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As an unusual type of anomalous diffusion behavior, (transient) superballistic transport is not well known but
has been experimentally simulated recently. Quantum superballistic transport models to date are mainly based
on connected sublattices which are constructed to have different properties. In this work, we show that both
quantum and classical superballistic transport in the momentum space can occur in a simple periodically driven
Hamiltonian system, namely, a relativistic kicked-rotor system with a nonzero mass term. The nonzero mass
term essentially realizes a situation, now in the momentum space, in which two (momentum) sublattices with
different dispersion relations (and hence different nature of on-site potential) are connected as a junction. It is
further shown that the quantum and classical superballistic transport should occur under much different choices
of the system parameters. The results are of interest to studies of anomalous transport, quantum and classical

chaos, and the issue of quantum-classical correspondence.
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I. INTRODUCTION

The rich transport behavior in complex systems is an
important research topic in statistical physics [1-6]. Consider
the mean square of a physical quantity (such as position)
as a function of time ¢ for an ensemble of particles. For
normal diffusion, this mean quantity is proportional to t;
whereas for anomalous diffusion, the mean quantity is ~¢"
(v # 1), with subdiffusion referring to cases of 0 < v < 1
and superdiffusion referring to cases of 1 < v < 2. In the
classical domain, known examples of anomalous diffusion
include Brownian motion and heat conduction. In the quantum
domain, wave-packet spreading in a periodic potential leads
to ballistic transport in the mean square position (v = 2). By
contrast, wave-packet spreading in a quasiperiodic potential
often induces subdiffusion or superdiffusion [7-9].

The special class of diffusion with v > 2, which may be
termed as “superballistic transport” as an intriguing transient
phenomenon, is not, however, as well studied as other cases
of anomalous transport behavior. Only few examples are
available so far. In the classical domain, superballistic transport
was observed for Brownian particles [10,11]. In the quantum
case, a time-dependent random potential was demonstrated
to cause superballistic transport using paraxial optical setting
[12]. More related to this work, earlier superballistic transport
was found in the dynamics of wave-packet spreading in a tight-
binding lattice junction [13,14]. Remarkably, such type of
quantum superballistic transport was recently experimentally
realized by use of optical wave packets in a designed hybrid
photonic lattice setup [15].

The main objective of this work is to use a relatively
simple model system to better understand the difference
and connection between quantum and classical superballistic
transport in purely Hamiltonian systems. The model studied in
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this work represents a dynamical model that can possess super-
ballistic transport in both quantum and classical Hamiltonian
dynamics. This will shed more light on various mechanisms
of superballistic transport as well as on the general issue
of quantum dynamics in classically chaotic systems. Further
studies regarding the subtle correspondence between quantum
and classical superballistic transport can be also motivated.

Specifically, we consider a relativistic variant [16,17] of
the well-known kicked-rotor (KR) model [18] and reveal the
quantum and classical superballistic transport dynamics in
the momentum space. Such a system can be also regarded
as a periodically driven Dirac system, and it should be of
some experimental interest due to recent advances in the
quantum simulation of Dirac-like particles. In the massless
case in which the kinetic energy of a relativistic particle is a
linear function of momentum, the relativistic KR variant was
known as the “Maryland model,” first investigated by Grempel
et al. [19,20], Berry [21], and Simon [22] to analytically
understand the issue of Anderson localization. For a Dirac
particle with a nonzero mass, the bare dispersion relation now
lies between linear and quadratic: for low momentum values
the dispersion is almost quadratic and for very high momentum
values the dispersion approaches a linear function. In effect,
this realizes a junctionlike scenario [13]: Regimes with low
or high momentum values have different dispersion relations
and hence different transport properties. As shown later, this
indeed induces superballistic transport in both the classical
and quantum dynamics. Interestingly, the detailed mechanism
in the former is still markedly different from that in the latter.
In particular, in the classical case, it is necessary to break
the global Kolmogorov-Arnold-Moser (KAM) curves in the
classical phase space because the superballistic transport roots
in an unusually complicated escape from a phase space regime
of random motion to a simple ballistic structure. By contrast,
in the quantum case, breaking global KAM curves are not
essential for quantum superballistic transport to occur thanks
to quantum tunneling through the KAM curves.
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This paper is organized as follows. In Sec. II, we introduce
our model and discuss its relation with the well-known
Maryland model. In Sec. III we study quantum superballistic
dynamics, followed by a parallel study of classical superballis-
tic transport and the associated classical phase space structure
in Sec. IV. Section V concludes this work.

II. RELATIVISTIC KICKED ROTOR
AS A DRIVEN DIRAC SYSTEM

Consider a one-dimensional relativistic quantum KR [17]:

+00

H =2mapo, + Mo, + K cos(gh) »_ 8t —n), (1)

n=—0oo

where all the variables are scaled and hence in dimensionless
units. Here o, and o, are Pauli matrices, v = 2w« represents
the speed of light, M represents the static mass energy, K
represents the strength of a delta-kicking field that is (27/q)
periodic in the coordinate 6 (q is an integer) and unity periodic
in time, and p = —i heff%, where heg is a dimensionless
effective Planck constant.

In the case of a vanishing M, the Hamiltonian (1) can be
decoupled into two independent Hamiltonians, each associated
with one eigenspinor of o,. They are nothing but the so-called
Maryland model [19]:

+00
Hy = £27ap + K cos(qd) Y 8(t —n). 2)

n=—0o0

Early studies on this massless relativistic KR [19,21] in-
vestigated the consequences of rational or irrational values
of «. Indeed, by mapping the Maryland model onto a one-
dimensional Anderson model, it becomes clear that Hy, with
an irrational « should display Anderson localization in the
momentum space [19], whereas Hy, with a rational « = r/s
(r and s integers) should show ballistic transport, so long as
the parameter ¢ in the kicking potential is an integer multiple
of s [21]. This condition is called a resonance condition. When
this resonance condition is not fulfilled, i.e., g # ns, it can be
shown that the time-evolving wave function of the system (with
rational o) repeats itself after every s kicking period, so neither
Anderson localization nor ballistic transport occurs. Roughly
speaking, what is known in the standard quantum KR [18]
applies also here, concerning the importance of the arithmetic
nature of o for the dynamics of the Maryland model, as well
as the ballistic transport due to quantum resonances therein.

Though in this work we will focus on cases with a nonzero
M, the above-mentioned results for the Maryland model do
guide us when it comes to choosing interesting parameter
regimes. For example, we shall pay special attention to whether
or not « is a rational value, and if the kicking potential is
resonant or not. As it turns out, the quantum dynamics is most
interesting in cases with rational « and under the resonance
condition.

Since our model is a periodically driven system, we write
down its Floquet operator in the 6 representation, i.e., the
propagator associated with one-period time evolution:

U = o—i(/he)@rac, p+0. M) ,—i(K [he) cos@t) 3)
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Without loss of generality we set fi.¢s = 1 throughout, keeping
in mind that if hes # 1, we may just absorb it into other
parameters M and K. Due to this choice, with periodic
boundary conditions in #, momentum can only take integer
values. The above expression of the Floquet operator is a
product of two exponential operators. The second operator
exp[—i K cos(gf)] comes from the kicking field, giving rise
to the hopping between different momentum states (different
sites in the momentum space), whereas the first operator
ﬁp = exp[—i(2rao, p + o, M)] is responsible for generating
momentum-dependent on-site phases. In particular, when H »
acts on the spinor state [a|v/(, 1)), B|¥(p,13)] at a site p, we
have

Hyla|Wip1) . BIYip.)] = [ @) [Wip.0) + B, [V )],
)

where [, 1)) and |, ;) are local spin-up and spin-down
eigenstates of (2m o, p + o, M). Therefore, each component
acquires a corresponding phase factor Cblf:

@7 = exp[Fiy Rrap)? + M?]. 3)

Clearly then, it is the periodic and alternative on-site phase
accumulation dﬁ and the hopping exp[—iK cos(g6)] that
determine the quantum dynamics. This motivates us to also
consider a slightly different Floquet operator U,:

U, = e—i«/(eraﬁ)z-k—MZe—iK cos(qé?). (6)

For this spinless Floquet operator, the two spin components
are decoupled. Nevertheless, it still contains the same local
phase accumulation given by <I>j,’ and the same hopping term
as in our original model described by U. As seen later, it does
possess the essential properties of U and as such our physical
analysis can be reduced. More importantly, the system U, does
not have the spin degree of freedom, so its classical limit can
be constructed with ease, with the classical Hamiltonian given
by

He = /Qmap)? + M2 + K cos(gf) Z st —n). (7)

n=—00o

Indeed, the so-called classical relativistic KR map studied in
the literature [16,23] was based on such a spinless classical
Hamiltonian. In the following, we study the quantum dynamics
using both U and U,, and the classical dynamics based on H¢.

III. QUANTUM DYNAMICS

The dynamics of a quantum relativistic KR was previously
studied in Ref. [17] for relatively short time scales. By
extending to a longer time scale and choosing the right
parameter regime, quantum superballistic transport is found
for driven systems described by U as well as its spinless
version U,. To justify our choices of the system parameters
we first examine cases with an irrational value of «.

A. Dynamical localization for irrational «

In the Maryland model, an irrational « leads to localization
in the momentum space. So it is interesting to first investigate
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FIG. 1. (Color online) Momentum spread (p?) as a function of
number of kicks (time ). Solid lines represent results generated by
the Floquet operator U defined in Eq. (3), with the initial state given
by spin-up and a Gaussian wave packet ~exp(— p? /203) and M =
0,6,10 from top to bottom curves. The dot-dashed lines represent the
results generated by a spinless Floquet operator U, defined in Eq. (6),
with the initial wave packet given by the Gaussian ~exp(—p?/20,),
and M = 6 (upper dashed curve) or M = 10 (bottom dashed curve).
In both cases, o, = 4, irrational @ = 1/3 4+ 0.01/27, K = 0.8, and
g =3. (p?) is seen to be strongly localized in all the examined
examples. Here and in all other figures, all plotted quantities are
in dimensionless units.

how a nonzero mass M changes this picture. When « is
irrational, the previously defined phase factor CD; in Eq. (5)
is in general a pseudorandom function of the momentum
site. This is different from the Maryland model, in which
M =0 and the corresponding @; would then reduce to a
quasiperiodic function of momentum sites. In the light of the
mapping from a KR system to the Anderson localization model
[24], this seems to indicate that a nonzero M favors dynamical
localization in the momentum space. Note also that, for very
large values of p, the relative importance of the M term in @f
will diminish, and then effectively a Maryland model will be
recovered and dynamical localization is still guaranteed [19].
Thus, in the entire momentum space, a nonzero M is expected
to strengthen the dynamical localization, thus also wiping
out any possibility of anomalous diffusion or superballistic
transport.

Results of our numerical simulations presented in Fig. 1
support our above view. For both the full Floquet operator
U and its spinless version U, it is seen from Fig. 1 that the
momentum spread (p?) decreases as M increases, i.e., a larger
M enhances dynamical localization.

With the same set of system parameters, the mean mo-
mentum spread under the evolution of the Floquet operator
U is similar to that under the evolution of its spinless
version U,. This confirms that the common on-site phase
accumulation function dblf has captured the main features of
dynamical localization. It is also interesting to comment on the
differences between these two cases. That is, (p?) associated
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with U is always larger than that associated with U,. As
such, the spin degree of freedom is seen to slightly weaken
dynamical localization. This is somewhat expected. Indeed,
the spin degree of freedom introduces two channels for the
dynamics and a multichannel Anderson model does increase
the localization length [25]. We note in passing that the spin
degree of freedom can even cause Anderson transition in
two-dimensional disordered systems [26,27]. Certainly, as M
increases, this spin effect should decrease because it becomes
more costly in energy for the two spin channels to interact.

Finally, we mention the benchmark result in Fig. 1 for
the M =0 case that represents the Maryland model. The
perfect revival of (p?) was predicted by Berry [21]. Using
our system parameters depicted in the caption of Fig. 1,
Berry’s result gives (p?)(t) ~ sin? 0.015¢/sin? 0.015 and our
simulation agrees with this.

B. Superballistic transport for rational o
and on-resonance potential

As we already discussed in the previous section, for large
momentum values, the effect of a nonzero mass term M will
diminish and effectively the Maryland model will reemerge.
So if we did not choose an on-resonance potential, then in
regimes of large momentum quantum revivals similar to that
with M = 0 (Maryland model) should occur for rational «,
which then leads to confined motion. This situation would not
be of interest here. In addition, we also observed that for an
off-resonance kicking potential and for rational «, a nonzero
M further suppresses the already bounded momentum spread.
With these understandings, it is clear that we should step into
the interesting situation where o = r/s is rational and the
kicking potential K cos(gf) is on resonance, i.e., ¢ = ns. For
convenience we choose g = s. Reference [17] computation-
ally investigated exactly the same situation, but it was argued
therein that the phase factor Cfo as a pseudorandom function of
momentum should suffice to localize the momentum spread.
As we show below, both qualitatively and quantitatively, this
claim is correct only for low momentum values, and overall a
much richer transport behavior can be found.

Let us start with the Maryland model for which M = 0.
Then the momentum space is translational invariant with
period s. As such, states will in general spread ballistically
(the off-resonance case is an exception). In our case, M # 0
and within each period, the on-site phase be acquired by the
system becomes a quasirandom function of p, thus dynamical
Anderson localization or suppression of momentum spread is
expected. However, as momentum increases, the nonzero M 2

term in @ = exp(Fi[y/(2wap)? + M?]) becomes less im-
portant as compared with (2 ap)?. For very large momentum,
the M? term represents a very weak perturbation and hence
the dynamics should resemble that of the Maryland model.
The above qualitative analysis makes it clear that the
overall dynamics depends on many factors. On a sublattice
representing low momentum values from —p. to +p,, dy-
namical localization takes place and the system is effectively
in a disordered regime. On a sublattice representing higher
momentum values, ballistic transport is expected and the
system is effectively in a periodic regime. Whether or not
a state is localized or delocalized now depends on where it
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FIG. 2. (Color online) Ensemble averaged momentum spread
(p?) vs time, for M =0, M =5, M =8, M =10, and M = 12
(from top to bottom). Results with M =5, M = 8, and M = 10 are
for the spinless Floquet operator U, defined in Eq. (6). For M = 12,
results for both U (the one fitted by a power law with v = 2.90)
and U, (the most localized case) are plotted. (Result with M = 0 is
applicable to both U and U,.) Other system parameters are the same as
inFig. 1, except fora = 1/3. The two dashed straight lines represent a
power-law fitting (p?) o t* (for a certain time window) with v = 2.90
or v =2.97, indicating quantum superballistic transport with an
exponent close to v = 3.

is initially located, and on the size of the disordered regime
as compared with the localization length. For example, if
an initial state is localized at the center of the disordered
regime and if the localization length is much shorter than
the disordered region, then the system may be trapped there
for an extremely long time. On the other hand, if the initial
state is already located close to the high-momentum sublattice
(closeness is with respect to the localization length), then
as the kicking field induces population transfer between the
disordered sublattice and the periodic sublattice, the system
will be quickly delocalized. In this sense, our model, through
its natural dispersion relation, realizes a lattice junction
analogous to that considered in Refs. [13,14]. Certainly, in
our model here there is no sharp transition between the two
qualitatively different sublattices, but the critical momentum
value is expected to scale with M /(2 w).

Representative results from our numerical experiments are
presented in Fig. 2. There it is seen that as M increases, an
initial state localized at the center of the disordered sublattice
will be trapped for a longer period. This is consistent with
our understanding that an increasing M leads to a longer
disordered sublattice as well as a shorter localization length.
Other numerical results (not shown) show that the values of «,
the kicking strength K, and the potential parameter g can all
affect the duration during which an initial state is trapped in
the disordered regime.

Two of the computational examples shown in Fig. 2 also
display quantum superballistic transport, i.e., (p?) o ¢’ with
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v > 2, where ¢ is the number of kicks. This can now be
explained using the idea from Ref. [13]. In particular, assuming
that the length of the disordered momentum sublattice is larger
than the corresponding localization length, then the disordered
regime serves as a source to provide slow probability leakage
into a periodic regime at an almost constant rate. Then we have

(pY(t)~ B+ aCt* +a / Rt —1)?di’.  (8)
0

Here R(t) is the probability leaking rate from the disordered
sublattice to the periodic sublattice, and B represents the
contribution from the disordered regime, which is almost
constant and can be neglected. C represents the probability
of the initial state already placed in the periodic regime, which
is 0 due to our choice of the initial state located at the center
of the disordered regime. a characterizes the ballistic transport
coefficient, which depends on many system parameters. If
we approximate R(¢) by a constant I', then from Eq. (8) we
approximately have

(p?)(1) o al'’. )

As reflected by the two cases shown in Fig. 2, namely,
the case of M = 12 for the full Floquet operator U and the
case of M = 10 for the spinless Floquet operator U, defined
in Eq. (6), (p?) o t¥, with v & 2.90 or v ~ 2.97, for a very
long time scale and covering a huge range of (p?) (note the
logarithmic scales used in the plot). These two superballistic
exponents are very close to v = 3, in agreement with the above
theory. For the same two cases, we have set p, ~ 100M /2r o)
and record the probabilities inside [— p., p.] as a function of
time. This probability indeed decreases linearly with time.
This further confirms the physical mechanism behind the
quantum superballistic transport seen here. The case shown
in Fig. 2 with M =5 displays ballistic transport as the case
of M = 0. This is so because for a small value of M the
initial state quickly experiences ballistic transport on the clean
sublattice. For the intermediate case M = 8, the momentum
spread does not show any clear power-law dependence. In
this transitional case, the localization length and the size of
disordered lattice are comparable and hence the leakage from
the disordered sublattice to the periodic sublattice occurs no
longer at an almost constant rate. We stress that the shown
cases represent but a few examples. Many similar results of
quantum superballistic transport are obtained for both the full
Floquet operator U involving two spin channels and for the
spinless Floquet operator U,.

Though the quantum superballistic transport here is ex-
plained in the same manner as in Ref. [13], we stress that
the effective two-sublattice configuration is not artificially
designed. Rather, it emerges as a natural consequence of the
relativistic dispersion relation with a nonzero mass.

IV. CLASSICAL DYNAMICS

A. Classical phase space structure

In this section we will study the classical relativistic KR
described by the Hamiltonian in Eq. (7). To that end, it is
necessary to examine the phase space structure, which can
be generated from the relativistic standard map [16,23]. In
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FIG. 3. (Color online) Phase space structure of H: defined in
Eq. (7), for four different situations, namely, (a) rational « and
on-resonance kicking potential, (b) irrational o with off-resonance
kicking potential, (c) irrational o with an almost on-resonance kicking
potential, and (d) irrational « with an off-resonance kicking potential.
M = 10and K = 1.6. The phase space invariant curves are seen to be
unbounded in momentum in panel (a), but bounded in panels (b)—(d).

particular, the states right after the Nth and (N + 1)st kick are
connected by the map

2

VPN
Onst = ——PN L6y (mod 27 /q),
Jvipy 4+ M?
Pn+1 = qK sin(gOyi1) + pi. (10)

In the quantum case, either an irrational & or a nonresonant
kicking potential causes localization. Considering quantum-
classical correspondence, this suggests bounded (i.e., localized
in momentum) invariant curves in the phase space. Results in
Figs. 3(b)-3(d) support this view.

To understand the phase space structure, we first recall the
Maryland model [21], which can approximately describe the
dynamics for sufficiently large momentum values. That is, if p
is large, then we again neglect the M term in the Hamiltonian.
Then the mapping in Eq. (10) (after dropping the M term)
reduces to the mapping associated with the Maryland model.
For the Maryland model, the following equations hold for
either an irrational « or a nonresonant kicking potential:

Oy =Nv + 6,

1
PN = ECSC %{cos (% +q90)

~ cos [(N + %)w + qeo]} +po (D)

where as introduced before, v = 2w «. Clearly then, for an
irrational o, the term N v can densely cover the entire 6 domain
[0,2]. As such, as N increases, the values of (Oy,py) fill a
complete sine curve in the phase space. On the other hand,
if o is rational, g becomes a fraction under the assumed
off-resonance condition, then 6y can only take discrete points
in [0,27] such that py also takes a few isolated values [21].
These observations for the Maryland model can be used to
directly explain the panel (d) in Fig. 3. For panel (b) where
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FIG. 4. (Color online) Detailed phase space structure for a situa-
tion similar to panel (a) in Fig. 3. Here system parameters are given
by K = 0.8, M = 10,0« = 1/3, and ¢ = 3. Panel (a) depicts regimes
with large momentum values, and panel (b) depicts regimes with low
momentum values. Curves in regime I are local KAM curves; KAM
curves in regime III are global curves and hence localize momentum.
The black dots in regime II are generated by a single initial condition
and indicate a chaotic sea. Curves in regimes IV that are almost
parallel to the momentum axis are ballistic structures.

« is rational but the kicking potential is off resonance, a
nonzero M also causes the dynamics to densely fill the entire
6 domain, which constitutes an interesting difference from the
Maryland model. However, as expected, after the same number
of iterations, regimes with low momentum values can generate
a complete phase invariant curve faster, and regimes with high
momentum values may still have holes to be filled in. As for
panel (c) where the product of aq is close to an integer, the
oscillation amplitude in momentum get larger as the factor
csc 47 in the map in Eq. (11) can be a large number. Putting
all these cases together, it is seen that in the three situations
represented by panels (b)—(d) of Fig. 3, KAM invariant curves
localized in momentum are the main characteristic of the
classical phase space.

So now we are left with the last situation in which «
is rational and the kicking potential is on resonance. The
associated phase space structure is presented in panel (a) of
Fig. 3 and in Fig. 4. The phase space structure is remarkably
complicated and interesting. To investigate this in detail, we
divide the phase space into four regimes, namely, regimes I,
IL, IT1, and IV for increasing absolute values of momentum.

Let us take one example to look into the special phase
space structure. As seen in Fig. 4 for K = 0.8, M = 10, the
four regimes have qualitatively different behavior. In regime I
where p is small, local KAM curves dominate. As p increases,
the feature of the phase space becomes chaotic in regime II.
This is followed by global KAM curves in regime III. These
global KAM curves are localized in momentum and bound the
chaotic sea seen in regime II. Finally, in regime IV for quite
large momentum, ballistic curves, which become more and
more parallel to the momentum axis, are seen. These curves are
called ballistic curves because once a trajectory lands on such
a structure its momentum variance will evolve ballistically.
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The four regimes identified above may not always appear
together. Their presence and borders are determined by M
and K. To shed some light on this, one may consider H¢, in the
two opposite limits, i.e., “nonrelativistic” vp < M limit and
“ultrarelativistic” limit vp > M. In the first limit, H- becomes

1 v2p2 i
Hs=M+5——+K cos(qe>n;ooa<r —n),  (12)
and in the second limit, Hc assumes
Hp = v|p|+ K cos(gh) »_ 8(t —n). (13)
n=—00

Regimes I and II can be understood via Hg, while regime
IV can be well understood by Hj. In particular, Hg is the
conventional kicked rotor, which makes the regular-to-chaotic
transition as K increases [18]. H; is much similar to the
Hamiltonian of the Maryland model, which is known to
produce ballistic trajectories in the momentum space [21].
Indeed, it can be shown that the asymptotic (in the large p limit)
form of the ballistic trajectories are described by & = constant,
and they are hence completely parallel to the momentum axis.

As is found from our computational studies, an increase
in K may destroy the KAM curves in regimes I and III,
and then turns them into a (possibly transient) chaotic sea
as well. An increase in M will generate more KAM curves
in the phase space. The complexity of the phase space
perhaps deserves more careful studies. For our purpose here,
we emphasize that for a sufficiently large K, the phase
space is mainly composed of a seemingly chaotic sea and
ballistic trajectories. It is, however, challenging to identify
a clear boundary between trajectories eventually landing on
the ballistic structure and those always doing random motion.
To appreciate this complexity, in Fig. 5 we illustrate that once
global curves are all broken, how an individual trajectory might
eventually land on the ballistic structure after transient, but a
long period of, “chaotic” motion. The whole process is like
the following: After the system has wandered in the transient
chaotic sea [see panel (b)] for a long time, the system finally
reaches L; and keeps moving to the left. Then it reaches L]
and continues to move towards the left. It then passes the
central transient “chaotic sea.” Later the system has a chance
to arrive at L, followed by L. The system eventually reach a
ballistic curve L3 and then keeps moving up in the momentum
space. In brief, it takes three stages for a trajectory launched
from the regime illustrated in panel (b) of Fig. 5 to finally
turn into ballistic motion. First, it wanders highly randomly in
a transient chaotic sea. Second, it moves alternatively along
some smooth curves [such as those shown in panels (a) and (c)
in Fig. 5], between which the system returns to the transient
chaotic sea, but with the overall tendency towards curves of
large momentum values. Lastly, the system evolves on a simple
ballistic structure.

B. Classical superballistic transport

In our simulations, we always choose 10° phase space
points randomly sampled from the following Gaussian dis-
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FIG. 5. (Color online) Evolution of a single trajectory from
(09, po) = (0,0.7). The total evolution time is 2x10°, by which
time this trajectory becomes clearly ballistic. The whole process
is remarkably complicated. Panels (a), (b), and (c) zoom in some
small portions of the shown phase space, with the momentum
values in the middle-6 regime seen to be highly localized. Green
dash-dotted arrows show the moving direction of the trajectory along
the “curves” traced by the trajectory. These curves shown here emerge
after t ~ 7.6x 10°, and similar curves developed in earlier time with
smaller p values. Note that these curves are not KAM invariant curves
as the system will eventually leave them. We define the motion along
these curves as “transient chaotic motion.”

tribution:

F.0) = — L o (14)
)= —exp| —=— Jexp| —— ] .
P 2n 0,00 P 203 P 202

Note that this Gaussian distribution is analogous to the initial
Gaussian wave packet we used in our quantum dynamics
calculations. We then evolve this ensemble of classical
trajectories according to the relativistic KR map described
by Eq. (10) and examine the ensemble averaged ( p?) as a
function of ¢, i.e., the number of iterations. Interestingly, the
time dependence of (p?) is rich, and if we fit (p?) by the power
law ~t" for appropriate time windows, the exponent v can be
larger than 2. In fact, sometimes v can be even larger than 3
or even 4. Some examples are shown in Fig. 6. In one case,
the superballistic transport exponent is found to be as large as
v = 4.2, for atime window from ¢ = 10°to¢ = 3x10°. On the
one hand this confirms that the classical dynamics may display
superballistic transport; on the other hand it is necessary to
better understand the underlying mechanism. By exploring
many parameter choices, it is found that breaking the global
KAM curves with an increasing ratio K/M is a necessary
condition. This is already a clear difference from quantum
superballistic transport. For example, for the results shown in
Fig.2,v =2n/3,q = 3, and M = 10, quantum superballistic
transport occurs already for K = 0.8, but in the classical case
shown in Fig. 6, superballistic transport is observed only when
K exceeds 1.4. Thus, in the quantum case, a global KAM
invariant curve does not forbid the population leakage from the
classically chaotic regime to the ballistic regime, an indication
of quantum tunneling.
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FIG. 6. (Color online) Ensemble averaged classical momentum
spread (p?) vs time (the number of kicks). The initial conditions
are sampled from a Gaussian distribution described by Eq. (14) with
o, = 22 and oy =1/ 0, so that the initial phase space distribution
is analogous to the quantum initial state used in Fig. 2. Here v = 277/3,
q = 3, M = 10, and from top to bottom, K = 1.6, 1.5, 1.4, 1.2, and
1.0. Note that with other system parameters being the same, quantum
superballistic transport already occurs for K = 0.8 (see Fig. 2). Here
the classical superballistic transport emerges until K reaches 1.4.

To further understand the numerical results, we find it nec-
essary to also account for normal diffusion as the trajectories
seek to land on ballistic trajectories from the chaotic sea. The
associated normal diffusion rate is assumed to be Dy. We
further assume that the leakage rate from the chaotic sea to the
ballistic structure is given by R(¢). Then analogous to Eq. (8),
we expect to have

(p*)(t) ~ B+ Dt +aCt* + a/ Rt —t")2dt', (15)
0

where B = pop?, with py being the fraction of trajectories

confined in some local stable islands in regime I and p}
being their average momentum spread; D = p; Dy, with p;
representing the fraction of trajectories undergoing normal
diffusion, with Dy being the associated diffusion constant;
and C = p, is the faction of trajectories initially placed on
ballistic structures, with a being the diffusion coefficient. Note
that, unlike in the quantum case, at this point we do not first
assume a constant probability leakage rate because, as seen
below, the leakage involves different behavior at different time
windows, and so R(¢) can be rather complicated. Indeed, as
seen from Fig. 5, once the global KAM curves are destroyed,
the escape from a (transient) chaotic sea to a ballistic structure
is extremely complicated: The boundary between them is hard
to identify and different initial conditions sampled from an
initial Gaussian ensemble may need drastically different times
to reach a ballistic structure.

The coexistence of normal diffusion, ballistic transport, and
the potentially complicated leakage rate R(¢) makes the time
dependence of (p?)(t) even more interesting than the quantum
case. Let us roughly define a regime [— Py, Po] in the phase
space, where trajectories are not doing ballistic motion. In
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FIG. 7. (Color online) Results of In P.(¢) vs time, where P. de-
fined in the text represents the occupation probability in a nonballistic
regime. For the two insets (a) and (b), P.(¢) vs time is plotted for two
early stages, where it can be seen that initially most trajectories are
trapped in the initial nonballistic regime for ¢ < #; ~ 5x10*. Then
P_(1) starts to decrease appreciably in a nonlinear fashion. The inset
(c) shows that the time dependence of In P.(¢) is highly nonlinear
before ¢ = t,. However, after 1, ~ 5x10°, In P.(t) and ¢ display a
linear relation. The system parameters are the same as the case of
K = 1.4inFig. 6.

connection with our observations made from Fig. 5, we choose
Py =500. Let P.(t) be the occupation probability of this
regime and P,(t) = 1 — P.(t) be the occupation probability
on ballistic structures. Then R(¢) = —%. P.(t) is plotted in
Fig. 7 on either linear or logarithmic scales, for different time
windows, for the value K = 1.4 already studied in Fig. 6. The
right inset of Fig. 7 indicates that initially most trajectories
are trapped in the regime [— Py, Py], until 7 = #; & 5% 10%.
Then P.(t) starts to decrease more appreciably, with a time
dependence not easy to fit [see the first part of the curve in panel
(©)]. Afterr = 1, ~ 5x10° kicks however, the relation between
P.(t) and t becomes much more evident, i.e., In P.(t) o< —I't,
which indicates an exponential decay. The emergence of an
exponential decay suggests that the ensemble has reached a
certain steady configuration, as the escape probability now
becomes proportional to the occupation probability itself. As
also shown by the bottom inset and by the main figure of Fig. 7,
the coefficient I slightly changes with time. Expanding such an
exponential decay to the first order, this escape would amount
to an almost constant leakage rate of jumping onto phase space
ballistic structures. As a result, one would naively expect, like
our analysis in the quantum part, a superballistic transport
case with v = 3. This prediction is certainly oversimplified as
compared with our actual results shown in Fig. 6.

To better digest the results shown in Fig. 6, we again focus
on the case K = 1.4 in connection with the time dependence
of P.(t)in Fig. 7. In the very beginning, P.(¢) remains almost a
constant until #; &~ 5x 10 kicks, so for this time period R(t) is
essentially zero. Therefore initially only the first three terms in
Eq. (15) are nonzero, suggesting that the diffusion exponent of
(p?) should be less than two. This explains the actual numerical
result during the early stage. The plotted curve in Fig. 6 at early
times also has an increasing slope. This can be explained as
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follows. During the early stage, we have B > D > aC. When
t > B/D, the Dt term starts to dominate so (p?) is close
to normal diffusion. Similarly, when ¢t > D/(aC) ~ 10°, the
aCt? term exceeds the first two, so we have a behavior close to
ballistic transport for a quite long period until t = #, &~ 5x 10°.
On the other hand, from Fig. 7, it is observed that since as early
ast =1 ~ 5x10% R(t) is already nonzero. So the leakage to
the ballistic regime is building up long before an exponential
leakage is observed at t > f,. This early-stage leakage to the
ballistic regime starts to affect the time dependence of (p?)
only until # &~ 10°. We conjecture that this is the reason why
in Fig. 6 a simple relation (p)(t) ~ 3 is not observed. In
addition, the lack of such a simple superballistic behavior
with v = 3 is also consistent with the apparent nonlinear time
dependence shown in panel (c) of Fig. 7 before t = t,.

To confirm our qualitative analysis above, we now redefine
the start time as the point when an exponential decay of
P.(t) can be clearly identified. Again using the computational
example shown in Fig. 7, we now use t, ~ 5x10° as the
start time to count change in the momentum spread. That
is, we now examine [(p2)(¢t) — (p?)(t2)]. Because at t,, the
population inside the regime [— Py, Py] is about 0.88, we have
P.(t) = 0.88exp[—I'(t — t,)]. Then we have

[p*) (@) — (p*) (1]
~ 0.88 Doe "t — 1) +0.12 a(t — 1)?

t

+a / R(t)(t — ')t (16)
5]

where the first term accounts for the normal diffusion as the

trajectories diffuse from a chaotic sea to eventually land on

a ballistic structure, the second term describes the ballistic

transport for those trajectories already outside the regime

10 I \4 I
10 10 10 10
time (¢ —to)

FIG. 8. (Color online) [(p*)(t) — (p*)(t2)] vs (t — t,), an analy-
sis motivated by a reset of the start time at r = 1, (see the text for the
details). The result here mainly displays a normal diffusion stage and
a superballistic transport stage with an exponent close to v = 3. The
computational example presented here is the same one as in Fig. 7
with K = 1.4. The dashed lines represent power-law fitting.
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[— Py, Py] at the start time f,, and the last term describes the
impact on the transport dynamics due to the population leakage
from the regime [— Py, Py], with

dP.
R(t) = — 7 =088Texp[-['(t —5]~088T. (17)

Equation (16) thus suggests that once we reset the start time
at 1, there should be a normal diffusion stage, a transition
stage due to the second term, followed by a superballistic
transport period, i.e., [(p?)(t) — (p*)(t2)] ~ (t — t,)*. InFig. 8
we present a numerical log-log plot of [(p?)(t) — (p?)(t2)]
vs (t — 1), in very good agreement with our analysis. As a
final note, the classical superballistic transport shown in Fig. 8
with the diffusion exponent v = 3.1 lasts very long, but this
behavior cannot last forever. In the end, almost all trajectories
from the initial ensemble will end up on ballistic structures
and then purely ballistic transport will take over.

Returning to an early study [17] of the classical relativistic
KR under the resonance condition, we have to disagree
with some of their statements; from our results we con-
clude that classical superballistic transport was not observed
there because the investigation time scale there was too
short.

V. CONCLUSIONS

In this work, we show that both quantum and classical
superballistic transport can occur in a simple periodically
driven system, namely, a relativistic kicked-rotor system with
anonzero mass term. Compared with previous lattice-junction
models for quantum superballistic transport, the superballistic
transport in our model occurs in momentum space as a
consequence of a natural divide imposed by the relativistic
dispersion: Regions with low momentum effectively have
a quadratic (bare) dispersion relation (hence effectively a
quasirandom on-site potential) and regions of high momentum
effectively have a linear (bare) dispersion relation (hence
effectively a quasiperiodic potential).

Remarkably, though found in the same dynamical system,
the quantum superballistic and classical superballistic trans-
port we have analyzed is observed in much different parameter
regimes. Indeed, in the quantum case, the mechanism lies in
the leakage of the quantum state from a regime of dynamical
localization to a regime of ballistic transport. This leakage can
occur even when the underlying classical limit has global KAM
invariant curves separating the two regimes. How such type of
leakage is manifested in the structure of quantum eigenstates
should be relevant to further understandings of quantum
eigenstates lying simultaneously on classical structures with
different dynamical features [28]. In the classical case, it is
necessary to break the global KAM curves first to allow
for leakage from a chaotic sea to ballistic trajectories. As a
side result, we find that this kind of leakage in the classical
dynamics is unexpectedly complicated and further studies
can be motivated. For example, strictly speaking, the random
patterns shown in panel (b) of Fig. 5 do not represent chaos
(chaos is defined as a positive Lyapunov exponent in the
asymptotic long-time limit, but this trajectory will eventually
become ballistic and hence has a zero Lyapunov exponent).
The detailed characteristics of this type of irregular trajectory

022921-8



QUANTUM AND CLASSICAL SUPERBALLISTIC ...

eventually becoming a regular ballistic one deserve more
attention. The issue of quantum-classical correspondence
concerning this type of trajectory is also of considerable
interest for future studies.

The classical relativistic kicked-rotor model may be re-
alized by considering relativistic electrons moving in the
field generated by a special electrostatic wave packet [16].
On the quantum side, a spinless version of the relativistic
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kicked rotor may be also realized by considering a kicked
tight-binding lattice whose on-site potential can be determined
by the relativistic dispersion relation [29,30]. However, due
to the large time scales involved, a direct observation of our
numerical results reported here is unlikely. As such it should
be interesting enough to explore the system more to identify
other signatures of superballistic transport at shorter time
scales.
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