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1 Introduction Spintronics and graphene are exciting, 
vigorous, and rather new areas of research with a rapid 
pace of new discoveries. Books and a multitude of review 
articles are available for those that want to learn about one 
of these fields [1–9]. The intersection of both provides fer-
tile soil for an abundance of fascinating physics and its 
fruits have been partially reaped by previous reviews [10–
12]. Here, we put the cherry on the cake and review spe-
cifically spintronics in graphene quantum dots.  

While classical electronics relies on the charge for in-
formation processing, spin-based electronics or spintronics 
is the paradigm of an advanced technology where the spin 
degree of freedom complements or even replaces charge as 
the carrier of information. The expected benefits of spin-

tronics encompass non-volatile data storage, faster and 
more energy efficient data processing, increased data den-
sity, and many more. In order to fully exploit the potential, 
efficient generation, transport, transfer, manipulation, and 
detection of spin polarization is required. All these re-
quirements are closely connected to material properties. 
Therefore, progress in spintronics seems intrinsically con-
nected to the quest for new materials with appropriate 
characteristics [1, 9, 12].  

Graphene is a novel material that has undeniably 
stirred up the solid state community since its isolation 
more than a decade ago [13–16]. It is a monatomically 
thin, quasi two-dimensional layer of carbon atoms ar-
ranged in a honeycomb lattice with two sublattices, A and 

Thanks to its intrinsic ability to preserve spin coherence, gra-
phene is a prime material for spintronics. In this review arti-
cle, we summarize recent achievements related to spintronics
in graphene quantum dots and motivate this field from a spin-
tronics and a materials science point of view. We focus on
theory but also discuss recent experiments. The main sources
of spin decoherence are interactions with lattice excitations
and the hyperfine interaction with present nuclear spins. We
explain effective spin–phonon coupling in detail and present
a generic power law for the spin relaxation time T1 as a func-
tion of the magnetic field. For specific cases, we discuss spin
relaxation in detail. The Heisenberg exchange interaction is
paramount for coherent spin qubit operation and addressed in
the context of magnetism in graphene nanoflakes. Nuclear
spins in the host and surrounding material can be considered
by several means and the influence of 13C nuclei has been
studied in detail. Impressive advances in general spintronics

 

 
 
and the fabrication of graphene devices are likely to spark
significant advances in spintronics with graphene quantum
dots in the near future. 
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B. Due to its atomic structure, it has the lowest surface 
mass density of all solids [17]. At the same time, its in-
plane mechanical strength is second to no other material 
[18]. The hexagonal structure is the consequence of sp2-
hybridized carbon atoms. The remaining p-orbitals form 
the π-bands responsible for transport. Electrons move 
quasi-relativistically with the Fermi velocity F /300,v cª  
where c is the vacuum speed of light, and with high mo-
bilities [19–23]. Spin–orbit couplings are small and nu-
clear spins are sparse, making it a potentially good host 
material for spin [24–29]. In addition to the real electron 
spin, the occupation of sublattices A and B can be de-
scribed by the sublattice pseudospin. Moreover, in momen-
tum space, the occupation of the two inequivalent Dirac 
points – where valence and conduction bands touch – may 
be denoted by the valley isospin [4, 11]. Electron spin  
currents can be injected optically in graphene with Rashba-
type spin–orbit interaction [30–32]. This makes ferro-
magnetic contacts obsolete, thus eliminating a possible 
source of spin scattering. Magnetic behavior has been ob-
served at the edges of graphene [33–35]. These and further 
properties make graphene a very promising material for 
spintronics.  

Quantum dots (QDs), in graphene as well as in other 
materials, are quasi zero-dimensional regions to which 
charge carriers can be confined [6, 10, 36, 37]. With elec-
trostatic gate electrodes that can be used to adjust the con-
finement potential and with electric contacts for transport, 
QDs allow in principle for full control over the individual 
electron. In particular, QDs provide a controllable play-
ground to investigate the behavior of spins as well as 
sources of decoherence and methods to increase coherence   
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times [7, 38, 39]. In general, there are nuclear spins as well 
as electron spins in a solid. Unless explicitly stated other-
wise, we always refer to electron spin.  

In this review, we focus on what we believe to be  
the most immediate questions related to spintronics with 
localized electron spins in graphene. However, we point 
out that there are a several related systems that make use of 
carbon nanotubes or transition metal dichalcogenides 
(TMDCs) and where the electron spin degree of freedom 
might be substituted or complemented by a pseudospin or 
valley isospin [11, 40–46]. The review is organized as fol-
lows. In the next section, we give an overview over spin-
tronics in quantum dots and motivate the use of graphene. 
In Section 3, we discuss various graphene quantum dots 
and their associated spin relaxation times. Closely related 
to the concept of QDs are localized states due to defects in 
graphene nanoflakes, which we treat in Section 4. In Sec-
tion 5, we address the influence of nuclear spins on spin-
tronics in graphene. Recent experimental achievements and 
the current status are the topic of Section 6. Finally, we 
give a summary and perspective in Section 7. 

 
2 Spintronics Quantum effects become increasingly 

relevant as components of information processing devices 
shrink to the few-nanometer scale. This poses a challenge 
but also offers the chance to exploit quantum mechanics 
for data processing [47–49]. The spin is the canonical ex-
ample of a quantum mechanical degree of freedom with 
two eigenstates. In solids, it is possible to use spin–orbit 
coupling and many other spin dependent effects to manipu-
late the spin with electric fields and hence much faster than 
with external magnetic fields. In order to prepare, manipu-
late, and detect spin in an active and controlled way, spin-
tronic devices may take advantage of any such effects 
[50–53].  

In contrast to electronics where carrier mobilities and 
lifetimes matter, spin mobilities and coherence times are 
relevant parameters for spintronics. The coherence of elec-
tron spins is mainly determined by the spin–orbit interac-
tion (SOI), the abundance of nuclear spins in the host  
material, and magnetic behavior. These characteristics de-
pend on the material and interlink spintronics with material 
science. Due to their lower magnetic moment, nuclear 
spins couple weakly to the environment and exhibit typical 
coherence times orders of magnitude longer than for elec-
tron spins [1, 54].  

Spintronics promises new applications and substan-
tially better performance than standard micro- and nano-
electronics by exploiting the spin degree of freedom. Hard 
drive read heads are a multibillion dollar industry and 
magnetoresistive random-access memory (MRAM) is still 
waiting in the wings. Both technologies are based on the 
giant magnetoresistant effect, whose discovery in the late 
1980s may be considered the birth of spintronics [55–57]. 
Beyond classical computing, spintronics has the potential 
for key components of quantum computing [58, 59]. Quan-
tum computing can be viewed as a coherent superposition 
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of classical computations running in parallel, with algo-
rithms like the one by Shor exploiting this [60]. Obviously, 
such algorithms require appropriate quantum hardware 
[61].  

 

2.1 Spins in quantum dots As proposed by Loss 
and DiVincenzo, spin states of coupled QDs can be used to 
implement a universal set of one- and two-qubit gates 
(qubit is short for quantum bit). Spin qubit gates can be re-
alized with magnetic fields and, using spin-dependent ef-
fects, also with electric fields, or a combination of both  
[58, 61]. Such a solid state approach to quantum comput-
ing benefits from the scalability known from standard elec-
tronics and from long coherence times [7, 62–64].  

The dot regions to which an integer number of elec-
trons can be confined are typically on the length scale of 
10–100 nanometers. The eigenstate spectrum is discrete 
and quantum dots are often referred to as artificial atoms. 
Coulomb repulsion and the exchange coupling also play a 
role [36–38].  

Also for spins that are confined to the QD, there re-
mains a coupling to the environment. At finite tempera-
tures, spins and phonons in the host material couple via the 
admixture mechanism, which involves spin–orbit interac-
tion and electron–phonon coupling, or directly, via spin–
orbit interaction only [65, 66]. Moreover, the hyperfine in-
teraction mediates a coupling between the electron spin 
and nuclear spins in its vicinity [38, 67]. These mecha-
nisms lead to a finite spin lifetime, an important figure of 
merit for applications like the Loss–DiVincenzo quantum 
computer where it should exceed the clock time by orders 
of magnitude [61, 68]. The theoretical prediction and ex-
planation of spin lifetimes (in graphene QDs) is part of this 
review.  

 

2.2 Why use graphene for spintronics? Its many 
outstanding properties make graphene, a monatomically 
thin layer of carbon atoms, an interesting material for a va-
riety of applications, including spintronics. The low spin–
orbit coupling and a small abundance of nuclear spins are 
beneficial forlong spin coherence times [24]. In Table 1, 
we compare the main sources of decoherence for different 
materials.  

Electron mobilities in graphene are typically high and 
allow for spin transport over micrometer length scales [23, 
69, 70–72]. While graphene is naturally non-magnetic, it 
can exhibit magnetic behavior under certain conditions 
[33–35, 73]. More recently, there has been an effort to 
stack graphene and other two-dimensional materials like 
hexagonal boron nitride (hBN) and TMDCs on top of each 
other, held together by van der Waals forces [74–77]. It is 
envisioned that by combining different materials in such 
van der Waals heterostructures, one may tailor physical 
properties. The concept is akin to bandgap engineering in 
semiconductor alloys and might once again highlight the 
connection between spintronics and materials science.  

Table 1 Sources of decoherence in different materials. If two 
spin–orbit splittings are listed, the upper (lower) number corre-
sponds to the conduction (valence) band. Data on the different 
isotopes is taken from Ref. [29].  

material  spin–orbit splitting  nuclear spin  

graphene 24 eV [27, 81] 0 (99% 12C) 
1
2  (1% 13C)   

bilayer graphene 24 eV  [82]  
carbon nanotubea 1.6 meV  [12]  
silicene 1.6 meV [83] 0 (95% 28,30Si)  
  1

2  (5% 29Si)  
silicon (3D bulk) 44 meV [84]  
2D hexagonal BN 15 eV [12] 3

2  (80% 11B)  
 30 eV [12] 3 (20% 10B)  
  1 (>99% 14N)  
  1

2  (<1% 15N)  
2D MoS2 3 meV [85] 0 (75% bMo)  
 147 meV [85] 5

2  (25% 95,97Mo)  
  0 (99% 32, 34, 36S)  
  3

2  (1% 33S)  

GaAs (3D bulk) 340 meV [84] 3
2  (100% 69, 71Ga)  

  3
2  (100% 75As)  

a Data for a (4,4) armchair carbon nanotube. The spin –orbit coupling 
scales inversely with the nanotube radius [80].  
b The isotopes 92Mo, 94Mo, 96Mo, 98Mo, and 100Mo have nuclear spin 0 and 
a combined natural abundance of 75%. 

 
The hexagonal structure of graphene comes from the 

sp2-hybrid formed by three of the four outer-shell electrons 
in carbon. The resulting σ-bands are energetically far away 
from the charge neutrality point and play no role in trans-
port. The remaining pz orbitals form the π-bands responsi-
ble for transport. In the low-energy approximation, they 
obey the quasi-relativistic Dirac Hamiltonian [4]  

D F ( ) ( )x x y y zv q q V x y= + + D + , ,τσ σ σH  (1) 

where τ labels the Dirac valleys K ( 1)= +τ  and K′ ( 1)= -τ  
in reciprocal space, σ  are Pauli matrices in standard repre-
sentation that describe the sublattice, and q  is the wave 
vector measured w.r.t. K or K′, respectively. The sublattice 
splitting Δ vanishes for ideal graphene but may occur due 
to a substrate [76]. An electrostatic potential may be con-
sidered via the term ( ).V x y,  The eigenspectrum of Eq. (1) 
with 0V =  is given by  

2 2 2 2
F( ) ( )x yE v q q D= ± + +  (2) 

and has no gap if 0q =  is possible and 0.D =  In that case, 
it is not possible to confine electrons electrostatically be-
cause of Klein tunneling [78, 79]. In Section 3, we will 
discuss special cases where the energy spectrum becomes 
gapped, thus enabling electrostatic confinement.  
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Due to its low nuclear charge, carbon has a relatively 
low atomic spin–orbit interaction and this carries through 
to the spin–orbit interactions for band electrons in all car-
bon based materials. Yet for flat graphene, the coupling is 
particularly weak because the π- and σ-bands are orthogo-
nal [25–28]. The spin–orbit coupling in graphene is given 
by  

SOI I R ( )z z x y y xs s s= + - ,λτσ λ τσ σH  (3) 

where the first term denotes the intrinsic (or Dresselhaus-
type) effect IH  and the second term stands for the extrinsic 
(or Rashba-type) effect R,H  which may be induced by a 
substrate or an external electric field. The coupling 
strengths are not completely settled, but for concreteness 
we list I 12 μeVλ =  and R 5 μeV [V/nm]Eλ = ¥  (see Ref. 
[27] and also Table 1).  

The two-dimensional surface states of three-
dimensional topological insulators (TIs) are similar to gra-
phene in that their low-energy excitations are also de-
scribed by a Dirac Hamiltonian. While spin–orbit coupling 
is flimsy in graphene, it is strong in TIs. Future spintronics 
devices may thus rely on graphene for spin transport, com-
bined with TIs for spin manipulation [11]. However, spin 
relaxation times measured in transport experiments in gra-
phene are significantly shorter than expected and the un-
derlying mechanisms remain somewhat elusive [12, 69, 
86]. Nevertheless, the past few years have brought many 
new insights and experimental spin lifetimes have in-
creased with improvements in device fabrication [72, 87–
90].  

Since protons are 1836 times more massive than elec-
trons, their magnetic moments are smaller than the Bohr 
magneton by that factor. This inhibits the exchange of an-
gular momentum between electron spins and nuclear spins 
if a magnetic field is involved as the resulting Zeeman 
splitting scales linear with the magnetic moment. Still, nu-
clear spins do play an important role for spin coherence 
[67]. The natural abundance of carbon isotopes is domi-
nated by 99% 12C, which has no nuclear spin. About 1% of 
carbon atoms are 13C isotopes and have nuclear spin 1

2 . 
With the atomic distance of 1 42 Å.  in graphene, one thus 
expects one atom with nuclear spin 1

2  in a square area of 
2(16 Å) . While such small QDs can be realized by electro-

burning [91], typical QD dimensions are rather 2(16 nm)  or 
2(160 nm) , according to 100 to 10 000 atoms with nuclear 

spin [92–96]. For silicon, whose natural abundance of iso-
topes is dominated by isotopes without nuclear spin (92% 
28Si, 3% 30Si), electron spin coherence times exceeding 
seconds have been achieved after isotopic purification [62]. 
Given that natural carbon has even fewer nuclear spins 
than natural silicon (see Table 1), this technique would be 
most suitable for graphene [97].  

In addition to the real spin, electrons in graphene have 
other binary degrees of freedom, namely the sublattice spin 
that refers to sublattices A and B (usually referred to as 
pseudospin) and the valley spin that refers to the Dirac 

points K and K′ (technically also a pseudospin but usually 
called isospin). Moreover, the two layers in bilayer gra-
phene can be attributed a layer spin. The valley spin also 
occurs in TMDCs and valleytronics – the electric initializa-
tion, manipulation, and detection of valley spin – is an ac-
tive area of research [11, 44, 45, 98]. Now, we turn to gra-
phene quantum dots and the lifetimes of electron spins 
confined to those QDs.  

 
3 Graphene quantum dots and spin relaxation 

There are several possibilities to localize electrons to a 
well-defined area within a graphene sheet. One possibility 
is to lithographically cut the desired shape of a graphene 
island into the 2D bulk, to which it remains connected by 
tiny nanoconstrictions. In this case, boundary effects need 
to be under control to understand and manipulate the be-
havior of electrons such QDs [99, 100]. Other approaches 
involve inhomogeneous magnetic fields or rely on localiza-
tion due to disorder [101, 102].  

In order to benefit from the expertise with semiconduc-
tor QDs and to facilitate fast switching times, electrostatic 
confinement of electrons in gate-tunable QDs is desirable. 
For electron spins, the Dirac Hamiltonian implies two chal-
lenges, depicted in Fig. 1: first (i), the spectrum, given by 
Eq. (2), must be gapped in order to avoid Klein tunneling, 
i.e., transmission of conduction electrons through the elec-
trostatic barriers via the valence band states [79]. (ii) Due 
to spin and valley degeneracies, the orbital states of gra-
phene electrons are fourfold degenerate, i.e., they form  
 

 
Figure 1 Electronic spectrum poses two challenges for spin-
tronics with graphene quantum dots. (i) Pristine graphene has a 
linear, gapless dispersion (thin lines) that allows charge carriers 
to override electrostatic barriers. A finite energy gap is necessary 
to avoid this phenomenon known as the Klein paradox [78, 79]. 
(ii) The orbital states at valleys K and K′ are connected by time 
reversal symmetry and hence twofold degenerate. Together with 
spin degeneracy, this valley degeneracy makes for a fourfold  
degenerate system rather than a two-level qubit, with an accord-
ingly more complicated exchange mechanism [98]. This can be 
avoided by lifting the valley degeneracy. If K and K′ are degener-
ate due to time reversal symmetry, there will be two sets of 
Kramers qubits (solid and empty arrows, respectively), i.e., qubits 
that are connected by time reversal symmetry. Kramers spin 
qubits have long lifetimes due to the Van Vleck cancellation [65, 
104]. 
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four-level quantum systems rather than two-level qubits. 
Therefore, the time-reversal symmetry between Dirac 
points K and K′ needs to be lifted unless one accepts a 
complicated exchange interaction for the four-level system, 
which is also possible [98]. Both challenges are met by 
graphene nanoribbons with a certain type of boundary 
condition [10, 24] as well as by circular quantum dots in 
mono- or bilayer graphene and with finite magnetic field 
[103].  

In the following subsection, we introduce general con-
cepts of spin relaxation via the spin–orbit interaction me-
diated coupling to lattice vibrations. After that, we discuss 
details of the mentioned graphene QDs with lifted valley 
degeneracies.  

 
3.1 Spin–orbit mediated spin relaxation If spin 

decoherence is dominated by interactions with phonons, 
nuclear spins can be neglected and the system can be de-
scribed by the Hamiltonian  

elec phon soi epc= + + + ,H H H H H  (4) 

where elecH  and phonH  model1 the unperturbed electronic 
and vibrational systems, respectively. The spin–orbit in-
teraction soi r i= +H H H  is the sum of extrinsic (or Rashba-
type) coupling and intrinsic (or Dresselhaus-type) coupling. 
Together with the electron–phonon coupling epcH , it medi-
ates the coupling between spins and the lattice phonons. 
We denote the orbital eigenstates of elecH  as | .nÒ  For gra-
phene, elecH  is usually given by some form of Eq. (1). The 
pure vibrational modes are described by  

( )1
phon 2mα α

α

ω , ,
,

= + ,Â q q
q

H  (5) 

where the summation runs over all acoustic phonon 
branches α and wave vectors q. The angular frequency ,qαω  
of a harmonic vibrational mode is implicitly determined by 
α and q, and m ,qα  is the occupation number of this mode. 
The according eigenstates are determined by these occupa-
tion numbers | .mα , Òq   

Phonons are bosons with zero spin and hence cannot 
couple to electron spin directly but via the admixture 
mechanism which combines Rashba-type spin–orbit inter-
action rH  and electron–phonon coupling epcH  [65]. Let 

(0)|n s, Ò  be the product state of an electron in the orbital 
state |nÒ  and with spin | .sÒ  In lowest order, rH  admixes 
product states with opposite spin,  

(0) (0)
(0) (0) r

BB

| || | |
n n n n

n nn n n
E E gμ¢π ¢

· Ø ≠Ò¢≠Ò = ≠Ò + ØÒ ,¢
- +Â H  (6) 

where nE  is the orbital energy and BBg± μ  is the Zeeman 
energy with the g-factor ( 2g =  for graphene [105]), the 
Bohr magneton B ,μ  and a magnetic field B. An according 
 
 
 

expression for |n ØÒ  leads to finite spin-flipping matrix 
elements   

epc r epc r
epc

BB BB

( ) ( ) ( ) ( )
| | nn n n n n nn

n n n n n n

n n
E E g E E gμ μ

Ø≠ Ø≠
¢ ¢ ¢ ¢

¢π ¢ ¢

Ê ˆ
· Ø ≠Ò = + ,Á ˜- + - -Ë ¯

Â H H H H
H  

 (7) 

where we denote the numerator in Eq. (6) as r( )n n
Ø≠
¢H  and 

the spin-conserving transitions of epc( )n n¢H  accordingly. 
The working principle of the admixture mechanism is  
illustrated in Fig. 2(a). With ( )αρ ω ,q  as the phonon den-
sity of states, the relaxation rate can now be calculated via 
Fermi’s golden rule,  

1 2
1 epc

2π | 1| | | ( )T n m n m-
, , ,

,

= · Ø, + ≠, Ò .Â q q q
q

α α α
α

ρ ωH  (8) 

Due to energy conservation, the phonon energy must 
match the Zeeman splitting, BB.g, =qαω μ  For typical 
laboratory magnetic fields, 30 T,B�  this implies long-
wavelength acoustic phonons at the center of the  
Brillouin zone that can be described by the continuum 
model. In a very general picture, the atomic displacement 
in the presence of an acoustic phonon behaves as 

( )1/2( ) e ,i tαω
α αω ,◊ --
, ,μ qq r
q qru  where the prefactor occurs in the 

normal coordinate for any harmonic oscillator. A constant 
acoustic displacement u corresponds to a mere translation 
of the lattice and hence does not give rise to electron–
phonon coupling. Usually, epcH  involves derivatives ,i ju∂  
see, e.g., Eqs. (10) and (11), or Ref. [65].  

The matrix element given by Eq. (7) scales with 
1
21 ,q B -+ βα  where one power in q comes from these spatial 

derivatives. In the long wavelength limit, the factor  
ei ◊q r  can be replaced with the dipole approximation 
e 1 .i i◊ + ◊q r q r≈  Depending on the symmetry of the elec-
tronic states, the constant term may ( 0)=α  or may not  
 

 

 
Figure 2 (a) Admixture mechanism allows an electron in orbital 
state |nÒ  to flip its spin via a virtual transition to a different orbital 
state | .n Ò¢  Both electron–phonon coupling epcH  and Rashba-type 
spin–orbit interaction rH  couple the different orbits but only rH  
leads to a spin flip, thus effectively enabling a spin flip within the 
orbital state | .nÒ  (b) Due to out-of-plane phonons, the local coor-
dinate frame of the graphene lattice, ,Σ ¢  that describes pseu-
dospin ¢σ  may differ from the laboratory frame Σ  that fixes the 
quantization axis of the electron spin s in an external magnetic 
field. In the local lattice frame, zs¢ may depend on all components 
of s, as indicated by the red arrows. This changes the intrinsic 
spin–orbit coupling to the form of Eq. (11), where the primes 
have been dropped. 

 
1 We use upper case indices for graphene Hamiltonians and lower case

indices for general Hamiltonians. 
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Table 2 Overview of the parameters used for the generic model 
of 1

1 ( )T B-  in Eq. (9). 
description  parameter  value  
dipole approximation α 0 (zeroth order)  
  1 (first order)  
Kramers pair β 0 (no)  
  1 (yes)  
system dimension D 1  
  2  
  3  
phonon dispersion η 1 (linear)  
  2 (quadratic)  
  ... (higher)  

 
( 1)=α  give a contribution to the matrix element. If the two 
states of the spin qubit are related by time reversal symme-
try in the zero field limit, i.e., if they form a Kramers pair 
(Fig. 1), the matrix element will vanish unless the Zeeman 
energy in the denominators is taken into account [65, 104]. 
Therefore, 1β =  ( 0)β =  if the spin states form a (no) 
Kramers pair. Finally, the factor 

1
2B-  comes from the nor-

mal coordinate of the acoustic phonon.  

The density of states  in  Eq. (8)  scales  with  d ,
d

qA
ω

 

where 1DA q -μ  is the content of the iso-energy hyperplane 
in D-dimensional reciprocal space ( {1 2 3}).D Œ , ,  As-
suming a phonon dispersion qμ ηω  ( ),Œη N  the derivative  

scales  as  
1-η
ηω  and hence 1,

D

B -μ ηρ  where we have used 
 .Bμω  Using 

1

q Bμ η  for the matrix element, too, we find 
a general estimate for Eq. (8),  

121 2( 1)
1

D

T B B B
+

- -μ .
α
η ηβ  (9) 

An overview of the parameters in this formula is provided 
in Table 2 and specific examples are shown in Table 3. 
Unless direct restoring forces are absent (as, e.g., for out-
of-plane modes in free graphene [106, 107]) acoustic 
modes disperse linearly ( 1)η =  and the above relation sim-
plifies to 1 2( )

1 .DT B- + +μ α β  Equation (9) suggests a mono-
tonic behavior of 1

1 ( ).T B-  For large enough magnetic fields, 
non-monotonic behavior may occur due to (possibly  
 
Table 3 Specific examples for Eq. (9).  
system α β D η 1

1T B- ...μ   

graphene nanoribbona 1 1 1 1 5 [108]  
bulk graphene DEF( )H  1 0 2 1 4 [109]  
bulk graphene BLC( )H  0 0 2 1 2 [109]  
bulk graphene DSP( )H  0 0 2 2 0 [109]  
bulk graphene DSP( )H  0 0 2 1 2 [109]  
GaAs 0 1 3 1 5 [65, 110] 
silicon metal-oxide 1 1 3 1 7 [111]  
a In (armchair) graphene nanoribbons, DEFH  and BLCH  correspond to  
the same parameters and DSPH  does not give a net contribution, see Sec-
tion 3.2 or Ref. [108]. 

avoided) crossings of orbital levels, destructive interference 
of different mechanisms, or Van Hove singularities in the 
phonon density of states, see e.g. Fig. 4 [108, 112–115]. 

In graphene, we consider two mechanisms for the  
electron–phonon coupling, namely the deformation  
potential DEF 1( )xx yyg u u= +H  and the bond-length change 

BLC ( ) ( ) ,x x y yA A= +τσ τ σ τH   

EPC DEF BLC= + .H H H  (10) 

In a minimal coupling picture, the form of BLC ,H  where 
2( ) ( 2 ),x y xx yy xyA A g u u u, = - , -  highlights the equivalence 

of strain and a valley-dependent magnetic field, see Eq. (1) 
and Refs. [116, 117]. The strain tensor is given by 

( )/2ij i j j iu u u= ∂ + ∂  and the coupling constants are 
1 30 eVg ª  and 2 1 5 eVg ª .  [109, 116]. We point out that 

all possible in-plane strains iju  ( 1 2)i j, = ,  are considered 
by Eq. (10).  

The admixture mechanism creates a lowest-order con-
tribution for in-plane deformations ( )x yu u,  but not for out-
of-plane deformations zu  since a local tilt of the graphene 
lattice does not give rise to finite EPC.H  Out-of-plane pho-
nons can still induce a spin flip via the intrinsic spin–orbit 
interaction I ,H  given in Eq. (3), or in higher order, where 
stretching effects lead to nonzero EPC.H  In the former case 
a small local tilt ( ) ,x y zu∂ ,∂  where |( ) | 1,x y zu∂ , ∂  changes 
the mutual orientation of pseudospin σ and real spin s. As a 
consequence, the intrinsic spin–orbit coupling acquires 
spin-flip terms,  

I I DSPI ( )z z z x z x y z ys u s u s= - ∂ - ∂ = + ,λσ τ H HH  (11) 

and thus gives rise to direct spin–phonon coupling DSPH  
[66]. The origin of this mechanism is illustrated in 
Fig. 2(b). Below, we discuss the relaxation times of the 
electron spin in specific graphene QDs where the electron 
spectrum is gapped and where the valley degeneracy is 
lifted.  
 

3.2 Armchair graphene nanoribbons In graphene 
nanoribbons (GNRs), electrons are naturally confined 
within the quasi one-dimensional structure and can move 
freely only along the longitudinal direction (y-axis in 
Fig. 3).  

While the longitudinal wavenumber yq  may vary con-
tinuously, the transverse wavenumber nq  is discrete and 
depends on the ribbon width W as well as the specific 
boundary conditions. In GNRs with lateral armchair 
boundaries, all components of the wavefunction spinor 
must vanish on the outermost atoms, which implies  

π( /3)/nq n Wμ= - , (12) 

where 0 1 2n = , ± , ± , . . . labels  the transverse  excitations. 
The width of the armchair GNR, (3 ) 3 ,W m a= + μ  is de-
termined by 1 2 3m = , , , . . . and { 1 0 1},Œ - , , +μ  see Fig. 3(a) 
and Ref. [118]. For a ribbon with 1,u = ±  all transverse 
wavenumbers nq  will  be finite, thus leading to  a  gapped  
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Figure 3 Sketch of (a) an armchair GNR and (b) its electronic 
spectrum. (a) Here, the width of the GNR is characterized by two 
integers, 3m =  and 1.μ = -  The resulting bandgap allows for 
electrostatic confinement along the y-axis. A potential ( )V y   
defines the barrier regions B1 and B2 (shaded) as well as the dot 
region D in between. (b) For gap ,V ED <  there is one or more 
bound state(s) inside the quantum dot (green lines). A continuum 
of extended states exists for energies above the confinement  
potential (pink shade). Both bound and extended states provide 
virtual intermediate levels for the admixture mechanism respon-
sible for spin relaxation. 
 
phonon spectrum with gap F 0 F2 | | 2π /3 .E v q v W= =  For 

30 nm,W =  this amounts to gap 40 meV.E ª  The gap al-
lows for electrostatic confinement of electrons along the 
longitudinal direction by virtue of an electrostatic potential 

( ).V y  Analytical solutions for bound states are known if 
the potential has the piecewise constant form 

( ) ( ( ) ( )),V y V y y L= D - + -θ θ  where L is the longitudinal 
dimension of the quantum dot, see Fig. 3(a) and Ref. [24]. 
At least one bound state exists if the confinement potential 
does not exceed the bandgap, gap .V ED <  Depending on 

,VD  there may be several bound states and independent of 
,VD  there is always a continuum of extended states ener-

getically above .VD  Since gapE  is typically of the order of 
,VD  we consider both bound and extended states for virtual 

transitions within the admixture mechanism.  
Due to the boundary conditions, the electronic states 

become superpositions of K and K′ with equal weight on 
both valleys. This has important consequences. First, the 
valley degeneracy is lifted, thus circumventing the neces-
sity of a complicated exchange interaction. Nevertheless, 
the orbital system is symmetric under time reversal and the 
spin states in a certain orbit form a Kramers pair at zero 
magnetic field, which suppresses spin relaxation due to 
Van Vleck cancellation. Furthermore, the direct spin-
phonon coupling DSPH  does not allow for spin relaxation as 
the according matrix element is proportional to the valley 
index τ and hence vanishes after summing up the contribu-
tions from K and K′. The spin may still relax via EPCH  and  

 

Figure 4 Spin relaxation rate 1
1 ( )T B-  of the QD ground state for 

/ 5,L W =  F 01 8 ,V v qD = .  and free mechanical boundaries [108]. 
The doubly logarithmic scale highlights the behavior 1 5

1T B- μ  for 
0 5,ω < .  in agreement with Eq. (9). The dimensionless phonon 

frequency ω  is explained in the main text. Destructive interfer-
ence of processes originating from DEFH  and BLCH  causes two 
dips of 1

1T -  for 2 3ω< <  and a Van Hove singularity of the pho-
non density of states leads to a divergence around 3.ω =  

 
the admixture mechanism. In Eq. (8), phonon emission 
[absorption] is proportional to 1m , +qα  [ ],m ,qα  where the 
phonon number m ,qα  is determined by the Bose–Einstein 
distribution. Here, we assume phonon vacuum, i.e., pure 
phonon emission.  

The spin relaxation depends on the confinement poten-
tial ,VD  the QD aspect ration / ,L W  and the applied mag-
netic field B , which is assumed to be perpendicular to the 
graphene plane. Moreover, the mechanical boundary con-
ditions determine the phonon spectrum and hence also the 
relaxation rate. In Fig. 4, we plot the spin relaxation rate 

1
1 ( )T B-  in blue as calculated with Eq. (8) for / 5,L W =  

F 01 8 ,V v qD = .  and free lateral boundaries [107, 108].  
In agreement with Eq. (9), the doubly logarithmic scale  
highlights  the  behavior  1 5

1T B- μ  for  0 5,< .ω  where 
g /YW=ω ω ρ  is the dimensionless frequency of in-plane 

phonons with Y and gρ  as Young’s modulus and the mass 
density of graphene, respectively [107, 108]. Due to de-
structive interference of processes originating from DEFH  
and BLC ,H  the relaxation rate features two dips for 
2 3.< <ω  A Van Hove singularity of the phonon density 
of states ρ leads to a divergence around 3,=ω  a common 
effect for quasi one-dimensional systems [115].  

Results for different values of VD  and / ,L W  or for 
fixed mechanical boundary conditions can be found in Ref. 
[108]. As one would expect, virtual transitions to extended 
states gain importance as gap/V ED  decreases and even 
dominate over virtual transitions to bound states for 

gap/ 0.V ED Æ  Fixed mechanical boundaries lead to a 
gapped phonon spectrum which excludes spin relaxation 
via single-phonon processes for 2 06< .ω  (or 8 25 TB < .  
for 30 nm).W =   

As a quasi one-dimensional system, the armchair GNR 
is particularly interesting for spintronics-based quantum 
computing as it leaves two spatial dimensions for system 
periphery in a scaled-up device with multiple QDs along 
the GNR. The wave functions of bound states also extend 
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to neighboring QDs and thus allow for multiple-qubit op-
erations. Moreover, the small bandgap allows the coupling 
of non-neighboring QDs via detuning of the intermediate 
QDs, which allows for more efficient quantum computa-
tion since shuttling of qubits can be avoided and thus raises 
the threshold for fault-tolerant quantum computing [10, 24, 
119, 120]. 

  
3.3 Mono- and bilayer graphene disks Gate-

tunable QDs with an electrostatic confinement potential 
can exist in 2D bulk mono- and bilayer graphene. Analyti-
cal solutions exist if the systems have circular symmetry in 
the graphene plane and the confinement potential has a rec-
tangular profile, ( ) ( ),V r V r R= D -θ  where r is the radial 
coordinate and R is the radius of the disk-shaped quantum 
dot. Due to the absence of intervalley scattering, the orbital 
degeneracy between valleys K and K′ can be broken in a 
controlled way by the inclusion of a mass term – a sublat-
tice splitting for monolayer graphene or a layer bias in the 
case of bilayer graphene – in combination with a magnetic 
field. In particular, the splitting of orbits in opposite val-
leys can be tuned with the applied magnetic field. In addi-
tion to a valley splitting, the mass term also gives rise to 
the required bandgap [10, 103]. For magnetic fields, where 
the magnetic length B /l eB=  is much smaller than R, 
the discrete QD spectrum converges to the bulk Landau 
levels. Below, we outline the analytical solution of the ei-
gensystem both for mono- and for bilayer graphene. We 
first treat monolayer graphene disks and bilayer graphene 
afterwards.  

As is obvious from Eq. (2), a sublattice potential D will 
open up a bandgap of gap 2 .E = Δ  A sublattice potential 
arises when graphene lies on a substrate but the two sublat-
tices couple differently to the substrate material as, e.g., for 
graphene on hBN, where 100 meV>Δ  has been observed 
[76]. While electron spin is neglected, here, the perpen-
dicular component of the magnetic field is taken into ac-
count via minimal coupling to the motion of the charge 
carriers. Pseudospin can be included in the total angular 
momentum, /2,z zJ i= - ∂ +ϕ σ  which commutes with the 
Hamiltonian. As a result of the circular symmetry, the azi-
muthal dependence can be separated away, leaving a dif-
ferential equation for the radial dependence. Both for the 
dot region ( )r R£  and for the barrier region ( ),r R≥  the so-
lutions are found to be hypergeometric functions. The 
matching condition for r R=  leads to a discrete spectrum 
of bound states. The valley degeneracy of K and K′ is lifted 
for finite magnetic field and exceeds the Zeeman splitting 
for experimentally accessible parameters [103].  

As for spins in armchair GNR quantum dots, relaxation 
via the admixture mechanism and via direct spin-phonon 
coupling will be considered in the following. Assuming 

260 meV,=Δ  no continuum of extended states has been 
considered in Ref. [109]. As a result of the broken valley 
degeneracy, the spin states do not form a Kramers pair and 
Van Vleck cancellation does not occur in circular QDs  
in monolayer graphene. The spectrum of acoustic phonons  

 
Figure 5 Spin relaxation times 1( )T B  for the ground state  
of a circular QD in monolayer graphene and a perpendi- 
cular magnetic field. The QD radius is 25 nmR =  and here,  
the bandgap gap 2E Δ=  is twice the confinement potential, 

260 meV.V ΔD = =  The coupling constants 1g  and 2g  indicate 
the associated mechanisms, DEFH  and BLC ,H  respectively. Both 
LA and TA in-plane modes disperse linearly while the out-of-
plane mode has a transitions from quadratic (ZA) to linear (ZAʹ) 
dispersion. The sum of all relaxation channels is represented by 
the red dotted, blue dashed, and black solid lines. A quadratic 
(linear) dispersion of the out-of-plane modes is assumed for the 
red (blue) curve, and a crossover between them for the black 
curve. The inset shows the universal dependence of  1

1 ( )T f θ- μ  
on the inclination angle θ  of the magnetic field [109]. ©APS. 

 
consists of three branches, transverse (TA) and longitudi-
nal (LA) in-plane modes, and one out-of-plane mode (ZA). 
Near the center of the Brillouin zone, the in-plane modes 
disperse linearly and the ZA modes quadratically with a 
crossover to linear behavior. Only the LA mode changes 
the size of the unit cell and is thus the only mode where the 
deformation potential DEF( )H  is nonzero. Both LA and TA 
deform the unit cell and hence generate a finite coupling 
via the bond-length change BLC( ).H  ZA modes give rise to 
direct spin–phonon coupling DSP( ).H  The according spin 
relaxation times for an electron in the QD ground state and 
phonon vacuum have been calculated in Ref. [109] with 
specific parameters. The results are shown in Fig. 5. For 
excited QD states, the relaxation times decrease quickly.  

In a two-dimensional material, the minimal coupling 
prescription involves the perpendicular components of the 
B-field. But the Zeeman energy, which is transformed to 
lattice excitations by the mentioned couplings, depends on 
the entire magnetic field strength. As a result, all relaxation 
rates also depend on the inclination angle θ  between the 
vector of the magnetic field and the normal vector of the 
graphene plane. For purely in-plane magnetic fields, the re-
laxation rates 1

1T -  are reduced by 50% compared with the 
case of a perpendicular field, see inset in Fig. 5.  

In bilayer graphene, a gap opens if the electrostatic po-
tential is different for the two layers. Then, an electrostatic 
confinement potential can be used to confine charge carri-
ers in a quantum dot. Such systems are studied in experi-
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ment [93–96]. With appropriate top and bottom gates, the 
bandgap as well as the confinement potential can be tuned 
electrically and independently [103]. In a simple descrip-
tion, the system consists of two individual graphene layers, 
where one sublattice of the upper layer couples to one 
sublattice of the lower layer with an interlayer hopping 
amplitude 12 0 4 eVt ª .  [121]. The inversion symmetry of 
the bilayer system is broken by the potential difference be-
tween the distinct layers.  

As for the case of monolayer graphene above, the 
problem can be solved analytically for a potential of the 
form ( ) ( ).V r V r R= D -θ  Due to the contribution of the 
pseudospin of both layers, the total angular momentum is 
an integer here. The analytic solution of the eigensystem 
follows the same procedure as for the monolayer case but 
is more complicated because of the two coupled layers. 
The radial parts of the wavefunctions again turn out to be 
hypergeometric functions both inside and outside the dot 
region, and the matching condition at r R=  leads to a dis-
crete spectrum of bound states. The valley degeneracy for 

0B =  can be lifted with a finite magnetic field perpendicu-
lar to the graphene plane and for B ,l R  the energy spec-
trum approaches the Landau level structure. In particular, 
there are no Kramers pairs for a finite magnetic field per-
pendicular to the graphene plane.  

To our knowledge, the spin relaxation time 1T  of a 
bound state inside the QD has not been estimated yet. For 
acoustic phonons neat the center of the Brillouin zone, the 
atoms within a unit cell do not vibrate against each other. 
Moreover, the interlayer Van der Waals bonds of bilayer 
graphene are much less rigid than the intralayer σ-bond. As 
a consequence, the change of the interlayer distance can be 
neglected and the individual layers can be treated com-
pletely independently for small wavenumbers. The defor-
mation potential and the bond-length change within each 
layer are thus given by two copies of Eq. (10), one for each 
layer. Using the spin–orbit coupling of bilayer graphene, 

1
1T -  can in principle be calculated via the admixturemecha-

nism as for monolayer graphene [82, 122]. As for 
monolayer graphene, out-of-plane modes change the mu-
tual orientation of real spin s and lattice related spins 
(pseudospin σ and for bilayer graphene also the layer spin 
µ [82]). The resulting direct spin–phonon coupling might 
turn out to be more complicated than that for monolayer 
graphene. For coupling to the in-plane modes of bilayer 
graphene, Eqs. (9) and (10) suggest a behavior 1 2

1T B- μ  or 
4 ,Bμ  depending on the order of the dipole approximation 

for the specific mechanism.  
 
4 Magnetism in graphene nanoflakes Both fer-

romagnetic and antiferromagnetic materials are important 
for data processing and storage (e.g. MRAM) [1]. In con-
trast to typical magnetic elements like Fe, Ni, Co, and rare 
earths, carbon does not contain occupied d- or f-orbitals 
and pristine graphene is strongly diamagnetic [34]. Never-
theless, the prospects of magnetic ordering at room tem-
perature and unmatched data density in monatomically thin 

layers motivate intense research efforts aimed at magnet-
ism in graphene. Magnetic moments may appear in gra-
phene because of vacancies [33], light or heavy adatoms 
[123–125], edge effects [35, 126], or molecular doping 
[127, 128]. The resulting magnetic structures may be 0D, 
1D, or 2D, depending on the origin of magnetism (e.g., iso-
lated defects, GNR edges, or molecular doping of bulk 
graphene, respectively). The experimental detection of 
magnetic moments is possible via SQUID (superconduct-
ing quantum interference device) magnetometry [123], 
spin transport measurement [124], or spin-sensitive STM 
(scanning tunneling microscopy) [127, 129].  

In the following, we focus on magnetic moments in-
duced by vacancies or light adatoms. According to Lieb’s 
theorem, the magnetic moment of the ground state of the 
Hubbard model for graphene is given by B A B| |,N Nμ -  
where AN  and BN  are the numbers of sublattice sites [130, 
131]. Carbon atoms can be removed from the graphene lat-
tice by means of irradiation with electrons or argon ions 
[124, 132, 133]. Alternatively, light adatoms like H and F 
passivate the pz orbital of the carbon atom to which they 
bond, thus effectively removing this carbon atom from its 
sublattice. A hBN substrate may be used to stabilize the 
hydrogen adsorption on one sublattice andto suppress mi-
gration of the adatoms [134]. Curie temperatures for the 
ferromagnetic ground state can exceed 300 K [33, 135]. 

The above defects, i.e., vacancies and light adatoms, 
are similar to quantum dots in that they lead to localized 
states. In Ref. [73], we have studied the exchange coupling 
between two spin states localized at two separate yet 
nearby vacancies in a graphene nanoflake (GNF). The need 
for a bandgap does not play a role in GNFs since electrons 
are naturally confined within such quasi zero-dimensional 
structures. Specifically, we consider GNFs with hexagonal 
symmetry – as found for flakes grown by chemical vapor 
deposition (CVD) [136, 137] – and either zigzag or 
 
  

 
Figure 6 On-site probability densities for an armchair terminated 
hexagonal graphene nanoflake with a total 682 sites and two va-
cancies at vac (0 8 ).a= , ±r  (a) Antibonding eigenstate |1 .Ò  Here, we 
only consider nearest neighbor hopping such that the (anti-) 
bonding energy eigenstates |341Ò  and |342Ò  lie in the middle of 
the spectrum and have the same on-site probability densities. (b) 
localized vacancy state | .y+ Ò  The probability density of | y- Ò  
looks similar yet mirrored about the x-axis [73]. 
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armchair terminations. Two atoms are removed at sites 
vac (0 )y= , ±r  w.r.t. the flake center such that the lattice  

retains the mirror symmetries :x x x-M  and 
: ,y y y-M  see Fig. 6.  
We describe the electronic system with a full tight-

binding calculation that involves hoppings ( ) ( )n
ijt B  between 

lattice sites i and j up to third nearest neighbors ( 1 2 3).n = , ,  
A perpendicular magnetic field is included in the hoppings 
viathe Peierls phase. The resulting spectrum is discrete and 
may or may not feature degeneracies, depending on the ex-
act GNF configuration, B-field, and maximal order of 
nearest neighbor hoppings.  

The two nearby vacancies can be interpreted as a dou-
ble quantum dot (DQD), whose localized states form a 
bonding and an antibonding eigenstate within the GNF 
spectrum. If the energy splitting Δ between the bonding 
and antibonding eigenstates is much smaller than their en-
ergy differences to the remaining spectrum, the orbital part 
of the DQD can be described by  

DQD *
E t
t E
Ê ˆ= ,Á ˜Ë ¯

H  (13) 

where we employ the localized states {| | }y y+ Ò, - Ò  as a  
basis, E  is the mean energy of the (anti-)bonding states, 
and where the intervacancy hopping with | | /2t = Δ   
may acquire a Peierls phase due to the magnetic field. 
Symmetry allows us to find the explicit form of | ,y± Ò   
see Fig. 6. We complement this picture with an on-site 
Coulomb repulsion U and aim to calculate the exchange 
coupling J, which energetically splits the singlet state 

† † † †1
2

| ( ) |0y yy yc c c c- Ø + Ø+ ≠ - ≠Ò = - ÒS  from the triplet state 
† † † †1

0 2
| ( ) |0y yy yc c c c- Ø + Ø+ ≠ - ≠Ò = + ÒT  and determines their mu-

tual dynamics. Within this model and for | | ,t U  we find 
that the singlet state is preferred, i.e., antiferromagnetic or-
dering, and  

24| |tJ
U

=  (14) 

for the exchange coupling. Both | |t  and U, and hence J, de-
pend on the perpendicular magnetic field that is included 
from the beginning. Typically, the magnetic field has a 
significant effect when the total magnetic flux through the 
GNF, ,AB=Φ  where A is the surface area of the nanoflake, 
reaches one flux quantum, 0 /2 ,h e=Φ  where h is Planck’s 
constant and e is the unit charge.  

Depending on the overall size of the GNF, the distance 
between the vacancies, and the GNF termination (zigzag or 
armchair), the B-field dependence can be used to tune J 
over several orders of magnitude. For some flake confi-
gurations, it is possible to tune the spectrum into a de-
generacy, ( ) ( ) ( ) 0,B t B J B= = =Δ  thus switching off the 
antiferromagnetic order, see Fig. 7. Such an in-situ tunability 
of the exchange coupling is most promising for spintron-
ics applications as it allows to change the magnetic  be-  

 
Figure 7 Exchange coupling J (solid red line and left axis) and 
the eigenenergies (dashed black lines and right axis) of the ac-
cording (anti-)bonding states are plotted against the perpendicular 
magnetic field. The shown data belongs to a nanoflake with zig-
zag terminations and a total 598 atoms [73]. Two vacancies are 
located at vac (0 10 ).a= , ±r  Only nearest neighbor hopping is 
taken into account, such that the (anti-)bonding energy eigen-
states |299Ò  and |300Ò  lie in the middle of the spectrum. One flux 
quantum passes through the flake at 145 8 T.B = .  

 

havior without preparing a new device. For flakes with 
armchair edges, we find that J increases for GNFs of larger 
overall size and for smaller separation distances of the two 
vacancies. Bulk graphene can be viewed as the limit where 
the GNF diameter is much greater than the vacancy separa-
tion and where edge effects become negligible. We expect 
that J saturates in the bulk limit. The latter trend applies 
separately for two cases: (i) when the atom that has been 
removed for the vacancy at (0 )y, +  belongs the A sublat-
tice and (ii) when it belongs to the B sublattice. Such 
trends are not obvious for zigzag terminated flakes, where 
edge effects play a significant role for GNFs with up to 

410ª  atoms [73]. Néel temperatures, N B/T J k@  with the 
Boltzmann constant B ,k  range from below 4 K to beyond 
300 K and thus allow for experimental verification of these 
results, possibly via the techniques mentioned at the begin-
ning of this section. Including a non-local Coulomb inter-
action might lead to ferromagnetic ordering, 0,J <  and 
possibly enable an in-situ tunable crossover from anti-
ferromagnetism to ferromagnetism [138].  

Our method relies on symmetry and hence the removal 
of two atoms from different sublattices. As expected in this 
case, we find antiferromagnetic ordering [34, 139]. Never-
theless, ferromagnetic ordering is expected if the two at-
oms are removed from the same sublattice and only on-site 
Coulomb interaction is considered. We also point out that 
the exchange coupling J can be used for coherent two-
qubit operations, as required for universal quantum com-
puting [39, 58, 63, 138]. 

  

5 Nuclear spins and graphene Naturally, only 1% 
of all carbon atoms belong to the isotope 13C, which is the 
only stable carbon isotope with finite nuclear spin, see  
Table 1. This abundance can be lowered by isotopic purifi-
cation [97]. Possibly, thisis the reason why the combina-
tion of nuclear spins and graphene has so far received little 
attention from the scientific community. However, there 
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are at least three situations where nuclear spins become 
important for spintronics in graphene. (i) First, it has been 
found theoretically that 1T  relaxation times of electron 
spins in graphene QDs can exceed 100 μs  for certain  
parameters and if nuclear spins are neglected, see Figs. 4 
and 5 or Refs. [108, 109]. In this case, the spin dephasing 
time 2T  might be limited by the coupling to nuclear spins of 
the 13C nuclei. (ii) Then, state-of-the-art graphene QDs of-
ten employ a graphene (bi-)layer encapsulated by bottom 
and top sheets of hexagonal boron nitride. Neither boron 
nor nitrogen posses any stable isotopes without nuclear 
spin, see Table 1. The spin of an electron in such an en-
capsulated graphene QD is in immediate contact with the 
nuclear spins of hBN. (iii) Finally, the nuclear spin ofan 
impurity, of an adatom, or of 13C itself might be interesting 
for spintronics. Natural monolayer graphene contains one 
nuclear spin per 2(16 Å)  surface area. This density can be 
controlled by enriching or depleting 13C. Possibly, control 
and coupling of nuclear spins in the graphene sheet or on 
top of it can be achieved. Ultimately, this could lead to 2D 
nuclear spintronics with similarities to nitrogen vacancy 
centers in diamond, where 13C nuclear spins have been 
used for quantum operations [140, 141].  

The Hamiltonian for an ensemble of nuclear spins in a 
solid has five different contributions [67],  

nuc z hf orb dd q .= + + + +H H H H H H  (15) 

The term zH  arises due to the Zeeman energies of nuclear 
spins in a magnetic field B. The second term describes the 
hyperfine interaction between electron spins and nuclear 
spins. It is the sum of two terms, hf c a.= +H H H  The con-
tact (isotropic) hyperfine interaction can be modeled as an 
Overhauser field, N,B  that acts on the electron spin s in a 
similar way as an external magnetic field,  

Nc B .kk
k

A gμÊ ˆ= ◊ = ◊Á ˜Ë ¯Â s sI BH  (16) 

Here, kI  is the spin operator for the nucleus at site k  and 
the coupling strength kA  is proportional to the local prob-
ability density of the electron and the gyromagnetic ratio of 
the nucleus at site k [38, 67, 142, 143]. Eq. (16) vanishes 
for π-band electrons (in particular those of graphene) as 
their probability densities at the nuclear sites are zero due 
to odd symmetry. In this case (in particular for graphene), 
the anisotropic hyperfine interaction, a,H  and the coupling 
of nuclear spin and electron orbit, orb,H  dominate electron-
nuclear coupling. In addition to hf ,H  also orbH  can mediate 
a coupling of nuclear and electron spins if spin–orbit in-
teraction is included. The nuclear dipole–dipole Hamilto-
nian, dd,H  directly couples the magnetic moments of dis-
tinct nuclear spins. And nuclei with spin 1

2I >  (thus ex-
cluding 13C) interact with an electric field gradient via the 
nuclear quadrupolar coupling, q.H  All these terms are dis-
cussed in detail in Ref. [67].  

Spintronics with nuclear spins – point (iii) in our list 
above – would rely on the coupling of nuclear spins to ex-  

 

Figure 8 We plot Eq. (18) for various parameters on a doubly 
logarithmic scale. The longitudinal hyperfine coupling strength in 
graphene is 0 6 μeVzA ª .  [144]. The polarization of the nuclear 
spin system is assumed to be 0p =  for the solid lines and 0 9p = .  
for the dashed ones. For the thin black lines (left and bottom 
axes), we vary the relative 13C abundance but fix the total number 
of atoms to 510 ,N =  which corresponds to a square QD with an 
approximate size of 2(50 nm) .ª  For the thick orange lines (right 
and top axes), we vary N and fix the relative 13C abundance to its  
natural value, 13 / 0 01.N N = .  

 
ternal fields, which is achieved by zH  and q,H  as well as 
the coupling between different nuclear spins, which is me-
diated by dd.H  To our knowledge, the effect of nuclear 
spins from hBN on the electron spin in encapsulated gra-
phene QDs – point (ii) – have not been studied, yet. In the 
remainder of this section, we review studies on point (i), 
the decoherence of the electron spin due to hyperfine inter-
action with the nuclear spins of 13C.  

The contact hyperfine interaction vanishes for flat gra-
phene and indirect coupling of electron and nuclear spins 
via orbH  and spin–orbit interaction is expected to be small 
and hence neglected. Consequently, the coupling between 
electron and nuclear spins in graphene is given by  

hf a k x k x x k y k y y k z k z z
k

A I s A I s A I s, , , , , ,= = + + ,ÂH H
 (17) 

where k indexes the sites of 13C isotopes. The coupling 
constants k iA ,  are proportional to the probability density of 
the electron at site k and the respective coupling strength 

,iA  with /2 0 3 μeVx y zA A A= = - ª - .  [139, 144]. The  
z-axis is chosen to be perpendicular to the graphene sheet. 
In contrast, the coupling strength of the (contact) hyperfine 
interaction in GaAs ranges from 74 μeV  to 96 μeV  (de-
pending on the specific isotope), thus exceeding that of 
graphene by more than one order of magnitude [67]. The 
importance of the hyperfine interaction in graphene has 
been studied by comparing CVD-grown samples consist-
ing entirely of 12C and 13C, respectively [145]. The ex-
perimental results indicate that in contrast to the cases of 
GaAs or carbon nanotubes, hyperfine interactions with 13C 
nuclear spins have a negligible effect on spin transport re-
laxation times in CVD-grown graphene [67, 146, 147].  

The interaction of an electron spin in a graphene QD 
with a certain number of nuclear spins, 13 ,N  will affect  
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the time evolution of its transversal component ( ),s t+· Ò  
where .x ys s is+ = +  If 13 1,N  the nuclear spins forma 
bath and one can use the central  limit  theorem to obtain 

2 2
c/( ) (0) e ts t s -

+ +· Ò = · Ò τ  [144]. In the presence of a perpen-
dicular magnetic field 2 6 mT,zB .  the electron Zeeman 
energy is much greater than the transversal hyperfine cou-
pling strength | | 0 3 μeV.x yA , ª .  Then, the characteristic de-
coherence time cτ  is given by  

c 2
13

2
1 z

N
N Ap

= ,
-

τ  (18) 

where 0 1p£ £  denotes the polarization of the nuclear spin 
system and N  is  the total  number  of  carbon atoms,  i.e., 

13 / 0 01N N = .  for natural carbon [144]. Typical values for 
cτ  exceed 1 ns, see Fig. 8. In a further study, it was found 

that in the same situation, the longitudinal spin component 
( )zs t· Ò  is conserved up to small corrections, which oscil-

late with a frequency determined by the hyperfine interac-
tion [148]. If less than roughly 10 nuclear spins interact 
with the electron spin in the graphene QD, the nuclear spin 
system cannot be modeled as bath but allows for an exact 
treatment. Then, decoherence times depend on the exact 
position and orientation of the nuclear spins, and typically 
lie in the regime of 1 ms [149].  
 

6 Experimental progress Spintronics with individ-
ual electron spins in semiconductors has evolved dramati-
cally from basic concepts to universal quantum control  
of spin states and quantum registers with up to four QDs  
[1, 2, 7, 9, 38, 39, 58, 63, 64]. Isotopic purification enables 
coherence times beyond 1s  at low temperature in silicon 
and beyond 1ms at room temperature in diamond [62, 97].  

Despite the challenge of efficient spin injection into 
graphene through tunneling barriers, remarkable improve-
ments in spin transport have been achieved over the past 
few years [12, 69, 86]. In contrast to electron mobility, the 
spin lifetime seems to be rather insensitive to charged im-
purity scattering [70] and can exceed 1 ns at room tempera-
ture [71], even for CVD-grown graphene [72]. The small 
intrinsic spin–orbit interaction makes it practically impos-
sible to observe the spin Hall effect (SHE) in graphene 
[25]. But controlled hydrogenation can increase the spin–
orbit interaction by three orders of magnitude and thus en-
able the observation of a SHE at room temperature and 
zero magnetic field [89]. Last year, a quantum spin Hall 
state has been observed in graphene with a large, tilted 
magnetic field [150].  

Graphene QDs have been studied thoroughly w.r.t. 
their orbital spectrum [92–94, 99], spin-filling sequence 
[151], and charge relaxation times [152]. Moreover, high-
quality bilayer QDs, encapsulated in hBN and equipped 
with electric gates, allow for electrostatic confinement as 
discussed in Subsection 3.3. Small QDs in the 1 nm range 
can be created by electroburning and exhibit Coulomb 
blockade at room temperature due to addition energies as 

large as 1 6 eV.  [91]. Slightly larger graphene nanoflakes, 
epitaxially grown on Ir(111) and intercalated with oxygen, 
are reported to exhibit a linear spectrum [153]. Despite 
these promising proceedings with graphene-based QDs, 
Pauli blockade – a basic step towards spintronics [154] and 
already achieved in carbon nanotubes [146, 147] – has (to 
our knowledge) not been observed in graphene, yet.  

Gapped armchair GNRs, Section 3.2, and symmetrical 
graphene nanoflakes, Section 4, rely on precise edges. 
Atomically accurate armchair GNRs can be produced bot-
tom-up, with widths up to 4 nm, from aromatic precursor 
molecules [155, 156] or top-down. One top-down tech-
nique that leads to precise edges is the unzipping of carbon 
nanotubes with an abruptly expanding nitrogen gas inside 
the nanotubes [157]. Another possibility is the electron-
beam induced mechanical rupture of bulk graphene [158]. 
The latter method can be used to produce armchair edges 
as well as zigzag edges and can be applied in high vacuum, 
thus leading to minimally contaminated samples. Beyond 
this, clean structuring methods for graphene include nano-
etching of suspended graphene [159] and the use of a sili-
con atom as a monatomic chisel [160]. 

  
7 Conclusion and outlook We have given an over-

view of spintronics with electron spin states in graphene 
quantum dots and nanoflakes. Long coherence times can 
be expected because of weak sources of decoherence, i.e., 
small coupling strengths of the spin–orbit and hyperfine 
interactions, and a marginal abundance of nuclear spins in 
carbon. We have explained spin relaxation via spin–orbit 
mediated coupling to acoustic phonons and we have intro-
duced a generic formula for the spin relaxation time 1T  for 
graphene and other systems. Valley degeneracy and the 
lack of a bandgap in bulk graphene pose challenges to spin 
operations in graphene quantum dots. Specific systems 
where these challenges can be overcome have been re-
viewed and, if applicable, studies on their spin relaxation 
times have been discussed. Magnetism can be induced in 
graphene by several means. Here, we have focused on 
magnetism in graphene nanoflakes and in-situ tunability of 
antiferromagnetism in symmetric nanoflakes with defects. 
We have summarized studies on the interaction of electron 
and nuclear spins and finally, we have pointed out recent 
experimental achievements relevant for spintronics with 
graphene quantum dots.  

We believe that graphene has the potential for a top-
notch spintronics material that can outperform established 
materials like silicon or GaAs for specific applications. 
The observation of the Pauli blockade represents a funda-
mental step towards spintronics with graphene quantum 
dots. In principle, the necessary architectures exist already 
but suffer from poor tunability of the source and drain bar-
riers and inefficient spin injection. Similarly, the compo-
nents required for electrostatic confinement of electrons in 
armchair GNR quantum dots are already available but have 
not been integrated into one device, yet. With view to the 
rapid progress of device fabrication, we anticipate signifi-
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cant progress in these fields within the next 2–3 years.  
Ultimately, we see spintronics in graphene as a building 
block for 2D-heterostructured spintronics devices com-
posed of (functionalized) graphene and other 2D materials 
like TMDCs and hBN.  
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