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Nanomechanical readout of a single spin
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The spin of a single electron in a suspended carbon nanotube can be read out by using its coupling to the
nanomechanical motion of the nanotube. To show this, we consider a single electron confined within a quantum
dot formed by the suspended carbon nanotube. The spin-orbit interaction induces a coupling between the spin
and one of the bending modes of the suspended part of the nanotube. We calculate the response of the system
to pulsed external driving of the mechanical motion using a Jaynes-Cummings model. To account for resonator
damping, we solve a quantum master equation, with parameters comparable to those used in recent experiments,
and show how information about the spin state of the system can be acquired by measuring the mechanical
motion of the nanotube. The latter can be detected by observing the current through a nearby charge sensor.
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I. INTRODUCTION

In the past few years, advanced manufacturing techniques
have spawned new interest in nanomechanical devices. These
are of interest for fundamental research as well as for possible
applications. In various experimental setups the cooling of a
nanomechanical resonator to its ground state has been achieved
[1–3]. It is now possible to study quantum features such as
the zero-point motion of objects much larger than the atomic
scale [4]. As mechanical motion can be coupled via a wide
range of forces, nanomechanical systems have been proposed
for various applications such as mass [5,6], force [7], and
motion [8] sensing. This versatility also makes hybrid systems
of mechanical devices coupled to other systems possible can-
didates for various applications in quantum information and
communications [9]. For example, nanomechanical resonators
have been proposed as qubits [10], optical delay lines [11],
quantum data buses [12], and quantum routers [13], among
others.

One of the challenges in building sensitive nanoelectrome-
chanical systems is to control thermal fluctuations. Only if
the device operates at energies significantly higher than the
thermal energy can one expect to observe quantum-mechanical
behavior in equilibrium. In this context, carbon is a very
promising building material because the resulting structures
are very light and stiff, which leads to high resonance
frequencies. Resonators made of suspended carbon nanotubes
(CNTs) are of special interest. They can be produced almost
free of defects and with radii on the scale of ≈1 nm and
lengths up to 1 μm, and in addition their bending mode is
easily excited. Experimentally, it has been demonstrated that
frequencies of more than 4 GHz and quality factors of more
than 100 000 are achievable [14,15].

Coupling a localized electron spin to a nanomechanical
resonator is of particular interest because such a system may
be used as a quantum memory due to the relatively long spin
lifetimes [16]. Carbon-based materials, with their weak spin-
orbit coupling due to the relatively low atomic mass of carbon
and the presence of only a few nuclear spins, are promising
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[17]. Recently, the readout of a single spin of the nitrogen-
vacancy (NV) center in diamond has been used to read out the
oscillatory motion of the magnetized tip of an atomic force
microscope [18–21]. However, the well-defined local-field
gradient required for this setup is quite challenging. CNTs
provide an entirely different arena for the coupling of single
spins to nanomechanical resonators, and they can potentially
be integrated into scalable (two-dimensional) semiconductor
structures.

Here, we propose a method for an all-electrical readout of
the state of a single electronic spin. We assume that the spin
is confined to an oscillator consisting of a doubly clamped,
suspended CNT. While previous experiments [14,15] make
use of a charge transport measurement through the CNT, here,
we focus on the measurement of the amplitude of the vibrating
CNT via a close-by charge sensor, which could be a quantum
point contact (QPC) or a quantum dot (QD). Those devices
have been shown to be sensitive to charge fluctuations of far
less than one elementary charge [22,23]. Very recently, there
has been remarkable progress in submicrosecond-time-scale
readout of the mechanical motion of a carbon nanotube [24].
The coupling of the spin to the vibrational motion allows the
readout of the spin state via measurements of the amplitude of
the mechanical vibration [25]. This scheme does not require
optical access to the probe or time-dependent magnetic fields,
which makes it potentially scalable.

II. MODEL

The setup under study is shown in Fig. 1. It consists of a
CNT suspended over a trench with contacts on both sides and
electrostatic gates responsible for the electron confinement.
Since the nanotube carries a net charge, a constant (dc) voltage
applied to a back gate can be used to tune the mechanical
resonance frequency. Furthermore, an ac voltage applied to
an external antenna or the back gate can be used to drive the
motion of the charged resonator [15,25].

In order to obtain a well-defined qubit, the fourfold
degeneracy due to the valley and spin degree of freedom of
the CNT has to be lifted (note that for the localized electron,
the sublattice degree of freedom is frozen out). A magnetic
field B parallel to the CNT axis in combination with the
spin-orbit coupling serves this purpose. Around a field of
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FIG. 1. (Color online) Schematic of the proposed setup of the
carbon nanotube (CNT) resonator with a quantum dot containing
a single electron. The gates on both sides of the CNT can be
electrostatically adjusted to control the number of confined electrons.
The back gate is used to tune the resonance frequency of the CNT into
resonance with the splitting of the Zeeman sublevels of the electron
which make up the qubit. The charge sensor in the vicinity of the
vibrating nanotube serves as a detection device for changes in the
amplitude due to the coupling of the spin to the vibrational motion.
It can be a quantum point contact or a quantum dot which needs to
be operated in a regime where the current depends nonlinearly on the
gate voltage. A current meter is used to measure a nonlinear current
I which flows through the device.

B∗ ≈ �SO/2μB two orthogonal spin states within the same
valley are split by the Zeeman energy �ωq = μB(B − B∗).
Here, �SO refers to the intrinsic spin-orbit coupling strength;
the intervalley coupling �KK ′ is assumed to be much smaller.
In the following we assume �SO = 370 μeV and �KK ′ =
65 μeV as realistic parameters [26]. The corresponding states
in the opposite valleys are energetically well separated. Thus
we can treat the system as an effective two-level system.

For the detection of the nanomechanical oscillation we
propose to use the fact that the position x(t) of the oscillating
charged CNT modulates the current through the charge sensor
in a (generally) nonlinear way, i.e., I (t) = I0 + I1x(t) +
I2x

2(t) + O(x3). This is the case, for example, when a QD
is operated at the maximum of a Coulomb blockade peak.
This situation will be assumed for the following discussion.
Furthermore, we assume that the frequency ωp of the oscillator
is much smaller than the tunneling rate through the charge-
sensing device. In this case, at lowest order the charge sensor
only probes a time-averaged squared displacement X2(τ ) =
1
τ

∫ τ

0 dtX2(t), where X2(t) = 〈x2(t)〉 = Tr[x2ρ(t)], with the
oscillator density matrix ρ, and where τ is the integration
time. In the expansion of I (t), only even-order terms in x

appear because xn = 0 for odd n. Higher-order terms n > 2
are neglected because they contribute only weakly to the
current for small displacements x(t). Our goal in this paper
is to calculate the time-averaged current I through the charge-
sensing device as a function of the spin state of the electron.

In the following, we restrict our considerations to one polar-
ization of the bending mode of the CNT. The generalization to
two modes is straightforward. When quantized, the resonator
displacement x can be written as x = l0√

2
(a + a†), where a

and a† are phonon creation and annihilation operators and l0 is

the zero-point motion amplitude of the oscillator. In principle
there are two ways in which the flexural phonons can couple
to the spin. At large phonon energies the usual deformation
potential is dominant as it is proportional to q2, where q

is the phonon wave number. For lower energies, however,
the spin-orbit-mediated deflection coupling ∝q to flexural
phonons dominates [27]. The resulting coupling strength g

will be proportional to both the spin-orbit coupling �SO and
the zero-point amplitude l0 [28].

As shown earlier [25], the system can be described by the
Jaynes-Cummings Hamiltonian

H = H0 + Hd, (1)

with

H0 = �ω̃q

2
σz + �g(aσ+ + a†σ−) + �ω̃pa†a,

Hd = �λ(a + a†),
(2)

where σz is a Pauli matrix acting on the spin qubit while a and
a† are the creation and annihilation operators for the phonons.
The qubit and oscillator frequencies in the rotating frame,
ω̃q = ωq − ω and ω̃p = ωp − ω, are given as detunings from
the driving frequency ω. The driving strength λ is assumed
to be weak, i.e., λ 	 ωp. In the Jaynes-Cummings model a
rotating-wave approximation is incorporated which is valid as
long as the driving frequency ω is comparable to ωq and ωp.

In addition to the unitary evolution we include the damping
of the CNT with a rate � which can occur on the same
time scale as the readout via the charge detection device. The
spontaneous qubit relaxation γ = 1/T1, where T1 denotes the
spin relaxation time, is neglected because of the very low
density of other phonon modes in the vicinity of the bending
mode at frequency ωp. Previously, we have shown that with
state-of-the-art experimental techniques the strong-coupling
regime, i.e., g 
 �,γ , is within reach [25]. We neglect the
back action on the oscillator caused by the fluctuating charge
on the detector [29]. Because the electron tunneling rate
I/e ∼ 100 GHz (see below) is much larger than the vibration
frequency ωp/2π ∼ 1 GHz, the back-action-induced damping
and frequency shift are very small [30]. The nonunitary
dynamics are described by the quantum master equation for
the time evolution of the density matrix ρ,

ρ̇ = − i

�
[H,ρ] + (nB + 1)�

(
aρa† − 1

2
{a†a,ρ}

)

+ nB�

(
a†ρa − 1

2
{aa†,ρ}

)
. (3)

Here, nB = 1/(e�ωp/kBT − 1) refers to the Bose-Einstein oc-
cupation factor of the phonon bath at temperature T . The
Lindblad terms ∝� correspond to emission (absorption) of a
phonon to (from) the phonon bath.

While solutions of the quantum master equation (3) cannot
be given in closed form, it is worthwhile studying the
eigenstates of H0 first,

|ψ+,n〉 = cos
α

2
|↑n − 1〉 + sin

α

2
|↓n〉,

|ψ−,n〉 = − sin
α

2
|↑n − 1〉 + cos

α

2
|↓n〉

(4)
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FIG. 2. (Color online) (a) The eigenenergies of H0 are shown in red. The black dotted lines correspond to the uncoupled, i.e., g = 0, case.
Note that the ground state is not modified by the coupling g. The coupling introduces a splitting 2g

√
n, which is nonlinear in the phonon

number n. (b) The time-averaged squared resonator displacement X2(τ ) = 1
τ

∫ τ

0 dtX2(t) as a function of the detuning of the driving frequency
δω = ω − ωp for a fixed integration time of τ = 100 μs. Here X2(t) = 〈x2(t)〉 = Tr[x2ρ(t)], and ρ is the oscillator density matrix. The upper
(lower) blue dashed line is the evolution at T = 0 mK of the initial state |↑0〉 (|↓0〉). The strongest difference between the amplitudes of the
two aforementioned initial states is found for a detuning of δω/2π = ±0.07 MHz (see mark C). The upper and lower red solid lines correspond
to the same initial spin states at a temperature of T = 30 mK. The other parameters are λ/2π = 0.04 MHz, ωp/2π = ωq/2π = 1.5 GHz,
� = 5 × 104 Hz, and g/2π = 0.3 MHz. At 30 mK the thermal energy kBT is 2.4 times smaller than �ωq . The label A in both panels (a) and (b)
marks the transition from the ground state to the first excited state with positive detuning. The line marked B corresponds to the next transition
between states with positive parity. A transition between the states with negative parity requires a negative detuning. In between A and B only
two-phonon transitions can occur. The main peak around C at δω ≈ 0.07 MHz is due to several transitions, with the main contribution from
the transition between eigenstates |ψ+,4〉 → |ψ+,5〉. This is consistent with the magnitude of the main peak around n ∼ X2/l2

0 ∼ 4. The inset
shows the squared amplitude of the CNT as a function of the elapsed time t for a detuning of the driving frequency of δω/2π = 0.07 MHz.
Within the first 10 ns the fast Rabi oscillations with the frequency of the coupling strength g are damped, and following oscillations are caused
by the driving strength λ. The resonator reaches a steady state after an interaction time 1/�.

for n � 1 and the special case of the ground state n = 0:
|ψ0〉 = |↓0〉. Here, we use the notation |σn〉 for eigenstates of
H0 with g = 0, i.e., a†a|σn〉 = n|σn〉, σz|σn〉 = σ |σn〉, and
σ = ↑,↓ ≡ ±1. The mixing angle α is defined by tan α =
2g

√
n

ω̃p−ω̃q
. In the resonant case α → π/2. The eigenenergies are

En,± = �ω̃p

(
n − 1

2

)
± �

√(
ω̃p − ω̃q

2

)2

+ g2n (5)

for n � 1 and E0 = −�
ω̃q

2 . For n = 0, we have |↓0〉 as
the ground state. The energy splitting between adjacent
eigenstates [see Fig. 2(a)] in the resonant case ω̃p = ω̃q is
En+1,± − En,± = ±[�ω̃p + �g(

√
n + 1 − √

n)] and En,+ −
En,− = 2�g

√
n.

Since we are interested in the readout of the electron spin,
we assume an initial state in which the latter is in one of the
two σz eigenstates. In the case of T = 0 and an empty QD
the oscillator is in its ground state |0〉 with the zero-point
amplitude l0. Directly after loading with an electron, the
state of the system is |↑0〉 or |↓0〉. At temperatures T > 0,
the distribution of phonons obeys Bose-Einstein statistics,
and we obtain |�(σ )〉T = |σ 〉 ⊗ 1

Z

∑∞
n=0 e−n�ωp/kBT |n〉 as an

initial state, where σ = ↑,↓ and Z = ∑∞
n=0 e−n�ωp/kBT is the

partition function. Experimentally, the state preparation could
be performed using techniques that have been established in
conventional semiconductor QDs [31]. Raising one of the
gates well above the two Zeeman-split qubit levels allows
an electron to hop onto the CNT. Provided gelμBB 
 kBT ,g,
where gel is the electron g factor, μB is the Bohr magneton,

and B is the magnetic field, the probability for finding
either Zeeman sublevel to be populated is 1/2. A subsequent
measurement will then reveal which state was prepared. If the
measurement is delayed by a time τ , then the population of
the higher-energy spin state will decay as ∼exp(−τ/T1) [22].
To demonstrate the coupling between the spin and phonon and
to study the readout this random filling method is sufficient.
For possible application in quantum computing, a controlled
state preparation is necessary. In this case ferromagnetic leads
could be used, as has already been demonstrated for nanotubes
deposited on a substrate [32].

III. RESULTS

We first solve the master equation (3) for the case of T = 0
numerically and calculate the squared oscillator displacement,
which is proportional to the current through the charge
detection device, in this case a QD. We assume that the
oscillator frequency of the fundamental bending mode of
the nanotube ωp/2π = 1.5 GHz is matched by the Zeeman
splitting ωq/2π of the electron spin (the zero-point motion
for this case amounts to l0 = 2.5 pm). At this frequency the
ground-state energy of the oscillator is 2.4 times smaller than
the thermal energy at T = 30 mK. Experimentally, frequencies
of suspended nanotubes between 120 MHz and 4.2 GHz have
been reported [14,33]. The coupling strength is chosen to be
g/2π = 0.3 MHz, which is much larger than the damping
of the CNT, � = 0.05 MHz. Together with the spontaneous
relaxation of the qubit γ , which is negligible, the device
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can be operated in the strong-coupling regime, i.e., g 

�,γ . The driving strength λ/2π = 0.04 MHz is chosen to
be large enough to compensate for the damping but weak
enough not to dominate over the effect of the spin-phonon
coupling.

In the inset of Fig. 2(b) the response of the oscillator at
temperature T = 0 is plotted as a function of the driving time
t beginning from the initial preparation of the spin state as
described above. The driving frequency is detuned from the
resonant oscillator and qubit frequencies ωp = ωq by δω =
ω − ωp. The value of δω/2π = 0.07 MHz is found to give the
largest difference in amplitude with respect to both initial spin
orientations, as we discuss below.

A considerable difference between different initial spin
states in the squared amplitude (and therefore in the measured
current) can be observed. For the initial state |↑0〉 [see inset
of Fig. 2(b)], after the initial fast Rabi oscillations with a
frequency g disappear (on a time scale ≈10 ns), the dynamics
are governed by the slower Rabi oscillations at the frequency
of the driving strength λ. The evolution of the initial state |↓0〉
shows only a little effect of the driving. This can be explained
by the nonlinearity introduced by the (strong) spin-phonon
coupling in the Jaynes-Cummings Hamiltonian (1). When
driving with frequencies detuned less than (

√
2 − √

1)g ≈
0.12 MHz from resonance, the probability to leave the ground
state is much less than for all other states.

Typically, the charge detector is too slow to follow the
instantaneous motion of the resonator, and it will thus detect an
averaged signal I ∝ X2 caused by the vibrating charge. In the
main part of Fig. 2(b) we plot the integrated averaged squared
resonator displacement X2 as a function of the detuning of
the driving frequency δω. As an integration time we choose
τ = 100 μs; however, any integration time τ of more than
30 μs was found to yield a useful signal.

The peaks can be explained with the help of the spectrum
[Fig. 2(a)] of the Jaynes-Cummings Hamiltonian (2). When-
ever the driving frequency hits a resonance, energy is absorbed
by the oscillator, which results in an increased amplitude.
While only positive detunings are shown here, note that the
result for negative detunings is exactly the same. The peak
at δω/2π = 0.3 MHz = g/2π , denoted by A, for initial state
|↓0〉, for example, is caused by a strong resonant coupling
between the ground state |↓0〉 and the dressed state |ψ+,1〉.
Note that the smaller peaks between A and B are due to
two-phonon processes, which are less pronounced because of
the weak driving. The main peak C, centered around 0.07 MHz,
is due to transitions between states of equal parity, i.e.,
|ψ+,n〉 → |ψ+,n+1〉 with n � 1. Line B marks the transitions
|ψ+,1〉 → |ψ+,2〉, which corresponds to a detuning of the
driving frequency of δω ≈ 0.12 MHz. The main contribution
to the large peak C comes from the transition |ψ+,4〉 → |ψ+,5〉,
which corresponds to 0.07 MHz. This is consistent with the
peak height of X2 ≈ 25 pm, which in turn corresponds to
a phonon number n ∼ X2/l2

0 ∼ 4. The individual transitions
cannot be resolved because the lines are broadened due to the
finite damping of the CNT. Note, however, that a finite damping
is essential to allow for nonresonant transitions which enable
population of higher states. The large energy gap between the
ground state and the first excited state due to the nonlinearity

of the spectrum is the reason why the two spin states |↑〉 and
|↓〉 can be resolved.

In Fig. 2(b) the solid red lines show the integrated amplitude
in the case of a finite temperature of T = 30 mK. Qualitatively,
the same features are observed as for T = 0, but in this case
the integrated amplitude for the initial state |ψ(↓)〉 is larger
because of the thermal distribution of the oscillator in |ψ(↓)〉,
which contains a small admixture of |↓1〉 and higher states in
addition to |↓0〉. We also note that the width of the peak is only
a little affected by the finite temperature and is still governed
by the damping of the CNT.

To obtain an efficient readout scheme we strive to increase
the contrast in the integrated amplitude between spin up and
down. A way to achieve this is to change the driving frequency
as a function of time. This compensates for the fact that the
frequencies of higher transitions are smaller than those of the
lower transitions. From Fig. 2(a), we see that the transition
frequencies between states of the same parity scale with
g

(√
n + 1 − √

n
)

(see above). For the sake of simplicity in
the following we change the frequency once to demonstrate
the principle, but this method could be optimized to further
increase the contrast. To achieve the maximum contrast, i.e.,
the difference between the integrated amplitudes for the two
initial states with different spin orientations, we switch the
frequency at the point right before the squared amplitude
reaches its maximum. The parameters used are the same as in
the case of continuous driving. The time at which the driving
frequency is switched from 1500.070 to 1500.036 MHz is
19 μs.

The result is shown in Fig. 3(a). We clearly observe an
increase in the squared amplitude of the resonator for the case
of the initial state |ψ(↑)〉, while the evolution of the other initial
state is barely affected. To demonstrate the effectiveness of the
driving scheme, we also plot the response of the system when
the driving is switched off at 19 μs. As expected, this causes
the current to decay exponentially with a rate �. This pulsed
driving results in lower contrast as long as the integration time
τ is on the same order as the time scale 1/� given by the
damping and not considerably longer.

In order to discuss the requirements for a spin readout
via a measurement of the amplitude of the CNT we use a
simple model of a QD tuned to a Coulomb peak in elec-
trical conductance and capacitively coupled to the vibrating
charge distribution on the CNT. In the linear regime, i.e.,
for small source-drain voltage Vsd, the current is given by
I (V1) = VsdG(V1). The conductance G(V1) is assumed to be a
Lorentzian as a function of the gate voltage V1, which, due to
capacitive coupling of QD and charged CNT, in turn depends
on the squared average displacement X2 of the CNT. The
average displacement X is zero. To obtain an estimate of
the capacitance, we use a simple toy model which consists
of three parallel tubes (with the central wire representing
the CNT), with pairwise capacitance C = πε0l/ log[(d +√

d2 − 4r2)/2r], where l and r 	 l denote the length and
radius of the tubes and d 
 l is their separation (see the
Appendix for further details). Substituting the distance of the
displaced tube d ± X for d and expanding both the capacitance
and the current I up to second order in X and in the limit of
a tube radius much smaller (1 nm) than the distance between
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FIG. 3. (Color online) (a) The squared amplitude X2(t) =
〈x2(t)〉 = Tr[x2ρ(t)] as a function of the elapsed time t is shown for
the cases of continuous (dashed blue line), pulsed (dotted green line),
and variable (solid red line) driving. The change of magnitude in the
current |I2X

2(t)| = |I (t) − I0| of spin up and spin down is shown on
the right vertical axis. The same parameters as in Fig. 2 are used. The
driving frequency ω is changed at the time t = 19 μs right before the
amplitude is largest. (b) The difference of the time-averaged squared
amplitudes between spin up and spin down X2(τ )↑ − X2(τ )↓, on the
left vertical axis. The three curves show the integrated signal for the
same driving modes as in (a). On the right vertical axis we indicate
the difference of the corresponding time-averaged squared current
through the QD, I (τ )↑ − I (τ )↓. The current is integrated over an
interval [0,τ ] given by the integration time τ . The variable driving
scheme results in an increase in current signal by a factor of about 2.

the CNT and the QD (d12 � 50 nm), we obtain

I (X) = I0 + I2X2

= VsdG0

(
1 − e2

π2�V 2ε2
0l

2d2
X2

)
,

(6)

where G0 is the maximum conductance, G0 = 2e2/h, and
ε0 is the vacuum permittivity. For the width of the Coulomb
peak of the charge sensor, we assume �V = 0.1 mV [34],
Vsd = 250 μV [22], and l � 50 nm. With these values we
find a constant background current I0 ≈ 20 nA. The change
in current for a maximum squared amplitude of 83 pm
[cf. Fig. 3(a)] is I2X2 ≈ −0.83 nA, which corresponds to
a fluctuation in the current of about 4.2%. An alternative

mechanical readout method would make use of a second
suspended and nearby CNT, acting as a charge sensor.
In Fig. 3(b), we show both the integrated difference in
average squared amplitude and the corresponding current
for the two different initial states for the three kinds
of driving.

IV. CONCLUSION

In conclusion, we have theoretically shown how the spin
state of an electron coupled to a nanomechanical resonator can
be read out through an adjacent charge sensor. Here, we have
studied the case where the charge sensor is a quantum dot,
but similar considerations hold for the case of a quantum point
contact, with a slightly altered value of I2. The readout scheme
is all electrical and requires no optical access to the device or
any magnetic field gradients, which is promising in view of its
potential for scaling to many qubits. We presented a numerical
study of the readout using realistic experimental parameters.
We use a simplified model of the QD and the system geometry
to demonstrate that with currently available experimental
techniques spin readout via the mechanical motion should
be possible. For small detuning of the driving frequency we
observe a maximum contrast between initial states with spin
up and spin down. The contrast decreases with increasing
temperature but is still significant at dilution refrigerator
temperatures. We have also shown that more elaborate driving
schemes in which the driving frequency is a function of
time can lead to a large increase in contrast. Additional
refinements may be used to further increase the amplitude
of the resonator and thus the sensitivity and speed of the
spin readout.
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APPENDIX: CHARGE READOUT

Here, we describe our simple model used to estimate
the sensitivity of the detection of the CNT motion via a
nearby charge sensor. The model consists of three capacitively
coupled tubes (Fig. 4), where the center tube (2) represents
the CNT while the other two represent the charge-sensor gate
electrode (1) and a ground plane (3). We assume that the CNT
is grounded (V2 = 0), while the ground plane can be voltage
biased (later, we will set V3 = 0 as well). The voltage V1 on the
sensor electrode then influences the transport through the QD,
which is tuned such that in the absence of any displacement
of the CNT (x = 0), the QD is at a Coulomb blockade peak
with conductance G0 = 2e2/h. The conductance around the
Coulomb blockade peak will have Lorentzian shape,

G

G0
= 1

1 + [V1(X) − V1(0)]2/�V 2

≈ 1 −
(

V1(X) − V1(0)

�V

)2

, (A1)
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FIG. 4. (Color online) Capacitor model for the charge readout of
the motional degree of freedom of a CNT. The CNT (2), ground
plane (3), and charge-sensor gate (1) are modeled as cylinders of
length l. The distance between (1) and (2) [(2) and (3)] is d + X

(d − X), where X denotes the vibrational displacement of the CNT.
The corresponding capacitances are denoted C(X) and C(−X). The
electrostatic potential of the CNT (2) is set to zero (ground). If the
potential of (3) is also fixed at a voltage V3 (e.g., V3 = 0), then the
motion of the CNT (2) by an amount X leads to an extra charge on the
gate (1), which is manifested as in the voltage V1. The charge-sensor
gate voltage V1 can then be used to bias the current I through a QD
with voltage bias Vsd.

where we have assumed that the QD stays close to the Coulomb
blockade peak. The width of the Coulomb peak is given
by �V . We now use a simple capacitor model to calculate
V1(X). The charges on the three conductors are denoted

Q1, Q2 = q, and Q3 and are related to the voltages via the

capacitance matrix,⎛
⎝Q1

q

Q3

⎞
⎠=

⎛
⎝C(X)+C13 −C(X) −C13

−C(X) C(X)+C(−X) −C(−X)
−C13 −C(−X) C(−X)+C13

⎞
⎠

⎛
⎝V1

0
V3

⎞
⎠,

(A2)

where C13 denotes the direct capacitance between conductors
1 and 3, and the conductances between conductors 2 and 1
(3) depend on the displacement X via C(X) [C(−X)]. The
capacitance between two parallel tubes of radius r , length
l 
 r , and distance d 
 r in vacuum (ε = 1) is given by

C(0) = πε0l

log
(

d+√
d2−4r2

2r

) ≈ πε0l

log(d/r)
. (A3)

For the displaced CNT, we replace d by d + X and obtain the
capacitance

C(X) = πε0l

log [(d + X)/r]
≈ C(0)

(
1 − X

d log(d/r)

)
, (A4)

where we have used X 	 d.
For the gate voltage, we find

V1(X) = −q + V3C(−X)

C(X)
, (A5)

and thus, for V3 = 0,

[V1(X) − V1(0)]2 = − q2

π2ε2
0d

2l2
X2. (A6)

Substituting this into Eq. (A1), using I = GVsd, and taking the
temporal average directly yield Eq. (6).
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