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Weak localization of magnons in chiral magnets
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We report on the impact of the Dzyaloshinskii-Moriya interaction on the coherent backscattering of spin
waves in a disordered magnetic material. This interaction breaks the inversion symmetry of the spin-wave
dispersion relation, such that ωk = ω2KI−k �= ω−k, where KI is related to the Dzyaloshinskii-Moriya vectors.
The nonequivalence of k and −k also means that time-reversal symmetry is broken. As a result of numerical
investigations we find that the backscattering peak of a wave packet with initial wave vector k0 shifts from −k0 to
2KI − k0, such that the backscattering wave vector and the initial wave vector are in general no longer antiparallel.
The shifted coherence condition is explained by a diagrammatic approach and opens up an avenue to measure
sign and magnitude of the Dzyaloshinskii-Moriya interaction in weakly disordered chiral magnets. Surprisingly,
although time-reversal symmetry is broken, our system shows coherent backscattering as a manifestation of weak
localization, which is due to the fact that reciprocity is still preserved.
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I. INTRODUCTION

Spin waves or magnons, low-energy excitations of the
magnetic ground state of a solid, have been studied extensively
since their first proposal [1,2]. In recent years, they have drawn
much attention in connection with new effects such as the spin
Seebeck effect [3], room-temperature Bose-Einstein condensa-
tion [4], magnonic supercurrents [5], or magnonic topological
insulators [6]. Furthermore, magnonic transport is a promising
candidate for future data-processing devices [7], because—
in contrast to conventional electronic- or spintronic-based
technology—magnons do not suffer from Joule heating [8].

Interesting properties arise in chiral magnets, where
the antisymmetric exchange interaction—the Dzyaloshinskii-
Moriya (DM) interaction [9,10]—induces, for example, non-
collinear ground states [11], skyrmions [12], Berry phase
materials [6], and a noninversion symmetric dispersion of
the magnons [13–15]. The DM interaction originates from
spin-orbit interactions and is, hence, naturally linked to the
upcoming field of spin orbitronics [16–21]. In this context it is
important to examine the role of defects, because, on the one
hand, real magnetic materials inevitably contain some amount
of disorder whose impact on device functionality needs to be
evaluated. On the other hand, disorder also entails unique ef-
fects of its own that may be harnessed for specific applications.

Most prominent in this context is Anderson localization
[22] in strongly disordered materials, where coherent transport
of waves comes to a complete stop. But already moderately
disordered materials can show interesting weak-localization
phenomena, for example, the well-known coherent backscat-
tering (CBS) effect [23]. When a monochromatic wave is
launched with wave vector k0 into the disordered system, CBS
can be observed as an enhanced average intensity above the
incoherent background, usually around the wave vector −k0,
and thus provides a distinctive measure of phase coherence
surviving the ensemble average.

Recently, we have investigated localization effects in one-
and two-dimensional magnetic model systems [24]. It is the
purpose of this work to study CBS as a precursor for Anderson

localization in chiral magnetic systems, where the presence
of the DM interaction leads to a dispersion relation ωk with
broken inversion symmetry, i.e., ωk = ω2KI−k �= ω−k (KI is
determined by the DM vectors and is explained below). In
such a system time-reversal symmetry of the spin waves is
broken (since k and −k are not equivalent), and, in addition,
−k0 is in general no longer a possible scattering vector under
elastic scattering, and one should expect the CBS effect to be
weakened, if not entirely suppressed. Surprisingly, we find by
numerical investigations of an atomistic spin model that CBS
survives in such a system with its peak position shifted to 2KI −
k0. Remarkably, the height of the CBS peak is not affected at
all, in contrast to other model systems [25] where a shifted
coherence condition is generally accompanied by a loss of
contrast [25]. We will show below that this observation can be
explained within a diagrammatic Green’s function approach.

II. SPIN-WAVE TRANSPORT IN A CHIRAL
FERROMAGNET

We consider a classical atomistic spin model [26], where
normalized magnetic moments Sl = μl/μS, l = 1, . . . ,N ,
are placed on regular lattice sites rl , with μl the magnetic
moment of the atom at position rl and μS its absolute value. In
d dimensions each spin is coupled to its 2d nearest neighbors.
The interaction of nearest neighbors Sn and Sm splits into
the isotropic Heisenberg exchange interaction with exchange
constant J > 0 and the DM interaction, quantified by the DM
vectors Dnm and originating from spin-orbit coupling [27]. In
addition we take into account an easy-axis anisotropy in the
x direction with anisotropy constant dx > 0. Finally, we also
include an external, random magnetic field B(rl) = Bl that
models local disorder. The Hamiltonian of such a system is

H = −J

2

∑
〈n,m〉

Sn · Sm − 1

2

∑
〈n,m〉

Dnm · (Sn × Sm)

−
∑

n

dx

(
Sn

x

)2 − μS

∑
n

Bn · Sn. (1)
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The spin dynamics in the limit of vanishing damping is
governed by the Landau-Lifshitz equation

∂Sl

∂t
= − γ

μS
Sl × Hl , Hl = −∂H

∂Sl
, (2)

describing the precession of each spin Sl in its effective
magnetic field Hl , where γ is the gyromagnetic ratio. It is
natural to use tJ = μS/γ J and BJ = J/μS as units for time
and magnetic field, respectively.

In the case of weak DM interaction, |Dnm| < 0.1J , the
ground state of the clean system (Bl = 0) is a ferromagnet
parallel to the x axis. Collective excitations of this ferro-
magnetic ground state, called magnons or spin waves, can be
described by a complex spin-wave amplitude S l = Sl

y − iSl
z in

real space. In the context of this work, it is more advantageous
to describe spin waves via their momentum-space amplitude
Sk = 1√

N

∑
n e−ik·rnSn. The dispersion of these spin waves in

the linearized limit of small deviations from the clean ground
state reads [13]

ωk = 1

tJ

{
dx

J
+ 2

d∑
p=1

[
1 − cos(k · ap) + D

p
x

J
sin(k · ap)

]}
.

(3)

The sum runs over the d lattice vectors ap, and Dp denotes the
DM vector Dnm between two spins Sn and Sm that are separated
by ap = rm − rn. Because the ground state is aligned with the
easy x axis, the dispersion only depends on the x component
of the DM vectors. Importantly, the DM interaction breaks
the inversion symmetry of the dispersion, ωk �= ω−k. The sine
term in the dispersion shifts the lines of constant frequency,
resulting in a dispersion

ωk = ω2KI−k (4)

that is instead symmetric with respect to a shifted center of
inversion KI �= 0 determined by

KI · ap = − arctan

(
D

p
x

J

)
, p = 1, . . . ,d. (5)

Even in a weakly disordered magnetic material, plane waves
are no longer eigenmodes and will be scattered elastically by
static, quenched disorder into other accessible modes. In an
inversion-symmetric setting, the CBS signal of a plane wave
launched with wave vector k0 is found at −k0 [23]. In the case
of a noninversion symmetric dispersion the initial wave cannot
be scattered into the −k0 state, leading to the question whether
CBS can survive in a chiral magnet at all.

III. NUMERICAL INVESTIGATIONS OF CBS

As a model for thin magnetic films we choose d = 2 and
a square lattice with lattice constant a = |ap|, and perform
numerical simulations of spin waves by integrating Eq. (2)
using the classical Runge-Kutta method. The initial condition
is a quasimonochromatic wave packet,

S l(t = 0) = A exp
[
ik0 · rl − (rl − r0)2/2σ 2

0

]
, (6)

with amplitude A and width σ0 around the initial position r0.
Throughout the paper we use A = 0.01, σ0 = 150a together

with the initial wave vector k0 = (0.24, − 0.48)π/a, except
where noted otherwise.

For concreteness, we consider disorder induced by a longi-
tudinal field Bj = (B,0,0) that tries to pin the ferromagnetic
orientation at randomly chosen lattice sites rj , with Bl =
0 elsewhere. The defect sites are static, uncorrelated, and
uniformly distributed with density �. In the following, all
simulations use � = 0.1 and B = 5BJ , followed by an ensem-
ble average 〈· · · 〉 over 500 defect configurations. This defect
model has the advantage of acting on magnons as a disordered
potential in the same manner as a space-dependent, disordered
potential in the Schrödinger equation does; it is simple, its
effects are well controllable, and requires less computational
effort for the numerics than other models. However, our results
in this work are not restricted to the aforementioned defect
model, which we verified by using alternative models and
obtaining the same results (except for different time scales
as the scattering time). An example for these is to locally
reduce the magnetic moment at randomly chosen lattice sites,
which models impurity atoms in the magnet, and is closer to
an experimental realization than the random-field model.

In a first step we choose D
p
x = −0.08J and D

p
y = D

p
z = 0.

Following the time evolution, we observe that the average
spin-wave intensity in momentum space, Ik = 〈|Sk|2〉, that is
initially concentrated at k0 redistributes over the other accessi-
ble modes k on the energy shell ωk = ωk0 , slightly broadened
by disorder. Phase-incoherent diffusion alone would result in a
homogeneous distribution, reached on a rather fast time scale
given by the transport time [28]. Distinctive features above
this incoherent background are signatures of phase-coherent
processes [24,29]. After a few transport times, the spin-wave
intensity in k space can thus be written Ik(t) = I ic

k + I c
k(t),

where I ic
k denotes the incoherent, stationary contribution and

I c
k(t) is the part that originates from coherent processes and

evolves on longer time scales.
Figure 1(a) shows Ik(t) at a time t = 20tJ . The incoherent

background I ic
k maps out the disorder-broadened energy shell.

A clear backscattering peak is observable roughly opposite the
initial wave vector k0. Interestingly, the CBS peak position
differs from the exact backscattering direction −k0 that is
well known from the inversion-symmetric setting [23]. In
the present setting, the backscattering peak appears at the
conjugate of k0 with respect to the center of inversion KI,
namely, at kCBS = 2KI − k0. This is remarkable since the
backscattering wave vector is not antiparallel to the initial wave
vector anymore, but clearly compatible with the symmetry,
Eq. (4), of the dispersion relation.

While the DM interaction is apparently compatible with
CBS at early times, although with a shifted peak position, it
could very well induce a slight dephasing on longer times
scales and therefore result in a faster decay of the CBS
peak contrast. We investigate this question by recording the
time evolution of the CBS contrast C(t) = I c

kCBS
(t)/I ic

kCBS
and

comparing the cases with and without DM interaction under
otherwise identical conditions. Even without any additional
dephasing processes, the CBS contrast decreases over time
because the diffusive CBS interference kernel, whose k-space
resolution increases over time, is convolved by the finite-width
wave packet, Eq. (6), leading to an expected decay as C(t) =
(1 + Dt/2σ 2

0 )−1, where D is the spin-wave diffusion constant
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FIG. 1. CBS of spin waves in chiral magnets with DM interaction. (a) Ensemble-averaged spin-wave intensity in k space, Ik = 〈|Sk|2〉 at
time t = 20tJ . The initial wave packet [Eq. (6)] is centered at k0. A CBS peak rises at kCBS �= −k0 over the incoherent background. Both the
center of the Brillouin zone � = (0,0) and the center of inversion KI are plotted. The CBS peak position is the conjugate of k0 with respect to
KI, namely, kCBS − KI = KI − k0. (b) Time evolution of the CBS contrast with and without DM interaction. The dashed curve is the expected
decay C(t) = (1 + Dt/2σ 2

0 )−1 with spin-wave diffusion constant D ≈ 19 a2/tJ extracted from the real-space diffusive spread of the wave
packet. Within the noise of the data, there is no observable difference between the cases with and without DM interaction.

[24,29]. The numerical results, shown in Fig. 1(b), indicate
that within the noise of the data the DM interaction does not
accelerate this decay significantly and thus does not act as an
additional source of dephasing.

According to linear spin-wave theory within the present
geometry only the x component of the DM vectors influences
the dispersion relation, Eq. (4). We have also confirmed this
prediction numerically by simulating a system with D

p
y =

D
p
z �= 0 and D

p
x = 0. The result is then the same as in the

case with Dp = 0. Because linear spin-wave theory can only
be applied for small amplitudes, we have also tested a larger
amplitude, A = 0.2, and compared again the two cases, Dp =
0 and D

p
x = −0.08J . The decay of the CBS contrast is in both

cases much faster than in the linear regime, as a consequence of
the nonlinearities in the equations of motion that arise for larger
amplitudes [24]. Still, however, the system with DM interaction
shows a decay of the CBS peak just as fast as the system without
DM interaction. We infer from the numerical evidence that the
DM interaction does not lower the CBS contrast nor does it
lead to faster dephasing, it simply shifts the backscattering
wave vector to a different position.

IV. DIAGRAMMATIC DESCRIPTION OF CBS IN THE
LINEAR REGIME

Our numerical findings in the linear regime can be readily
understood via a diagrammatic Green’s function approach.
The argument relies, besides the symmetry Eq. (4) of the
dispersion, on the fact that a pointlike pinning field results in
a completely isotropic scattering intensity, noted Ukk′ = U0.
As a consequence, the ensemble-averaged, single-magnon
Green’s function takes the form Gk(ω) = [ω − ωk − 	(ω)]−1,
diagrammatically represented by Fig. 2(a), with a self-energy
	(ω) = U0

∑
q Gq(ω) + · · · that has no momentum depen-

dence on its own. Thus, the Green’s function inherits the gen-
eralized inversion symmetry (4) from the dispersion, namely,

Gk(ω) = G2KI−k(ω). (7)

We proceed to show that the CBS peak height at
kCBS = 2KI − k0 equals the incoherent background
contribution. The stationary background k-space distribution
is described by an intensity propagation kernel that can be
represented by the ladder diagram of Fig. 2(b), depicting
a retarded and an advanced amplitude copropagating along
the same impurities. Its nth − order term describes the
scattering by n impurities, connected by n − 1 intensity
Green’s functions at intermediate momenta qj :

Ln(k0,k,ω) = Un
0

n−1∏
j=1

∑
qj

Gqj
(ω)G∗

qj
(ω). (8)

The corresponding CBS contribution arises from the
interference of two amplitudes counterpropagating along
the same impurities, but in opposite order, and can be
represented by the maximally crossed diagram of Fig. 2(c). Its
nth − order term reads, by virtue of momentum conservation
at each average impurity scattering event,

Cn(k0,k,ω) = Un
0

n−1∏
j=1

∑
qj

Gqj
(ω)G∗

k0+k−qj
(ω). (9)

FIG. 2. (a) Diagrammatic representation for the ensemble-
averaged Green’s function, Eq. (7). (b) Incoherent background inten-
sity kernel, a sum of ladder diagrams [Eq. (8)]. (c) CBS contribution
given by the sum of maximally crossed diagrams [Eq. (9)]. Upon
choosing k + k0 = 2KI, this contribution equals the background of
(b) and thus yields perfect interference contrast at the shifted position
kCBS = 2KI − k0.
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At final momentum k = 2KI − k0, the generalized inversion
symmetry (7) then guarantees that the crossed contribution
(9) equals the background contribution (8), order by order for
all n � 2 beyond the single scattering term that is irrelevant at
longer times. In the end, perfect contrast is achieved for the en-
tire CBS signal at the shifted peak position kCBS = 2KI − k0.

V. DISCUSSION AND SUMMARY

A shift of the backscattering peak is known from transport
of light in turbid media in the presence of magneto-optical
Faraday rotation [25]. However, the situation in Faraday
experiments differs from the magnetic system studied here
in that the shift of the CBS peak is always accompanied by
a loss of contrast. This dephasing is caused by a random
shift of the transverse photon polarization at every scatter-
ing event, eventually breaking the reciprocity symmetry that
would otherwise preserve the CBS contrast. In our system
reciprocity remains intact since the spin-wave polarization is
not constrained by transversality and remains unchanged under
scattering by scalar impurities.

The DM interaction originates from spin-orbit coupling of
localized or itinerant electrons [10,30], which calls for a com-
parison to electronic transport where spin-orbit coupling has
a great impact on weak localization [31]. For electrons strong
spin-orbit coupling leads to so-called weak antilocalization
[32], where the amplitudes interfering for CBS collect a phase
difference of 2π . Because electrons are spin- 1

2 particles,
this phase difference implies a sign change that results in
destructive interference such that the scattered intensity
is lower in the backscattering direction. The ferromagnetic
magnons considered in this work do not own a polarizationlike
degree of freedom as electrons own a spin, such that they do not
collect such a 2π phase difference. In other magnetic materials
the situation could be different; for example, antiferromagnets
have two magnon branches with opposite polarizations, but
obviously even in such a case a 2π phase difference does not
affect CBS since for bosonic excitations this phase difference
implies constructive interference, so that no antilocalization
would be expected from the start.

In an experimental setup, magnetic damping effects play an
important role, which we neglected so far. However, Gilbert
damping affects all modes uniformly, such that the overall
intensity is lowered, but the contrast is preserved. This was
already shown in [24] for ferromagnetic spin waves without

DM interaction and still holds true here with DM interaction,
as we have confirmed in additional simulations, which are not
shown here.

In conclusion we have investigated coherent backscattering
in a chiral magnetic system with point defects where the
dispersion exhibits a broken inversion symmetry that shifts the
CBS peak but preserves its contrast. Our numerical findings can
be understood in terms of a diagrammatic approach using the
shifted symmetry of the dispersion, ωk = ω2KI−k. The main
message is that DM interaction shifts the CBS peak away
from the normal −k0 direction without altering the contrast
or the decay time. It is surprising to find weak localization
in a system with broken time-reversal symmetry. However, it
is well known from optics that time-reversal symmetry is a
sufficient condition for weak localization and not a necessary
one. Instead, weak localization requires that the reciprocity
theorem holds [33], and in the case of the spin-wave system
studied here this reciprocity is given by the equivalence of k and
2KI − k, such that the system still shows weak localization.

Since the shift of the CBS peak is directly proportional
to the DM vectors by virtue of Eq. (5), measuring the CBS
position provides a way to determine the strength as well as
the sign of the DM interaction. For this, a few alternative
methods are available, like Brillouin light scattering [34], spin
polarized scanning tunneling microscopy [35], propagating
spin-wave spectroscopy [36], and domain-wall motion [37,38].
However, especially for amorphous materials like CoFeB,
different methods may lead to different results [39] and a clear
determination of the strength and sign of the DM interaction
is still a matter of research. The CBS effect offers yet another
method that may help to clarify this issue.
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