share many similarities, yet here, we focus on electron spin qubits. With a view to the
DiVincenzo criteria, we shortly comment on the perspective of the proposal by Loss and
DiVincenzo5. Due to the applications in classical computing there is an unmatched expe-
rience in the fabrication of solid state devices [Hanson(2007)]. Extrapolating to quantum
systems, it is natural to assume that a solid state implementation could be scaled up to
a full-scale quantum computer (criterion 1). At sufficiently low temperatures, the spin
memory can easily be initialized by applying a strong magnetic field (criterion 2). Another
expected advantage are long coherence times and control over them via design parameters
(criterion 3). Logic gates can be realized by controlling external electric magnetic fields
and the overlap of distinct QD electrons (criterion 4). The result of a spin-based compu-
tation could be read out by converting the spin to a charge degree of freedom, which can
be measured conveniently (criterion 5).

The electron (or nuclear) spin is a two level system with states |↑〉 and |↓〉, which are
Zeeman-split in the presence of a magnetic field, E↑−E↓ = gµBB. It is natural to assign
these states the values |0〉 and |1〉, respectively (or the other way round), such that one

4A finite relaxation time T1<∞ would also affect a classical bit, where the phase plays no role. But for
qubits, T1 also implies a fading/loss of the phase, i.e. decoherence.

5For a more elaborate disquisition, we refer the reader to the original articles, [Loss(1998),
DiVincenzo(1998), DiVincenzo(1999)].
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spin represents one qubit. On the other hand, two spins can form a singlet state (|S〉) or
one out of three triplet states (|T−〉, |T0〉, |T+〉). Assuming quantization along the z-axis,
only |S〉 and |T0〉 share the sz=0 subspace, and can thus be interpreted as |0〉 and |1〉.
Thereby, two spins represent one qubit,

single spin qubit: |0〉 = |↑〉 , |1〉 = |↓〉 , (A.6)

double spin qubit: |0〉 = |S〉 =
|↑↓〉 − |↓↑〉√

2
, |1〉 = |T0〉 =

|↑↓〉+ |↓↑〉√
2

.

The parametrization of the Bloch sphere as given by Eq. (A.2) applies for both cases. In
particular, the states |↑↓〉 and |↓↑〉 occur on the equator of the double spin Bloch sphere.

Electron spin qubits in carbon
To maintain control over the electron in a QD, it is highly desirable, although not
compelling, that the dot be made of semiconducting material. Indeed, GaAs QDs are
probably the most successful and most studied system [Hanson(2007), Awschalom(2013),
Takakura(2014)].

The low nuclear charge of carbon leads to a small spin-orbit coupling and therefore long
electron spin coherence times. Natural carbon consists of 99% 12C and 1% 13C, with nu-
clear spins 0 and 1/2, respectively6. The low density of nuclear spins relates to a weak de-
phasing from these nuclear spins that can be even further suppressed by removing the 13C
atoms by, e.g., purification techniques or preselection of samples. This makes carbon based
materials interesting for a solid state implementation of electron spin qubits. Accord-
ingly, a lot of research focuses on QDs and spin coherence in carbon nanotubes, diamond
vacancies, and graphene [Gaebel(2006), Tombros(2007), Trauzettel(2007), Steele(2009),
Struck(2010), Pályi(2012), Goossens(2012)].

6The radioactive isotope 14C has a negligible abundance of 10−12 and nuclear spin 0.
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While electronic bonds determine the spring constants between adjacent volume or surface
elements, the body of the system is determined by the positions of the atoms because they
make up basically the entire mass. As a consequence, special care must be taken when
the continuum model is applied to materials with two-dimensional lattices like mono- and
bilayer graphene. Of course, these materials still have a three-dimensional body because
they consist of particles with wave functions that extend into all three spatial dimensions.
However, the notion of continuity in the out-of-plane direction is not justified for materials
with a thickness of only a few atoms or even only one single atom.

In monolayer graphene and monolayer hBN, all atoms lie strictly within the same —
possibly distorted — plane. That is, it is not possible to compress or dilate these ma-
terials in the direction locally perpendicular to said plane. A description with the con-
tinuum model is still possible by putting according quantities to zero. We stress that
this approach does not necessarily hold for quasi two-dimensional systems where not
all atoms lie within the same plane, e.g., bilayer materials or buckled monolayer ma-
terials like silicene. Therefore, we restrict the following modification of the continuum
model [Chaikin&Lubensky, Landau&Lifschitz] to two-dimensional materials like mono-
layer graphene and hBN, that are truly two-dimensional in the sense of the continuum
model [Droth(2010)].

Strain tensor
External forces deform solid bodies to a certain extent, thus changing their shape as well
as their volume. A point inside the undeformed body, described by the position vector r,
shall be displaced to r′ after the deformation. Then

u = r′ − r (B.1)

is called the displacement vector with components ui, which usually depend on the po-
sition. The deformation of the entire object is known if u(r) can be determined for the
whole body.

With dxi we denote the components of the vector connecting two infinitesimally close
volume elements prior to the deformation. In first order they change to

dx′i = dxi + dui ≈ dxi +
∂ui
∂xj

dxj (B.2)

after the deformation. Accordingly, the distance between the points changes from

dl =
√

dx2
1 + dx2

2 + dx2
3 (B.3)
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to

dl′ =
√

dx′21 + dx′22 + dx′23 . (B.4)

Taking the square of the last two equations results in dl2= dx2
i and

dl′2 = dx′2i = (dxi + dui)
2 = dx2

i + 2dxidui + du2
i

(B.2)
≈ dl2 + 2

∂ui
∂xk

dxkdxi +
∂ui
∂xk

∂ui
∂xl

dxkdxl . (B.5)

Using

∂ui
∂xk

dxidxk =
∂ui
∂xk

dxkdxi
i↔k
=

∂uk
∂xi

dxidxk (B.6)

the second term can be written as(
∂ui
∂xk

+
∂uk
∂xi

)
dxidxk , (B.7)

and we find

dl′2 ≈ dl2 + 2uikdxidxk , (B.8)

where

uik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

+
∂ul
∂xi

∂ul
∂xk

)
(B.9)

is defined as the strain tensor. As a symmetric tensor, uik can be diagonalized with
u(1) := u11, u(2) := u22 and u(3) := u33 being the eigenvalues of uik. Then Eq. (B.8) takes
the form

dl′2 ≈ (δik + 2uik)dxidxk

= (1 + 2u(1))dx2
1 + (1 + 2u(2))dx2

2 + (1 + 2u(3))dx2
3 . (B.10)

Each summand corresponds to the length shift along one of the three orthogonal prin-
cipal axes. For example the length element dx1is elongated or compressed to dx′1 =√

1 + 2u(1)dx1. Consequently the relative length shifts (dx′i− dxi)/dxialong the principal
axes are

√
1 + 2u(i) − 1.

Usually, deformations throughout the body are small, that is relative length shifts result-
ing from such a deformation are small compared to unity. In this case second order terms
can be neglected such that the relative length shifts become

dx′i − dxi
dxi

=
√

1 + 2u(i) − 1 ≈ u(i) , (B.11)

and the strain tensor can be written as

uik ≈
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
. (B.12)
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The volume element is given by dV = dx1dx2dx3 and with (B.11) the deformed volume
element is

dV ′ = dx′1dx′2dx′3 = (1 + u(1))dx1(1 + u(2))dx2(1 + u(3))dx3

= (1 + u(1))(1 + u(2))(1 + u(3))dV . (B.13)

Respecting only first order terms again,

dV ′≈ (1 + u(1) + u(2) + u(3))dV , (B.14)

such that the relative volume change becomes

dV ′ − dV

dV
≈ u(1) + u(2) + u(3) = uii . (B.15)

Stress tensor
In a non-deformed body all molecules are arranged in their mechanical equilibrium po-
sitions, that is, all internal forces acting on a volume element sum up to zero. External
forces will change the arrangement of molecules in the body and thus cause a deformation.
The internal tensions resulting from this deformation seek to restore the non-deformed
arrangement and counteract the external forces. The effective internal force acting on a
certain volume can be denoted as ∫

FdV , (B.16)

where said volume is integrated and F is the force per volume such that the force acting
on dV is FdV . By introducing the stress tensor σik via

Fi =
∂σik
∂xk

(B.17)

and using Gauss’ Law1 it is possible to rewrite Eq. (B.16) as∫
FidV =

∫
∂σik
∂xk

dV =

∮
σikdfk . (B.18)

We notice that σikdfk is the i-th component of the force acting on the surface element df .
Consider a surface normal to the x-axis. Then σxx is the force per surface unit that acts
normal to this surface and σyx and σzx are the forces acting tangential to it, see Fig. B.1.

In mechanical equilibrium, all internal tensions on a volume element must cancel each
other, that is

∂σik
∂xk

= Fi = 0 . (B.19)

1The integral of a gradient over a volume can be replaced by an integral over the surface enclosing said
volume:

∫
∂hi

∂xi
dV =

∮
hidfi, where df is a vector normal to the enclosing surface.
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B. Continuum model for 2D materials

Figure B.1.: By virtue of Gauss’ law, the force acting on a volume element dV can be
expressed in terms of the strain tensor σik. The i-th component of the force
acting on the surface element df is given by σikdfk.

We denote the external force per surface element of the body with P such that the surface
element df experiences the force Pdf . This force deforms the body until it is counteracted
by internal strain σikdfk. With such boundary conditions, equilibrium is achieved when
Pidf = σikdfk. Using dfk = ηkdf , where ηk is the unit vector normal to the surface, this
condition becomes

σikηk = Pi . (B.20)

Consider a small deformation δui. The required mechanical energy per volume is δR =
Fiδui = ∂σik

∂xk
δui. Integrating the entire volume yields∫

δRdV=

∫
∂σik
∂xk

δuidV , (B.21)

the total work required for the deformation of the body. Using partial integration and
Gauss’ Law, we find ∫

δRdV =

∮
σikδuidfk −

∫
σik

∂δui
∂xk

dV . (B.22)

The first term vanishes for σik = 0 or if an infinite body with δui = 0 at infinity is
assumed. Also making use of the symmetry2 of σik the above can be written as∫

δRdV = −1

2

∫
σik

(
∂δui
∂xk

+
∂δuk
∂xi

)
dV = −1

2

∫
σikδ

(
∂ui
∂xk

+
∂uk
∂xi

)
dV

= −
∫
σikδuikdV , (B.23)

2The stress tensor σik is not unambiguously fixed by Eq. (B.17) but allows for the addition of a gradient
∂χikl

∂xl
(where χikl = −χilk). By virtue of this gradient the stress tensor can be symmetrized. For more

details we refer the reader to [Landau&Lifschitz].

106



such that δR = −σikδuik. The differential internal energy per volume, dE equals the
difference between the thermal energy absorbed by the volume element and the mechanical
work performed by its internal tensions,

dE = TdS − dR = TdS + σikduik . (B.24)

A Legendre transformation from variable T to S leads to the differential of the free energy,

dF = d(E − TS) = dE − SdT − TdS = −SdT + σikduik . (B.25)

From the thermodynamical potentials Eqs. (B.24) and (B.25), it is easy to derive the
stress tensor:

σik =

(
∂E

∂uik

)
S

,

σik =

(
∂F

∂uik

)
T

. (B.26)

Below, we focus on the stress tensor in terms of the free energy.

The elastic energy functional for a monatomic plate
For the description of two-dimensional materials, we expand the free energy per surface
area3, F (T, uik), in powers of uik. Since the free energy is a scalar, each of its summands
must be a scalar, too. The temperature is assumed to remain constant during the defor-
mation, which is necessary to exclude thermal expansion. Then, starting from mechanical
equilibrium, uik = 0 implies σik = 0 and therefore

∂F

∂uik

(B.26)
= 0 , (B.27)

such that no linear terms appear in our expansion (as expected for mechanical equilib-
rium). Only two independent, invariant scalars of second order can be formed from the
strain tensor, namely e.g. the square of the trace, u2

ii, and the sum4 of all squared elements,
u2
ik. For small deformations, higher order terms can be neglected and we find

F =
λ

2
u2
ii + µu2

ik . (B.28)

It is to be noted that the strain tensor components uiz vanish identically for monatomically
thin plates,

uxz = uyz = uzz = 0 , (B.29)

such that these components do not contribute to the elastic free energy. The energy scale
is chosen in such a way that F = 0 for the undeformed body. It is common to express these

3The above calculations for the free energy per volume apply accordingly in two dimensions. Some care
must be taken since uiz = 0 in two dimensions.

4Note that u2ik = uikuik = u11u11 + u12u12 + . . ..
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B. Continuum model for 2D materials

constants in terms of Young’s modulus E and Poisson’s ratio σ which are a measure for the
stiffness of the material and its transverse contraction upon axial elongation, respectively:

λ =
Eσ

(1− σ2)
, µ =

E
2(1 + σ)

. (B.30)

With these expressions, (B.28) becomes

F =
Eσ

2(1− σ2)
u2
ii +

E
2(1 + σ)

u2
ik

=
E

2(1 + σ)

(
u2
ik +

σ

1− σ
u2
ii

)
, (B.31)

where i, k 6= z for monatomically thin plates. This form of the free energy will be used
to derive differential equations for deformations. The stress tensor can be expressed in
terms of the strain tensor,

σik
(B.26)

=
∂F

∂uik
=

E
1 + σ

(
uik +

σ

1− σ
ullδik

)
, (B.32)

with the explicit components

σxx =
E

1 + σ

(
uxx +

σ

1− σ
(uxx + uyy)

)
(B.33)

=
E

(1 + σ)(1− σ)
((1− σ)uxx + σ(uxx + uyy))

=
E

(1 + σ)(1− σ)
(uxx + σuyy) ,

σyy =
E

(1 + σ)(1− σ)
(uyy + σuxx)

σxy =
E

1 + σ
uxy .

Monatomically thin plates
In a plate of monatomic thickness, all forces are constant with respect to the effective
elastic thickness h. The deformation coordinates are

ux , uy and uz ≈ ζ(x, y) , (B.34)

where ζ is the displacement of the “neutral” plane in the middle of the plate, as depicted
in Fig. B.2. Due to its small thickness only very weak forces need to be applied to
the plate surface in order to bend it. These external surface forces P can be neglected
when compared to internal tensions such that σiknk = 0 (see Eq. (B.20)). For a small
bending the surface normal vector n points along the z-axis, such that the stress tensor
components σiz vanish. From Eqs. (B.12) and (B.29), we infer

uxz = 0 ⇒ ∂ux
∂z

= −∂uz
∂x

, uyz = 0 ⇒ ∂uy
∂z

= −∂uz
∂y

. (B.35)
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Figure B.2.: For monatomically thin plates with effective elastic thickness h, the out-
of-plane displacement uz(x, y) can be described by the displacement of the
neutral plane in the middle of the plate, ζ(x, y).

For a small bending, it is sufficiently exact to replace uz by ζ(x, y). It follows that

∂ux
∂z

= −∂ζ
∂x

,
∂uy
∂z

= −∂ζ
∂y

, (B.36)

and hence

ux = −z ∂ζ
∂x

, uy = −z ∂ζ
∂y

, (B.37)

where integration constants have been set to zero. The components of the strain tensor
become

uxx = −z ∂
2ζ

∂x2
, uyy = −z ∂

2ζ

∂y2
, uxy = −z ∂2ζ

∂x∂y
,

uxz = uyz = uzz = 0 . (B.38)

With this form of the strain tensor we write Eq. (B.31) as

F =
E

2(1 + σ)

(
u2
ik +

σ

1− σ
u2
ii

)
=

E
2(1 + σ)

(
(u2

xx + u2
xy + u2

yx + u2
yy) +

σ

1− σ
(u2

xx + u2
yy + 2uxxuyy)

)
=

Ez2

2(1 + σ)

{(
(∂2
xζ)2 + (∂2

yζ)2 + 2(∂x∂yζ)2
)

+
σ

1− σ
(
(∂2
xζ)2 + (∂2

yζ)2 + 2∂2
xζ∂

2
yζ
)}

=
Ez2

2(1 + σ)


(
(∂2
xζ)2 + (∂2

yζ)2
)(

1 +
σ

1− σ

)
︸ ︷︷ ︸

= 1
1−σ

+2(∂x∂yζ)2 + ∂2
xζ∂

2
yζ

2σ

1− σ

 . (B.39)
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B. Continuum model for 2D materials

Then, the free energy per surface area turns out to be

F = z2 E
2(1 + σ)

(
1

1− σ
(
(∂2
xζ)2 + (∂2

yζ)2
)

+
2σ

1− σ
∂2
xζ∂

2
yζ + 2 (∂x∂yζ)2

)
= z2 E

2(1 + σ)

(
1

1− σ
(
∂2
xζ + ∂2

yζ
)2

+ 2
(
(∂x∂yζ)2 − ∂2

xζ∂
2
yζ
))

. (B.40)

To obtain the free energy of the whole plate with out-of-plane deformations, we must
integrate the energy density F/h over the plate volume. In the z-direction, we integrate
from −h/2 to h/2, where h is the effective elastic thickness of the monatomic plate. The
other dimensions are integrated over the entire surface area of the plate,

FPl =

∫
F

h
dV (B.41)

=
2h2

3 · 8
E

2(1 + σ)

1

1− σ

∫∫ ((
∂2
xζ + ∂2

yζ
)2

+ 2(1− σ)
(
(∂x∂yζ)2 − ∂2

xζ∂
2
yζ
))

dxdy

=
Eh2

24(1 + σ)(1− σ)

∫∫ ((
∂2
xζ + ∂2

yζ
)2

+ 2(1− σ)
(
(∂x∂yζ)2 − ∂2

xζ∂
2
yζ
))

dxdy .

Out-of-plane deformations
To find the equilibrium of the plate we have to minimize its total energy. Therefore, we
first calculate the variation of the free energy given by Eq. (B.41). The integral consists
of two terms, which we treat separately. With df = dxdy and 4 = ∂2

x + ∂2
y , the former

term becomes

1

2
δ

∫
(4ζ)2 df=

∫
(4ζ) δ (4ζ) df . (B.42)

The correct prefactor will be restored later. With

δ (4ζ) =
∑
i

(∂i (4ζ)) δi =
∑
i

(4 (∂iζ)) δi =
∑
i

4 ((∂iζ) δi)−
∑
i

(∂iζ) (4δi)︸ ︷︷ ︸
= 0

= 4
∑
i

(∂iζ) δi︸ ︷︷ ︸
= δζ

= 4 (δζ) , (B.43)

we infer

1

2
δ

∫
(4ζ)2 df =

∫
(4ζ) (∇)2︸ ︷︷ ︸

=4

(δζ) df

=

∫
∇ · ((4ζ)∇(δζ)) df︸ ︷︷ ︸

=:S1

−
∫

(∇(4ζ)) ·∇(δζ) df︸ ︷︷ ︸
=:S2

. (B.44)

Using Gauss’ Law, S1 transforms to an integral over the plate boundaries,

S1 =

∮
(4ζ) (∇(δζ)) · n dl=

∮
(4ζ) (∂n(δζ)) dl , (B.45)
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Plate

Ribbon

(a) (b)

Figure B.3.: (a,b) The line element dl refers to the tangential vector l and the derivative
∂n = n · ∇ to the normal vector n. (b) For a rectangular ribbon with
cos θ = 1 and sin θ = 0, Eqs. (B.61) and (B.62) become much simpler.

where n is the vector in the x− y-plane normal to the plate boundary and ∂n = n ·∇ is
the derivative along this direction, see Fig. B.3 (a).

With Gauss’ Law once again, S2 becomes

S2 =

∫
∇ (δζ (∇(4ζ))) df−

∫
δζ∇ (∇(4ζ)) df

=

∮
δζ (∇(4ζ)) · n dl−

∫
δζ4(4ζ) df

=

∮
δζ∂n(4ζ) dl−

∫
δζ
(
42ζ

)
df . (B.46)

Now, the variation of the first term in Eq. (B.41) can be written as

1

2
δ

∫
(4ζ)2 df=

∫
δζ42ζ df−

∮
δζ∂n(4ζ) dl+

∮
4ζ∂n(δζ) dl. (B.47)

Again omitting the prefactor, we vary the second term in Eq. (B.41):

δ

∫ (
(∂x∂yζ)2 −

(
∂2
xζ
) (
∂2
yζ
))

df

=

∫ (
2(∂x∂yζ)(∂x∂y(δζ))−

(
∂2
x(δζ)

) (
∂2
yζ
)
−
(
∂2
xζ
) (
∂2
y(δζ)

))
df . (B.48)

For the integrand we use the equality

∂x
(
∂y(δζ)∂x∂yζ − ∂x(δζ)∂2

yζ
)︸ ︷︷ ︸

=: vx

+∂y
(
∂x(δζ)∂x∂yζ − ∂y(δζ)∂2

xζ
)︸ ︷︷ ︸

=: vy

= ∂x∂y(δζ)∂x∂yζ + ∂y(δζ)∂2
x∂yζ − ∂2

x(δζ)∂2
yζ − ∂x(δζ)∂x∂

2
yζ

+∂x∂y(δζ)∂x∂yζ + ∂x(δζ)∂x∂
2
yζ − ∂2

y(δζ)∂2
xζ − ∂y(δζ)∂2

x∂yζ

= 2∂x∂yζ∂x∂y(δζ)− ∂2
x(δζ)∂2

yζ − ∂2
y(δζ)∂2

xζ , (B.49)

111



B. Continuum model for 2D materials

where the left hand side is the divergence of a two-dimensional vector v. Integrating this
divergence, we find∫

(∂xvx + ∂yvy) df=

∮
v · n dl (B.50)

=

∮ cos θ
(
∂y(δζ)∂x∂yζ − ∂x(δζ)∂2

yζ
)︸ ︷︷ ︸

=nxvx

+ sin θ
(
∂x(δζ)∂x∂yζ − ∂y(δζ)∂2

xζ
)︸ ︷︷ ︸

=nyvy

 dl .

On the plate boundaries, we can express the partial derivations by

∂x = cos θ∂n − sin θ∂l , ∂y = sin θ∂n + cos θ∂l , (B.51)

and find∮ {
cos θ

(
sin θ∂n(δζ)∂y∂yζ + cos θ∂l(δζ)∂x∂yζ − cos θ∂n(δζ)∂2

yζ + sin θ∂l(δζ)∂2
yζ
)

+ sin θ
(
cos θ∂n(δζ)∂x∂yζ − sin θ∂l(δζ)∂x∂yζ − sin θ∂n(δζ)∂2

xζ − cos θ∂l(δζ)∂2
xζ
)}

dl

=

∮
∂n(δζ)

(
2 sin θ cos θ∂x∂yζ − cos2 θ∂2

yζ − sin2 θ∂2
xθ
)

dl

+

∮
∂l(δζ)

(
cos2 θ∂x∂yζ + sin θ cos θ∂2

yζ − sin2 θ∂x∂yζ − sin θ cos θ∂2
xζ
)

dl

=

∮
∂n(δζ)

(
2 sin θ cos θ∂x∂yζ − sin2 θ∂2

xζ − cos2 θ∂2
yζ
)

dl

+

∮
∂l(δζ)

(
sin θ cos θ

(
∂2
yζ − ∂2

xζ
)

+
(
cos2 θ − sin2 θ

)
∂x∂yζ

)
dl . (B.52)

By partial integration the very last integral becomes∮
∂l
(
(δζ)

(
sin θ cos θ

(
∂2
yζ − ∂2

xζ
)

+
(
cos2 θ − sin2 θ

)
∂x∂yζ

))
dl︸ ︷︷ ︸

= 0

−
∮

(δζ)∂l
(
sin θ cos θ

(
∂2
yζ − ∂2

xζ
)

+
(
cos2 θ − sin2 θ

)
∂x∂yζ

)
dl , (B.53)

such that

δ

∫ (
(∂x∂yζ)2 −

(
∂2
xζ
) (
∂2
yζ
))

df

=

∮
∂n(δζ)

(
2 sin θ cos θ∂x∂yζ − sin2 θ∂2

xζ − cos2 θ∂2
yζ
)

dl

−
∮

(δζ)∂l
(
sin θ cos θ

(
∂2
yζ − ∂2

xζ
)

+
(
cos2 θ − sin2 θ

)
∂x∂yζ

)
dl. (B.54)

Restoring all constants and with Eqs. (B.47) and (B.54), we get the variation of the free
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energy,

δFPl = κ

{∫
δζ42ζ df (B.55)

−
∮
δζ (∂n(4ζ)

+(1− σ)∂l
(
sin θ cos θ

(
∂2
yζ − ∂2

xζ
)

+
(
cos2 θ − sin2 θ

)
∂x∂yζ

))
dl

+

∮
∂n(δζ)

(
4ζ + (1− σ)

(
2 sin θ cos θ∂x∂yζ − sin2 θ∂2

xζ − cos2 θ∂2
yζ
))

dl

}
,

where we have introduced the bending rigidity for a monatomically thin plate,

κ =
Eh2

12(1− σ2)
. (B.56)

In order to get the total energy minimum we have to add the potential energy. The
potential energy is minus the work performed against external forces. Therefore, its
variation δU is

δU = −
∫
Pzδζ df , (B.57)

where Pz is an external force per surface area that acts perpendicular to the x− y-plane.
Finally, the equilibrium condition is given by

δFPl − δU = 0 . (B.58)

There are area and line integrals on the left hand side. The area integral∫ (
κ42ζ − Pz

)
δζ df (B.59)

only vanishes for arbitrary δζ if

κ42ζ − Pz = 0 . (B.60)

This equation describes equilibrium for out-of-plane deformations. The line integrals in
Eq. (B.58) need to vanish as well, and this translates to boundary conditions. For free
floating edges, δζ and ∂nδζ may take any values at the boundaries such that the coefficients
of the line integrals in Eqs. (B.55) and (B.58) have to vanish:

−∂n(4ζ) + (1− σ)∂l

(
cos θ sin θ

(
∂2ζ

∂x2
− ∂2ζ

∂y2

)
+
(
sin2 θ − cos2 θ

) ∂2ζ

∂x∂y

)
= 0 , (B.61)

4ζ + (1− σ)

(
2 sin θ cos θ

∂2ζ

∂x∂y
− sin2 θ

∂2ζ

∂x2
− cos2 θ

∂2ζ

∂y2

)
= 0 . (B.62)

In the special case of a rectangular plate aligned along the x- and y-axes (Fig. B.3 (b))
and with periodic boundaries along the y-axis, Eq. (B.61) becomes

0 = ∓∂x(4ζ)± (1− σ)∂y

(
− ∂2ζ

∂x∂y

)
= ±

(
−∂3

xζ − ∂x∂2
yζ − (1− σ)∂x∂

2
yζ
)

⇒ 0 = ∂3
xζ + (2− σ)∂x∂

2
yζ . (B.63)
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Accordingly, Eq. (B.62) can be written as

0 = ∂2
xζ + ∂2

yζ + (1− σ)

(
−∂

2ζ

∂y2

)
,

⇒ 0 = ∂2
xζ + σ∂2

yζ . (B.64)

That is, a monatomically thin, rectangular plate with open boundaries along the x-axis
and periodic boundaries along the y-axis needs to satisfy the boundary conditions given
by Eqs. (B.63) and (B.64).

In-plane deformations
Another type of deformation is one that takes place within the plane of the plate with
no bending involved. The deformations are homogeneous in z for a monatomically thick
plate such that the strain tensor only depends on x and y. Usually, such deformations
arise from forces acting on the plate edges or on the plate volume (like gravity) such that
no forces act on the surface of the plate. A vanishing force per surface element means
σikηk = 0, see Eq. (B.20). As there is no bending for in-plane deformations, we infer

uxz = uyz = uzz = 0 . (B.65)

According to Eq. (B.33), the non-vanishing components of the strain tensor are

σxx =
E

(1− σ2)
(uxx + σuyy) , σyy =

E
(1− σ2)

(uyy + σuxx) , σxy =
E

1 + σ
uxy . (B.66)

For a free floating plate, no forces act on the plate edges,

σiknk = 0 , (B.67)

where n is the vector in the plate plane and normal to the plate boundary (ni takes the
role of dfi in Fig. B.1). As above, we explicitly treat the special case of a rectangular
plate as depicted in Fig. B.3 (b). Since n = (±1, 0, 0), the σxx and σyx components of the
stress tensor must vanish along the edges. That is, the deformations need to satisfy

σxx =
E

(1− σ2)
(uxx + σuyy) = 0 ,

⇒ ∂xux + σ∂yuy = 0 , (B.68)

σxy =
E

1 + σ
uxy = 0 ,

⇒ ∂xuy + ∂yux = 0 , (B.69)

at the plate boundaries.

Due to homogeneity along the z-direction, we can use Pi = Fi in Eq. (B.17), such that
the plate is in equilibrium if the equations(

∂σxx
∂x

+
∂σxy
∂y

)
+ Px = 0 ,(

∂σxy
∂x

+
∂σyy
∂y

)
+ Py = 0 (B.70)
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are satisfied. Inserting Eq. (B.66) into these equations, we get

E
(

1

(1− σ2)

∂2ux
∂x2

+
1

2(1 + σ)

∂2ux
∂y2

+
1

1 + σ

(
σ

1− σ
+

1

2

)
∂2uy
∂x∂y

)
+ Px = 0 ,

E
(

1

(1− σ2)

∂2uy
∂y2

+
1

2(1 + σ)

∂2uy
∂x2

+
1

1 + σ

(
1

2
+

σ

1− σ

)
∂2ux
∂x∂y

)
+ Py = 0 . (B.71)

With

B := µ+ λ
(B.30)

=
E

2(1 + σ)
+

Eσ

(1− σ2)
= E

(1− σ) + 2σ

2(1− σ2)
=

E
2(1− σ)

, (B.72)

B + µ = 2µ+ λ
(B.30)

=
E

1 + σ
+

Eσ
(1− σ2)

= E
(1− σ) + σ

(1− σ2)
=

E
1− σ2

, (B.73)

we can express the bulk (B) and shear (µ) moduli of a three-dimensional body in terms of
its Young’s modulus and Poisson’s ratio. The equations for in-plane equilibrium become

(B + µ)
∂2ux
∂x2

+ µ
∂2ux
∂y2

+B
∂2uy
∂x∂y

+ Px = 0 , (B.74)

(B + µ)
∂2uy
∂y2

+ µ
∂2uy
∂x2

+B
∂2ux
∂x∂y

+ Py = 0 . (B.75)
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C. Symmetry and the piezoelectric
tensor of hexagonal boron nitride

According to Neumann’s principle, the symmetry of any physical property must be at
least as high as the symmetry of the crystal [Nye]. Every (perfect) crystal can be at-
tributed to one out of 32 crystal classes1 (or point groups) [Ashcroft&Mermin]. These
crystal classes can be further divided into seven crystal systems. All ideal crystals do
exhibit symmetry and hence symmetry considerations can be a powerful and very ele-
gant way to determine which elements of a tensor or operator may be nonzero. Here, we
demonstrate that the point group 6̄m2 of hBN reduces the piezoelectric tensor of hBN to
only one free parameter.

Tensors and their transformation
Tensors can be used to represent physical properties like conductivity. In a solid, the
conductivity σ, which connects the current density j with the electric field E via2 jk =
σklEl is generally anisotropic, i.e. σkl 6= σconst.δkl. Conductivity is represented by a
tensor of second rank. While every matrix is a second-rank tensor, not every second-
rank tensor is a matrix. Both are square arrays of nine numbers (in R3), yet they mean
different things. For example, the conductivity tensor σij represents the physical property
“conductivity” in the reference frame with coordinates xi while an (improper) rotation
matrix aij transforms from one (orthonormal) reference frame to another, x′i = aijxj, but
does not represent a physical property. In short, tensors represent physical quantities
w.r.t. a certain frame while (improper) rotation matrices are used to transform from one
frame to another.

A physical property does not depend on the coordinates in which it is represented. That
is, if its tensor components are known in the coordinates xi, then they are implicitly
also known in coordinates x′i = aijxj. Zeroth-rank tensors (scalars) like mass, charge, or
length do not depend on the coordinate frame3 such that the transformation is the identity
operation, e.g., m 7→ m′ = m for mass. First-rank tensors (vectors) like position, velocity,
or angular momentum transform, obviously, like the coordinates, e.g., vi 7→ v′i = aijvj
for the velocity. Due to orthogonality, the back transformation is given by vi = ajiv

′
j.

The transformation for second-rank tensors can be deduced from the transformation for
first-rank tensors. Going back to the example of conductivity, we find

j′k = akljl = aklσlmEm = aklσlmanm︸ ︷︷ ︸
=aklanmσlm

E ′n = σ′knE
′
n , ⇒ σ′kn = aklanmσlm (C.1)

1For three dimensional crystals, that is. In two dimensions, there are only 10 point groups.
2We use Einstein’s sum convention throughout, i.e., σklEl =

∑3
l=1 σklEl and likewise.

3We restrict these consideration to orthonormal cartesian coordinates. The transformation matrices
between such coordinate frames are orthogonal.
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C. Symmetry and the piezoelectric tensor of hexagonal boron nitride

rank x 7→ x′ x′ 7→ x

0 m′ = m m = m′

1 v′i = aijvj vi = ajiv
′
j

2 σ′ij = aikajlσkl σij = akialjσ
′
kl

3 d′ijk = ailajmakndlmn dijk = aliamjankd
′
lmn

Table C.1.: Transformation laws for tensors under the coordinate change xi 7→ x′i = aijxj.

and likewise σkn = alkamnσ
′
lm. These transformations hold for all second-rank tensors.

Iteratively, we can deduce the transformation for tensors of arbitrary rank, see Table C.1.
In particular, an n-th rank tensor ti...k transforms like a product of n coordinates,

t′i...k = aij . . . akl︸ ︷︷ ︸
n factors

tj...l ,

x′i . . . x
′
k︸ ︷︷ ︸

n factors

= aij . . . akl︸ ︷︷ ︸
n factors

xj . . . xl︸ ︷︷ ︸
n factors

. (C.2)

The transformation ti...k 7→ t′j...l works accordingly,

ti...k = aji . . . alkt
′
j...l ,

xi . . . xk = aji . . . alkx
′
j . . . x

′
l . (C.3)

Symmetry constraints on the piezoelectric tensor of hBN
The lattice of hBN belongs to the crystal class 6̄m2 (in Hermann-Mauguin notation;
equivalent to D3h in Schönflies notation) within the hexagonal crystal system. A stereo-
graphic projection of the point group 6̄m2 is shown in Fig. C.1. In particular, the crystal
is invariant under the transformations

Am1 : (x1, x2, x3) 7→ (−x1, x2, x3) , (C.4)

Am3 : (x1, x2, x3) 7→ (x1, x2,−x3) , (C.5)

A6̄ : x1 7→ −

(
1

2
x1 +

√
3

2
x2

)
= −x1

2
−
√

3

2
x2 (C.6)

x2 7→ −

(
−
√

3

2
x1 +

1

2
x2

)
=

√
3

2
x1 −

1

2
x2

x3 7→ −x3 .

The (third-rank) piezoelectric tensor is given by dijk = ∂Pi
∂σjk

and is symmetric in the last

two components because the stress tensor σjk is symmetric. The tensor components can be
determined with some measurement apparatus that need not be further specified, here.
Let us assume that in a certain position and orientation, our apparatus can measure
d111. Now, we act the map Am1 on the position and orientation of our device while
keeping the crystal unchanged. From the crystal / laboratory point of view, the apparatus
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x2'

x1' 2-fold rotation axis

6-fold inversion axis

mirror plane

N

B

6m2

Figure C.1.: The lattice of hBN belongs to the point group 6̄m2 within the hexagonal
crystal system. All symmetry elements are shown in the stereographic pro-
jection. The sixfold inversion axis is equivalent to a threefold rotation axis
and a mirror plane perpendicular to it, see Eqs. (C.5) and (C.6). In addition
to the standard orientation with a mirror plane perpendicular to the x1-axis,
m ⊥ x1, we also show an orientation where a mirror plane is perpendicular
to the x′2-axis, m ⊥ x′2. The orientation of the threefold rotation / sixfold
inversion axis remains unchanged, x′3 = x3.

now measures the tensor component d′111 = −d111, where we have used Eq. (C.2) with
x′1x

′
1x
′
1 = −x1x1x1. Yet from the measurement device point of view nothing has changed

since the crystal is invariant under the map Am1 . That is, the measurement must yield the
same result as before, namely d111. Of course, the measurement result is independent from
the point of view, i.e. d111 = d′111 = −d111 = 0, because of symmetry. Due to Eqs. (C.2)
and (C.4), all tensor components where the number of indices that equal 1 is odd vanishes,
i.e. d122 = d123 = d132 = d133 = d212 = d213 = d312 = d313 = d221 = d231 = d321 = d331 = 0.
Similar considerations hold for the map Am3 such that d113 = d131 = d223 = d232 =
d311 = d322 = d333 = 0. The only remaining elements are d112 = d121, d211, d222, d233, and
d323 = d332. Since dijk is symmetric in the last two components, the according coordinates
in Eq. (C.2) can be commuted. By commuting only the last two coordinates but not the
first, map A6̄ leads to

x1(x1x2) 7→

(
−1

2
x1 −

√
3

2
x2

)(
−
√

3

4
x2

1 + (
1

4
− 3

4
)x1x2 +

√
3

4
x2

2

)

=

√
3

8
x3

1 +
1

4
x2

1x2 −
√

3

8
x1x

2
2 +

3

8
x2x

2
1 +

√
3

4
x2x1x2 −

3

8
x3

2 ,

⇒ d112 =

√
3

8
d111 +

1

4
d112 −

√
3

8
d122 +

3

8
d211 +

√
3

4
d212 −

3

8
d222

= 0 +
1

4
d112 +

3

8
d211 −

3

8
d222 ,

⇒ d112 =
1

2
(d211 − d222) , (C.7)
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C. Symmetry and the piezoelectric tensor of hexagonal boron nitride

where we have used that the tensor component dijk transforms like the coordinate product
xixjxk, see Eq. (C.2) and Table C.1. In a similar fashion, we get d211 = 1

3
(2d112 − d222),

d222 = −1
3
(2d112+d211), d233 = 0, and d323 = 0. We resolve that for hBN, crystal symmetry

reduces the number of independent nonzero parameters of the piezoelectric tensor4 from
18 to only one, namely d112 = d211 = −d222.

We point out that for the hexagonal symmetry of the point group 6̄m2, two seemingly
similar yet different lattice orientations need to be discerned. Here, we have chosen
m ⊥ x1, i.e., an orientation such that a mirror plane is perpendicular to the x1-axis, see
Figs. C.1 and 2.1. If the lattice is rotated by +30◦, one mirror plane will be perpendicular
to the x′2-axis, i.e. m ⊥ x′2, as shown in Fig. C.1. Due to the threefold rotation symmetry,
this can be described most easily with a rotation5 of -90◦. With the map

A⊥ :

x1

x2

x3

 7→
 0 1 0
−1 0 0
0 0 1

x1

x2

x3

 =

 x2

−x1

x3

 =

x′1x′2
x′3

 , (C.8)

and the reverse transformation according to Eq. (C.3), we find d112 = a1ia1ja2kd
′
ijk =

δi2δj2(−δk1)d′ijk, and thus d112 = −d′221. Accordingly, we find d′122 = −d211 and d′111 =
−d222. Consequently, the only free parameter in the rotated frame is d′111 = −d′122 = −d′212,
see also [Nye] and [Duerloo(2012)].

4As a third-rank tensor dijk has 27 elements. Yet dijk is symmetric in the last two components,
dijk = dikj , which reduces the number of independent elements to 18, independent of crystal symmetry.

5The sign of the rotation matters, for the difference between +90◦ and -90◦ is a rotation of 180◦. The
crystal is not invariant under this rotation and our measurement device would return exactly the
opposite value since strain is centrosymmetric and the polarization vector would point in the opposite
direction.
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D. Spin relaxation in bilayer graphene
quantum dots

In order to confine charge carriers in graphene electrostatically, Klein’s paradox demands
a bandgap, see Subsec. 2.1.2 and [Katsnelson(2006)]. There are (at least) three situations
that lead to a bandgap, namely (i) armchair graphene nanoribbons (depending on the rib-
bon width), (ii) monolayer graphene with a sublattice potential, and (iii) bilayer graphene
with a layer-staggered potential. These situations allow for electrostatical confinement of
electrons in quantum dots (QDs) and also break the valley degeneracy [Recher(2010)].
The benefits of carbon-based materials for spin coherence make such systems appealing
for spintronics.

The spin relaxation times for systems based on situations (i) and (ii) have already been
studied theoretically [Struck(2010), Droth(2013)]. However, neither of them is stud-
ied in experiment. For situation (i), the atomically precise construction of armchair
graphene nanoribbons is a challenge in itself, even without additional electrostatic gat-
ing [Ruffieux(2012)]. A sublattice splitting (situation (ii)) can be realized within a
graphene/hBN heterostructure (Subsec. 2.2.2) [Hunt(2013), Woods(2014)]. However, pos-
sible misalignment of the crystal axes of the two layers makes it difficult to reliably tailor a
bandgap. In contrast, bilayer graphene with a perpendicular bias (situation (iii)) and elec-
trostatic gating is studied in experiment [Goossens(2012), Varlet(2014), Varlet(2014-2)],
but a theoretical work on the spin relaxation time in a bilayer graphene QD has, to our
knowledge, not been performed, yet.

We envisage the calculation of the spin relaxation time T1 via Fermi’s golden rule in a
similar way as in [Struck(2010)] and [Droth(2013)]. Such an analytic procedure relies on
the form of the QD bound electronic states, the spin-orbit interaction, acoustic lattice
dynamics, and the electron-phonon coupling to acoustic phonons in bilayer graphene.
Below, we outline these fundamental building blocks.

Quantum dot bound electronic states
In the basis (ψAK , ψBK , ψAK′ , ψBK′), the Hamiltonian of a single graphene layer, Eq. (2.17)
with ∆=0, can be written as

HD =


0 qx − iqy 0 0

qx + iqy 0 0 0
0 0 0 −qx − iqy
0 0 −qx + iqy 0

 . (D.1)
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D. Spin relaxation in bilayer graphene quantum dots

For a valley-isotropic representation [Beenakker(2008)], one may consider the unitary
transformation

U =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 . (D.2)

Under the transformation U , the basis becomes (ψAK , ψBK ,−ψBK′ , ψAK′) and the Hamil-
tonian takes the form

H(U)
D = UHDU

† =


0 qx − iqy 0 0

qx + iqy 0 0 0
0 0 0 qx − iqy
0 0 qx + iqy 0

 , (D.3)

which we may rewrite as

H̃(U)
D =

(
0 qx − iqy

qx + iqy

)
, (D.4)

if we bear in mind that the basis of this reduced form is (ψAK , ψBK) for the K-point
(upper left block of Eq. (D.3)) and (−ψBK′ , ψAK′) for the K ′-point (lower right block
of Eq. (D.3)). With this valley-isotropic representation of biased bilayer graphene (see
also Eq. (2.35)) and an additional muffin tin confinement potential, Recher et al. have
obtained the bound states of the resulting bilayer graphene QD [Recher(2009)].

Spin-orbit interaction and spin-phonon coupling
The full spin-orbit interaction HbiSOI of biased bilayer graphene can be derived from
symmetry considerations [Guinea(2010), Konschuh(2012)]. With the Pauli matrices µ
(layer), σ (sublattice), s (electron spin), two-by-two unit matrices µ0, σ0 , s0, and τ = ±1
(valley), it can be denoted as

HbiSOI = HI +HR +Hinter +Hel, (D.5)

where the basis is similar to Eq. (2.32), (ψ(A), ψ(B), ψ(A′), ψ(B′))⊗ (|↑〉, |↓〉), and

HI =
((∆I −∆′I)σ0 + (λI + λ′I)σz)µ0τsz + ((∆I + ∆′I)σ0 + (λI − λ′I)σz)µzτsz

2
,

HR =
(λ̄0µz + 2λRµ0)(τσxsy − σysx)

2
,

Hinter = −(λ̄4σz + δλ4σ0)(τµxsy + µysx)

2
,

Hel =
λ1

2
τsz(µxσx − µyσy) +

λ3

4
(µx(τσxsy + σysx) + µy(τσysy − σxsx)) . (D.6)

Here, HI and HR are the intrinsic and Rashba-type Hamiltonians, respectively. The
contribution Hinter comes from interlayer couplings and Hel from the layer bias. For
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discussion of the coupling parameters ∆I, ∆′I, λI, λ
′
I, λ̄0, λR, λ̄4, δλ4, λ1, and λ3, we refer

to [Konschuh(2012)].

For bilayer graphene, the spin-orbit interaction mediates the spin-phonon coupling in the
same way as for monolayer graphene. As described in Sec. 3.3, HbiSOI leads to an effective
coupling of spin to in-plane phonons by admixing both spin-up and spin-down states in
first order perturbation theory. Out-of-plane phonons lead to a local tilt of the lattice
that can be considered in the spin-orbit interaction by correcting the electron spin (s)
orientation w.r.t. the sublattice spin (σ) according to

sx 7→ sx + (∂xuz)sz , sy 7→ sy + (∂yuz)sz , sy 7→ sz − (∂xuz)sx − (∂yuz)sy . (D.7)

Applied to Eq. (D.5), these substitutions lead to an effective spin-phonon coupling to
out-of-plane phonons.

Acoustic lattice dynamics
Upon spin relaxation, the Zeeman energy gµBB, where g is the electron g-factor in
graphene, µB is Bohr’s magneton, and B is the magnetic field, is transferred to a lat-
tice excitation with energy ~ω. For typical laboratory magnetic fields B<20 T, the fre-
quency ω corresponds to low-energy acoustic phonons at the center of the Brillouin zone.
Phonons at the center of the Brillouin zone have a wavelength much longer than the
atomic distance. This justifies a description with the continuum model.

Acoustic in-plane deformations (ux, uy) in bilayer graphene are described by a coupled
set of differential equations,

ρüx = (B + µ)∂2
xux + µ∂2

yux +B∂x∂yuy

ρüy = (B + µ)∂2
yuy + µ∂2

xuy +B∂x∂yux , (D.8)

where ρ is the surface mass density of bilayer graphene and B and µ are the bulk and
the shear moduli, respectively. Note that we employ a quasi two-dimensional description
where B, µ, and also Young’s modulus E have the same dimension as in monolayer
graphene. For bilayer graphene, it is not entirely clear if the relations of monatomically
thin layers, given by Eq. (B.30), those of three-dimensional bulk material,

λ3D =
E3Dσ

(1− 2σ)(1 + σ)
, µ3D =

E3D

2(1 + σ)
, (D.9)

or none of them apply. Either way, the form of Eq. (D.8) remains unaffected and B and µ
can be determined experimentally. Poisson’s ratio σ is dimensionless and λ=B−µ. With
the ansatz u = u(0)ei(qxx+qyy−ωt), Eq. (D.8) becomes

−ρω2ux = −(B + µ)q2
xux − µq2

yux −Bqxqyuy
−ρω2uy = −(B + µ)q2

yuy − µq2
xuy −Bqxqyux . (D.10)

With qx=0, we resolve −ρω2ux = −µq2
yux for the upper (transversal) component and

−ρω2uy = −(B + µ)q2
yuy for the lower (longitudinal) component. Analog relations hold

for qy=0, where the upper component corresponds to a longitudinal mode and the lower
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D. Spin relaxation in bilayer graphene quantum dots

component to a transversal one. The transversal (⊥) and longitudinal (‖) in-plane modes
and sound velocities are thus given by

u⊥(q, t) =

(
u

(⊥)
x ei(qyy−ω⊥t)

u
(⊥)
y ei(qxx−ω⊥t)

)
, v⊥ =

ω⊥
q

=

√
µ

ρ
,

u‖(q, t) =

(
u

(‖)
x ei(qxx−ω‖t)

u
(‖)
y ei(qyy−ω‖t)

)
, v‖ =

ω‖
q

=

√
(B + µ)

ρ
. (D.11)

Out-of-plane deformations uz are described by the differential equation

ρüz = −κ
(
∂2
x + ∂2

y

)2
uz , (D.12)

where the bending rigidity κ can be determined by experiment. Again, the form of this
equation is identical to monolayer graphene and thin plates of three-dimensional bulk
material. One easily verifies that the out-of-plane modes and their sound velocity are
given by

uz(q, t) = uze
i(qxx+qyy−ωzt) , vz = ∂qωz = ∂q

(√
κ

ρ
q2

)
= 2

√
κ

ρ
q . (D.13)

The two layers in bilayer graphene behave by and large independently because the van
der Waals bond holding them together is much weaker than the in-plane σ bond. As
a result, sound velocities can be approximated by the values for monolayer graphene,
i.e. v‖ ≈ 19.5 km/s, v⊥ ≈ 12.2 km/s, and vz(q=0) = 0 [Falkovsky(2008)]. The surface mass
density is twice that of monolayer graphene and the same holds — in an approximation
— for the elastic constants, because the contributions from the individual layers simply
add up.

Electron-phonon coupling
As explained above, only acoustic phonons are relevant for spin relaxation processes where
the lattice absorbs the Zeeman energy. Relative excitations of the individual layers in
bilayer graphene w.r.t. each other correspond to optical lattice excitations and need not
be considered for usual laboratory magnetic fields. As a result, the interlayer hopping
t12 in Eq. (2.32) does not change in the process and the electron-phonon coupling is
determined by the individual layers. The electron-phonon coupling in bilayer graphene is
thus given by

HbiEPC = µ0(HBLC +HVEP) (D.14)

whereHBLC andHVEP are given by Eqs. (3.4) and (3.9), respectively. The minimal bilayer
description given by Eq. (2.32) does not include a hopping between A′ and B atoms, see
Fig. 2.5. In bilayer graphene, this hopping is only slightly smaller than t12 and leads
to a fictitious vector field Ā similar to that of HBLC [Mariani(2012)]. This is because
the hopping direction is not perpendicular to the graphene sheet but has an in-plane
component that changes for acoustic in-plane modes.
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