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We experimentally investigate a strongly driven GaAs double quantum dot charge qubit weakly coupled
to a superconducting microwave resonator. The Floquet states emerging from strong driving are probed by
tracing the qubit-resonator resonance condition. In this way, we probe the resonance of a qubit that is driven
in an adiabatic, a nonadiabatic, or an intermediate rate, showing distinct quantum features of multiphoton
processes and a fringe pattern similar to Landau-Zener-Stückelberg interference. Our resonant detection
scheme enables the investigation of novel features when the drive frequency is comparable to the resonator
frequency. Models based on the adiabatic approximation, rotating wave approximation, and Floquet theory
explain our experimental observations.
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Applying a strong drive to a quantum two-level system
(qubit) gives rise to intricate physics, such as ac Stark effect
[1], multiphoton transitions [2], and Landau-Zener-
Stückelberg interference [3], characterized by the emer-
gence of Floquet states [4]. Many of these effects have
practical benefit: if the qubit is coupled to a superconduct-
ing resonator, the ac Stark effect allows the calibration of
the resonator photon number [5]. The Landau-Zener-
Stückelberg interference pattern gives relevant information
on qubit decoherence [6–8], and carefully considering the
Floquet dynamics provides the means to improve the
fidelity of qubit operations [9]. Strong driving dynamics
has been investigated in various systems, including super-
conducting qubits [6,10–17] and quantum dot devices
[8,18–24]. Recent experiments have shown that strongly
driving a qubit that is coupled to a resonator can enhance
the resonator transmission [15,25–27]. Spectroscopy of the
Floquet quasienergies of a strongly driven system has been
demonstrated by following its time evolution [16,28]. An
alternative proposal is to probe the driven qubit with a
weakly-coupled superconducting resonator [29,30].
Here, we report our experimental implementation of the

proposal, where the resonance frequency of the resonator
determines the probed Floquet quasienergy. Because of
weak coupling, the resonator does not directly influence the
qubit energetics. We perform a set of experiments, first with
adiabatic driving, with which we observe multiphoton
processes and a fringe pattern similar to those observed
in other experiments [3,8,19]. In a second experiment, we
increase the driving rate from adiabatic to nonadiabatic,

allowing us to probe the evolution of the Floquet quasie-
nergy. In our third experiment, we apply a near-resonant
and a near-half-resonant drive. There we observe a vanish-
ing of the probe signal, since the avoided crossing between
the drive field photons and the qubit energy eliminates the
states at the resonator energy. In this regime, all three
energy scales present in our setup, i.e., those of the qubit,
the resonator, and the drive photons are relevant.
Our qubit is formed in a double quantum dot (DQD),

shown in Fig. 1(a). Au top gates define the DQD electro-
statically in a two-dimensional electron gas hosted in a
GaAs=AlGaAs heterostructure. The number of electrons in
the DQD is controlled with plunger gate potentials VL and
VR and monitored by a nearby quantum point contact
(QPC). As indicated in the charge stability diagram in
Fig. 1(b), the qubit is operated in the three electron regime
where the relevant charge states are jLi ¼ jð2; 1Þi and
jRi ¼ jð1; 2Þi, with ðn;mÞ notation indicating n electrons
on the left and m electrons on the right dot. In the jLi-jRi
basis, the system Hamiltonian is H0 ¼ Δσx=2þ δ0σz=2,
where σx and σz are Pauli matrices, Δ is the interdot tunnel
coupling, and δ0 is the DC detuning energy between jLi
and jRi. We directly control Δ and δ0 with Vt, VL, and VR
shown in Fig. 1(a). Diagonalization of H0 determines the
unperturbed qubit states with an energy separation of
εq;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ δ20

p
illustrated in Fig. 1(c).

The DQD is connected to a superconducting half-
wavelength coplanar microwave resonator with a resonance
frequency νr ¼ 8.32 GHz and a linewidth κ=2π ¼
110 MHz by extending the resonator voltage antinode to
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the drive gate indicated in Fig. 1(a), similar to previous
work [31]. This leads to a coupling of the charge qubit to
the resonator electric field. We estimate a coupling strength
of g0=2π ≈ 30 MHz and a qubit decoherence of γ2=2π ≈
400 MHz [31]. Since g0 ≪ γ2, the resonator is weakly
coupled to the qubit, and it allows weak probing without
coherently influencing its states. When δ0 satisfies the
resonance condition εq;0 ¼ hνr, the qubit can absorb
photons from the resonator. This is observed as a decrease
in transmission when probing the resonator at frequency νr.
If Δ < hνr as in Fig. 1(c), two qubit-photon resonances
occur for δ0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhνrÞ2 − Δ2

p
, which are observed in

Fig. 1(d).
We drive the qubit by applying a continuous microwave

tone to the drive gate indicated in Fig. 1(a). This gives rise
to a time-dependent detuning δ0 → δ0 þ Ad cosð2πνdtÞ
and, consequently, a time-dependent Hamiltonian HðtÞ ¼
H0 þ Adσz cosð2πνdtÞ=2. The drive frequency νd has a
significant effect on the qubit [3,8,10,11]. As such, our
experimental control parameters are the drive frequency νd
and amplitude Ad as well as the qubit detuning δ0 and
tunnel coupling Δ.
In our first experiment, we explore the low drive

frequency regime νd ≪ Δ=h; νr. In this limit, the dynamics

are approximately adiabatic and the effective qubit energy
εq;ad is given by the time-averaged qubit energy

εq;ad ¼ νd

Z
1=νd

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðδ0 þ Ad cosð2πνdtÞÞ2

q
: ð1Þ

εq;ad does not depend on νd, and it increases monotonically
with increasing Ad. As illustrated in Figs. 2(a)–2(b),
increasing Ad will trigger the resonance condition εq;ad ¼
hνr for a different δ0 determined by the points where the
energy of the driven qubit and that of the resonator
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FIG. 1. (a) A scanning electron micrograph of the device. Two
quantum dots are defined in the positions indicated by the orange
dots. A superconducting resonator is connected to the leftmost
gate, and the qubit is driven by applying a continuous tone to
the rightmost gate. Unused gate electrodes are greyed out.
(b) Stability diagram of the double quantum dot. The black
rectangle marks the operation regime. (c) Charge qubit (solid
black line) and resonator photon energy (solid blue line) as a
function of δ0. (d) Resonator transmission T as a function of VL
and VR. The δ0 axis is depicted with an arrow.
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FIG. 2. (a) Effective energy of an adiabatically driven qubit as a
function of δ0 with drive amplitudes Ad=h ¼ 0 GHz, 5 GHz, and
∼7 GHz in order of increasing energy (from black to red).
(b) Illustration of the expected resonances as a function of δ0
and Ad for νd ¼ 1 GHz and Δ=h ¼ 6.8 GHz. The resonance
positions satisfying εq;ad ¼ hνr þ Nhνd are shown as blue lines.
The stars in panels (a) and (b) mark the corresponding resonance
positions. The lines with a unit slope emerging from the zero-Ad
resonances approximate the regions (marked in grey) in which
resonances are not visible since Ad < jNjhνd. (c)–(f) Transmis-
sion as a function of δ0 and Ad for low νd. The N ¼ −1 resonance
is indicated with a dashed ellipse in panel (f). Yellow dots show
the theoretically predicted resonance positions for the δ0 > 0
half, denoting where one of the resonance conditions in Eq. (2) is
fulfilled. The radius of each yellow dot is proportional to the
corresponding transition strength M in Eq. (3). The predicted
resonances are symmetric in δ0.
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intersect. We also expect multiphoton resonances [32]
satisfying hνr ¼ εq;ad − Nhνd, where N is an integer. As
sketched in Fig. 2(b) for νd ¼ 1.0 GHz, this results in a
replica of the N ¼ 0 resonance. The jNj-photon resonances
are visible when Ad > jNjhνd, and the approximate param-
eter range in which this is satisfied is marked in Fig. 2(b).
We now measure the transmission for νd ¼ 0.5 GHz,

νd ¼ 1GHz, and νd ¼ 1.5 GHz, each withΔ=h ¼ 6.8 GHz,
shown in Figs. 2(c)–2(e). For zero drive amplitude, the
qubit is resonant with the resonator at two detuning
values δ0=h¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2r − ðΔ=hÞ2

p
≃�4.8GHz, see Fig. 2(a).

Increasing Ad changes the resonance condition for δ0 as
illustrated in Fig. 2(b). With a sufficiently high drive
frequency as in Fig. 2(e), the full N ¼ 0 resonance arcs
are clearly discernible, while for νd ¼ 0.5 GHz and
νd ¼ 1.0 GHz, the resonance visibility vanishes for the
range Ad ≳ 4hνd; jδ0j ≳ 2hνd. This feature is also captured
by the predicted qubit visibility Eq. (3), discussed later.
Multiphoton resonances matching εq;ad ¼ hνr þ Nhνd

emerge as Ad is increased. Qualitatively, these processes
take place by the qubit absorbing a single photon from the
resonator and N photons from the drive field. For these
N þ 1 photon processes, there are N gaps in the resonance
arcs, symmetrically distributed around δ0 ¼ 0, as sketched
in Fig. 2(b). This effect is reminiscent of Landau-Zener-
Stückelberg interference [3,32]. Aside the interference
pattern, the multiphoton resonances are qualitatively sim-
ilar to that of the N ¼ 0 resonance, including the vanishing
visibility regimes with νd ¼ 0.5 GHz and νd ¼ 1.0 GHz.
We further perform a measurement with νd ¼ 1.0 GHz and
Δ=h ¼ 6.3 GHz shown in Fig. 2(f) to find a clear signature
of a resonance corresponding to N ¼ −1. This implies a
process where the resonator photon is absorbed by the qubit
and as a single photon by the drive field.
To describe our data more precisely, we use the quantum-

electrodynamics interpretation of Floquet theory [4]. In this
language, the coupled system of the charge qubit and its
driving field is described by the Hamiltonian [32]
HF ¼ H0 þ hνdm̂þ Adσzðm̂− þ m̂þÞ=4, where the basis
is jL;mi, jR;mi, with m corresponding to the number
of photons in the drive field, m̂ ¼ P

mmjmihmj is the
drive field photon number operator, and m̂þ ¼ m̂†

− ¼P
mjmþ 1ihmj. We note that, the prefactor

ffiffiffiffi
m

p
typically

associated with the photon creation operator is absorbed
into Ad, which is a valid approximation with the inherent
assumption of m ≫ 1 [32]. We numerically calculate two
Floquet eigenstates j�i¼P

mc
�
L;mjL;miþc�R;mjR;mi with

corresponding quasienergies ε� that satisfy −hνd=2 <
ε− ≤ εþ ≤ hνd=2 [32]. All other eigenstate-quasienergy
pairs of HF are shifted replicas of these two, satisfying
j�; ni ¼ ðm̂þÞnj�i and ε�;n ¼ ε� þ nhνd. The driven
qubit can absorb a resonator photon if

hνr ¼ ε�;n − ε∓; ð2Þ

where n is a non-negative integer. The strength M of the
transition is given by [29],

M ¼ jh�; njσzj ∓ij2: ð3Þ

We numerically locate the resonance positions (δ0, Ad) that
satisfy one of the resonance conditions in Eq. (2), and we
show them in the transmission plots in Figs. 2(c)–2(f),
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FIG. 3. (a)–(d) Transmission for increasing drive frequency.
Yellow dots show the resonance conditions in Eq. (2), and their
radius proportional to the corresponding transition strength M in
Eq. (3). The black lines show the RWA resonance conditions by
Eq. (5), and orange lines [in panels (a) and (b)] show the adiabatic
resonance conditions εq;ad ¼ hνr with Eq. (1). (e) The energy
of the states jg; 0i, jg; 1i, and je; 0i by RWA as a function
of drive amplitude for parameters in (c). Black solid lines
correspond to δ0=h ¼ 0 GHz with εq;0=h ¼ Δ=h ¼ 5.5 GHz,
and black dashed lines correspond to δ0=h ¼ 4 GHz with

εq;0=h ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ δ20

p
Þ=h ≈ 6.8 GHz. The splitting Δε ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAd sinðθÞ=2Þ2 þ ðεq;0 − hνdÞ2
q

between jg; 1i and je; 0i is

determined by Eq. (4). The resonance condition for jg; 0i and
je; 0i with hνr (dashed blue line) is marked by stars. (f) Corre-
sponding plot for parameters in (d) and δ0=h ¼ 6 GHz,
εq;0=h ≈ 10.7 GHz.
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3, and 4. Overall, the resonance positions match accurately
with the transmission minima seen in the experiment.
In our second experiment, we move to the regime

where νd is comparable to our other frequency scales
Δ=h and νr and we concentrate on the N ¼ 0 resonance.
Figures 3(a)–3(d) show the measured transmission as a
function of δ0 and Ad, displaying the evolution of the
resonance pattern as the configuration transitions from an
adiabatic to a nonadiabatic regime. While Fig. 3(a) shows
the arc-shaped resonance characterized by the adiabatic
approximation Eq. (1), for a higher drive frequency shown
in Figs. 3(b)–3(d), such an approximation is no longer
sufficient. Here, the signatures of nonadiabaticity are the
nonmonotonicity of the resonance condition in Ad as a
function of δ0 in Figs. 3(b)–3(c) and the branching of Ad in
Fig. 3(d).
To interpret the high frequency drive data, we use a

rotating wave approximation (RWA). We change from a
jLi, jRi basis to the qubit eigenstate basis with Ad ¼ 0; i.e.,
jgi ¼ − sinðθ=2ÞjLi þ cosðθ=2ÞjRi, jei ¼ cosðθ=2ÞjLiþ
sinðθ=2ÞjRi, where the mixing angle θ is given by
cosðθÞ ¼ δ0=εq;0. We then limit our basis to two interacting

states close in energy, such as je;m ¼ 0i and jg;m ¼ 1i,
for which we can write the Hamiltonian as

HRWA¼ εq;0
2

σzþ
Ad

4
sinðθÞðσþm̂−þσ−m̂þÞþhνdm̂; ð4Þ

where σþ ¼ σ†− ¼ 1
2
ðσx þ iσyÞ is the qubit raising operator.

As indicated in Fig. 3(e), the energy of jg;m ¼ 1i is offset
from the energy of jg;m ¼ 0i by hνd. With this fact, we
determine [32] the effective qubit energy as the energy
difference between jg;m ¼ 0i and je;m ¼ 0i states from

Eq. (4) as εRWA ¼ hνd �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAd sinðθÞ=2Þ2 þ ðεq;0 − hνdÞ2

q
.

The resonance condition εRWA ¼ hνr for Ad is then

Ad;RWA ¼ 2

Δ
εq;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhνr − hνdÞ2 − ðεq;0 − hνdÞ2

q
: ð5Þ

The data shown in Figs. 3(b) and 3(c) lie in the regime
where we find a nonmonotonic resonance condition, as
predicted by Eq. (5). Qualitatively, the dip in Ad;RWA at
δ0 ¼ 0 is due to a maximum in the qubit-drive photon
coupling strength, which is proportional to Ad sinðθÞ ¼
AdΔ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ δ20

p
as in Eq. (4), leading to faster change in

εRWA with increasing Ad as shown in Fig. 3(e). Figure 3(d)
shows transmission data for νd ¼ 12.0 GHz and
Δ=h ¼ 8.1 GHz. In this regime with νd > νr, we observe
that the resonance condition for Ad increases with increas-
ing δ0. This can be understood from Fig. 3(f), showing that
when hνr < εq;0 < hνd, increasing Ad lowers the qubit
energy and brings the qubit on resonance with the reso-
nator. We find that both the RWA result in Eq. (5) and the
transition strength by Eq. (3) give a good prediction for the
resonance locations for data sets shown in Figs. 3(b)–3(d).
In our third experiment, νd is near-resonant or near-half-

resonant with νr. Figure 4(a) shows the transmission for
νd ¼ 8.7 GHz, which is close to the resonator frequency
νr ≃ 8.32 GHz. We observe that the transmission signal
vanishes as Ad is increased, an effect that can be understood
from the RWA Hamiltonian Eq. (4). As illustrated in
Fig. 4(c), when εq;0 ≃ hνd, the qubit energy changes rapidly
from hνd with increasing Ad due to je; 0i − jg; 1i hybridi-
zation. Therefore, if νd ¼ νr, the driven qubit cannot have
an energy exactly matching hνr. Figure 4(b) shows the
transmission for νd ¼ 4.5 GHz, which is close to half νr.
In this regime, the RWA result is no longer sufficient to
characterize the observed resonances. The special case of
half-harmonic driving is discussed in [33]: here, the qubit is
influenced by second order photon processes where the
hybridization gap arises when 2νd ≃ εRWA=h, as illustrated
in Fig. 4(d). However, second order coupling scales with
A2
d cosðθÞ sinðθÞ [32], which tends to zero when δ0 → 0.

This gives rise to the small range in δ0 where the qubit
remains visible.
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In conclusion, we have comprehensively investigated
Floquet energy spectra of a strongly driven charge qubit
with a weakly-coupled microwave resonator as a function
of qubit detuning and drive amplitude over a large range of
drive frequencies. In contrast to earlier experiments study-
ing strongly driven systems, we have explored the regime
where the qubit can be brought on resonance with the
resonator, either by detuning or by increasing drive
amplitude. This feature allows us to extract the Floquet
quasienergy spectrum of a strongly driven charge qubit. It
has recently been shown that dressed qubits can have
longer coherence times [24], warranting further investiga-
tion of strongly driven systems. The spectroscopy method
presented here is general and can be applied to different
qubit implementations. Furthermore, with this method, one
could investigate the Floquet states of more complicated
quantum systems, such as multiple quantum dots. With
triple quantum dots, for example, it should allow us to
observe non-Abelian Berry phases [34], to explore the
driven Fermi-Hubbard model [35], or to study conse-
quences of the three-level closed-contour interaction
[36]. The experiment could be extended towards measuring
the adiabatic phases of a doubly-driven qubit [30].

We thank Benedikt Kratochwil for critical discussion.
This work was supported by the Swiss National Science
Foundation through the National Center of Competence in
Research (NCCR) Quantum Science and Technology.
A. P. was supported by the National Research
Development and Innovation Office of Hungary within
the Quantum Technology National Excellence Program
(Project No. 2017-1.2.1-NKP-2017-00001) and Grants
No. 105149 and No. 124723, and by the New National
Excellence Program of the Ministry of Human Capacities.
G. B. acknowledges funding from DFG within SFB 767.

[1] S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955).
[2] S. Saito, M. Thorwart, H. Tanaka, M. Ueda, H. Nakano, K.

Semba, and H. Takayanagi, Phys. Rev. Lett. 93, 037001
(2004).

[3] S. Shevchenko, S. Ashhab, and F. Nori, Phys. Rep. 492, 1
(2010).

[4] J. H. Shirley, Phys. Rev. 138, B979 (1965).
[5] D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S.

Huang, J. Majer, S. M. Girvin, and R. J. Schoelkopf, Phys.
Rev. Lett. 94, 123602 (2005).

[6] C. M. Wilson, T. Duty, F. Persson, M. Sandberg, G.
Johansson, and P. Delsing, Phys. Rev. Lett. 98, 257003
(2007).

[7] H. Ribeiro, J. R. Petta, and G. Burkard, Phys. Rev. B 87,
235318 (2013).

[8] F. Forster, G. Petersen, S. Manus, P. Hänggi, D. Schuh, W.
Wegscheider, S. Kohler, and S. Ludwig, Phys. Rev. Lett.
112, 116803 (2014).

[9] C. Deng, F. Shen, S. Ashhab, and A. Lupascu, Phys. Rev. A
94, 032323 (2016).

[10] W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov,
and T. P. Orlando, Science 310, 1653 (2005).

[11] M. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin, and P.
Hakonen, Phys. Rev. Lett. 96, 187002 (2006).

[12] A. Izmalkov, S. H.W. van der Ploeg, S. N. Shevchenko, M.
Grajcar, E. Il’ichev, U. Hübner, A. N. Omelyanchouk, and
H.-G. Meyer, Phys. Rev. Lett. 101, 017003 (2008).

[13] M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L.
Steffen, P. J. Leek, A. Blais, and A. Wallraff, Phys. Rev.
Lett. 102, 243602 (2009).

[14] J. Tuorila, M. Silveri, M. Sillanpää, E. Thuneberg, Y.
Makhlin, and P. Hakonen, Phys. Rev. Lett. 105, 257003
(2010).

[15] G. Oelsner, P. Macha, O. V. Astafiev, E. Il’ichev, M. Grajcar,
U. Hübner, B. I. Ivanov, P. Neilinger, and H.-G. Meyer,
Phys. Rev. Lett. 110, 053602 (2013).

[16] C. Deng, J.-L. Orgiazzi, F. Shen, S. Ashhab, and A.
Lupascu, Phys. Rev. Lett. 115, 133601 (2015).

[17] Z. Chen, Y. Wang, T. Li, L. Tian, Y. Qiu, K. Inomata, F.
Yoshihara, S. Han, F. Nori, J. S. Tsai, and J. Q. You, Phys.
Rev. A 96, 012325 (2017).

[18] J. R. Petta, H. Lu, and A. C. Gossard, Science 327, 669
(2010).

[19] J. Stehlik, Y. Dovzhenko, J. R. Petta, J. R. Johansson, F.
Nori, H. Lu, and A. C. Gossard, Phys. Rev. B 86, 121303
(2012).

[20] F. Forster, M. Mühlbacher, R. Blattmann, D. Schuh, W.
Wegscheider, S. Ludwig, and S. Kohler, Phys. Rev. B 92,
245422 (2015).

[21] M. F. Gonzalez-Zalba, S. N. Shevchenko, S. Barraud, J. R.
Johansson, A. J. Ferguson, F. Nori, and A. C. Betz, Nano
Lett. 16, 1614 (2016).

[22] M. Korkusinski, S. A. Studenikin, G. Aers, G. Granger, A.
Kam, and A. S. Sachrajda, Phys. Rev. Lett. 118, 067701
(2017).

[23] A. Bogan, S. Studenikin, M. Korkusinski, L. Gaudreau, P.
Zawadzki, A. S. Sachrajda, L. Tracy, J. Reno, and T.
Hargett, Phys. Rev. Lett. 120, 207701 (2018).

[24] A. Laucht, R. Kalra, S. Simmons, J. P. Dehollain, J. T.
Muhonen, F. A. Mohiyaddin, S. Freer, F. E. Hudson, K. M.
Itoh, D. N. Jamieson, J. C. McCallum, A. S. Dzurak, and A.
Morello, Nat. Nanotechnol. 12, 61 (2017).

[25] P. Neilinger, S. N. Shevchenko, J. Bogár, M. Rehák, G.
Oelsner, D. S. Karpov, U. Hübner, O. Astafiev, M. Grajcar,
and E. Il’ichev, Phys. Rev. B 94, 094519 (2016).

[26] J. Stehlik, Y.-Y. Liu, C. Eichler, T. R. Hartke, X. Mi, M. J.
Gullans, J. M. Taylor, and J. R. Petta, Phys. Rev. X 6,
041027 (2016).

[27] P. Y. Wen, A. F. Kockum, H. Ian, J. C. Chen, F. Nori, and
I.-C. Hoi, Phys. Rev. Lett. 120, 063603 (2018).

[28] G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans,
and D. D. Awschalom, Science 326, 1520 (2009).

[29] M. Silveri, J. Tuorila, M. Kemppainen, and E. Thuneberg,
Phys. Rev. B 87, 134505 (2013).

[30] S. Kohler, Phys. Rev. Lett. 119, 196802 (2017).
[31] T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin, and

A. Wallraff, Phys. Rev. Lett. 108, 046807 (2012).
[32] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.121.043603 for details
on drive amplitude calibration and on the numerical model.

PHYSICAL REVIEW LETTERS 121, 043603 (2018)

043603-5

https://doi.org/10.1103/PhysRev.100.703
https://doi.org/10.1103/PhysRevLett.93.037001
https://doi.org/10.1103/PhysRevLett.93.037001
https://doi.org/10.1016/j.physrep.2010.03.002
https://doi.org/10.1016/j.physrep.2010.03.002
https://doi.org/10.1103/PhysRev.138.B979
https://doi.org/10.1103/PhysRevLett.94.123602
https://doi.org/10.1103/PhysRevLett.94.123602
https://doi.org/10.1103/PhysRevLett.98.257003
https://doi.org/10.1103/PhysRevLett.98.257003
https://doi.org/10.1103/PhysRevB.87.235318
https://doi.org/10.1103/PhysRevB.87.235318
https://doi.org/10.1103/PhysRevLett.112.116803
https://doi.org/10.1103/PhysRevLett.112.116803
https://doi.org/10.1103/PhysRevA.94.032323
https://doi.org/10.1103/PhysRevA.94.032323
https://doi.org/10.1126/science.1119678
https://doi.org/10.1103/PhysRevLett.96.187002
https://doi.org/10.1103/PhysRevLett.101.017003
https://doi.org/10.1103/PhysRevLett.102.243602
https://doi.org/10.1103/PhysRevLett.102.243602
https://doi.org/10.1103/PhysRevLett.105.257003
https://doi.org/10.1103/PhysRevLett.105.257003
https://doi.org/10.1103/PhysRevLett.110.053602
https://doi.org/10.1103/PhysRevLett.115.133601
https://doi.org/10.1103/PhysRevA.96.012325
https://doi.org/10.1103/PhysRevA.96.012325
https://doi.org/10.1126/science.1183628
https://doi.org/10.1126/science.1183628
https://doi.org/10.1103/PhysRevB.86.121303
https://doi.org/10.1103/PhysRevB.86.121303
https://doi.org/10.1103/PhysRevB.92.245422
https://doi.org/10.1103/PhysRevB.92.245422
https://doi.org/10.1021/acs.nanolett.5b04356
https://doi.org/10.1021/acs.nanolett.5b04356
https://doi.org/10.1103/PhysRevLett.118.067701
https://doi.org/10.1103/PhysRevLett.118.067701
https://doi.org/10.1103/PhysRevLett.120.207701
https://doi.org/10.1038/nnano.2016.178
https://doi.org/10.1103/PhysRevB.94.094519
https://doi.org/10.1103/PhysRevX.6.041027
https://doi.org/10.1103/PhysRevX.6.041027
https://doi.org/10.1103/PhysRevLett.120.063603
https://doi.org/10.1126/science.1181193
https://doi.org/10.1103/PhysRevB.87.134505
https://doi.org/10.1103/PhysRevLett.119.196802
https://doi.org/10.1103/PhysRevLett.108.046807
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.043603
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.043603
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.043603
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.043603
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.043603
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.043603
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.043603


[33] J. Romhányi, G. Burkard, and A. Pályi, Phys. Rev. B 92,
054422 (2015).

[34] A. A. Abdumalikov Jr., J. M. Fink, K. Juliusson, M. Pechal,
S. Berger, A. Wallraff, and S. Filipp, Nature (London) 496,
482 (2013).

[35] T. Hensgens, T. Fujita, L. Janssen, X. Li, C. J. Van Diepen,
C. Reichl, W. Wegscheider, S. Das Sarma, and L. M. K.
Vandersypen, Nature (London) 548, 70 (2017).

[36] A. Barfuss, J. Klbl, L. Thiel, J. Teissier, M. Kasperczyk, and
P. Maletinsky, arXiv:1802.04824.

PHYSICAL REVIEW LETTERS 121, 043603 (2018)

043603-6

https://doi.org/10.1103/PhysRevB.92.054422
https://doi.org/10.1103/PhysRevB.92.054422
https://doi.org/10.1038/nature12010
https://doi.org/10.1038/nature12010
https://doi.org/10.1038/nature23022
http://arXiv.org/abs/1802.04824

