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Designing a cavity-mediated quantum CPHASE gate between NV spin qubits in diamond
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While long spin coherence times and efficient single-qubit quantum control have been implemented
successfully in nitrogen-vacancy (NV) centers in diamond, the controlled coupling of remote NV spin qubits
remains challenging. Here, we propose and analyze a controlled-phase (CPHASE) gate for the spins of two
NV centers embedded in a common optical cavity and driven by two off-resonant lasers. In combination with
previously demonstrated single-qubit gates, CPHASE allows for arbitrary quantum computations. The coupling of
the NV spin to the cavity mode is based upon Raman transitions via the NV excited states and can be controlled
with the laser intensities and relative phase. We find characteristic laser frequencies at which the scattering
amplitude of a laser photon into the cavity mode is strongly dependent on the NV center spin. A scattered photon
can be reabsorbed by another selectively driven NV center and can generate a conditional phase (CPHASE) gate.
Gate times around 200 ns are within reach, nearly two orders of magnitude shorter than typical NV spin coherence
times of around 10 μs. The separation between the two interacting NV centers is limited only by the extension
of the cavity.
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I. INTRODUCTION

Nitrogen-vacancy (NV) centers in diamond have emerged
as powerful and versatile quantum systems with applications as
sources of nonclassical light, as high-precision sensors, and as
qubits for quantum information technology [1]. The electron
spin of the NV center unites several essential properties re-
quired for quantum information processing (QIP). Its quantum
coherence is preserved over long times, even at elevated
temperatures, and it allows for optical preparation and readout,
as well as quantum gate operations via radio-frequency (rf)
excitation, at the level of a single-NV center. One of the
remaining challenges on the way towards diamond-based QIP
is the establishment of a scalable architecture allowing for the
coherent coupling between NV spins. A controlled coupling
is required to realize a two-qubit gate such as a controlled-
phase (CPHASE) gate or a controlled-NOT (CNOT) gate which
forms a universal set of quantum gates in combination with
single-qubit gates. Controlled operations between the NV
electron spin and a nearby nuclear spin have been performed
using a combination of rf and microwave pulses [2], whereas
entanglement generation can be achieved between the electron
spins of two nearby NV centers on the basis of static dipolar
interactions [3] and between NV center spins separated by
several meters [4] and subsequently over more than one
kilometer [5] via a nondeterministic coincidence measurement
protocol. Here, we propose and theoretically analyze a fully
controllable and switchable coupling between the spins of
distant NV centers coupled to the same mode of a surrounding
optical cavity (Fig. 1).

A variety of optical cavity systems for cavity quantum
electrodynamics (QED) coupled to defect centers in diamond
exists. The advantage of whispering gallery modes of a silica
microsphere is their ultrahigh quality factors [6] Q > 108,
whereas photonic crystals fabricated within the diamond
crystal [7–9] or on top [10] allow for the embedding of
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FIG. 1. Two nitrogen-vacancy centers in diamond located in
an optical cavity and coupled to a common cavity mode with
frequency ωC (shown schematically). The NV centers are excited by
off-resonant laser fields (frequencies ωLi). Spin-dependent scattering
of laser photons off the NV center into the cavity mode and back
allows for a coupling of the two NV spins which produces the
universal CPHASE quantum gate.

the NV centers directly into the optical cavity structure
but comprise (so far) somewhat lower Q factors. However,
photonic crystal cavities in diamond with Q > 105 have
recently been fabricated [11]. The architecture proposed here
can, in principle, be used with any realization of NV-cavity
coupling, provided sufficiently high Q and dipole matrix
element of the ground-state (GS)-excited-state (ES) transition
in the cavity field.

The basic working principle of the quantum gate operation
proposed here is as follows. We restrict ourselves to two
of the three GS spin-triplet states, ms = 0 and ms = −1,
which will serve as the qubit basis in our scheme [Fig. 2(a)].
Near the GS level crossing around a magnetic field of about
B0 ∼ 1000 G, these two states are nearly degenerate and are
separated by several gigahertz from the third (ms = +1) state.
Off-resonant coupling of the GS-ES transition to the cavity
mode combined with off-resonant laser excitation can be used
to generate Raman-type two-photon transitions starting and
ending in the GS, accompanied by the scattering of a laser
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FIG. 2. (a) GS and ES energy levels as a function of the magnetic
field B applied along the NV axis. In the ES, only one orbital triplet
is shown. The effect of the spin-spin interactions �1,2 is shown
schematically by the dotted lines. (b) Simplified energy level scheme.
Here, |0〉g and |−1〉g denote orbital ground-state levels with spin
projections ms = 0 and ms = −1. Similarly, |0〉e and |−1〉e stand
for the corresponding excited-state levels. The scattering of a laser
photon (blue) into a cavity photon (red) via the intermediate excitation
of the NV center is suppressed in the ms = −1 state by destructive
quantum interference when δL = � + δC/2.

photon into the cavity mode or vice versa [Fig. 2(b)]. The
off-resonant coupling is the main distinguishing feature from
resonant schemes which are limited by spontaneous emission
[12]. The proposed two-qubit coupling mechanism relies on a
spin-dependent scattering of laser photons into the cavity and
back, which is possible because of the difference in zero-field
splittings in the GS and ES. More specifically, the ms = 0
and ms = −1 states in the ES are not degenerate at B0, which
leads to unequal scattering matrix elements for the ms = 0
and ms = −1 states. To produce an entangling quantum gate
between two NV spin qubits, we find it to be sufficient if the
laser-cavity photon scattering rate is different for the two spin
states. If two NV centers are simultaneously coupling in this
way to the same cavity mode, they will exchange a virtual
cavity photon, thus generating a conditional phase shift; once
the accumulated relative phase amounts to π , a CPHASE gate
on the two NV spin qubits has been achieved.

In contrast to cavity-mediated spin interactions proposed
for semiconductor quantum dots [13] where the spin-orbit
splitting in the valence band can be used for spin-selective
excitation with polarized radiation and Raman-type spin-
flip transitions, we propose here to use another mechanism
based on the different zero-field splittings of the NV ground
and excited states to perform phase and controlled-phase
operations. Earlier work on cavity-mediated quantum gates for
defect qubits in diamond makes use of spectral hole burning
[14] or a series of � systems [15]. The latter requires a
sequence of at least three two-color pulses, while our scheme
manages on just one single-color laser pulse for a CPHASE gate.
A model for three NV centers coupled to a whispering gallery
mode in a silica microsphere cavity using polarized excitation
has been studied with the goal of achieving a three-qubit
CPHASE gate [16]. Our scheme relies on spectral selectivity and
thus does not require polarized excitation. The effect studied
here produces an elementary, universal two-qubit CPHASE gate.

II. SINGLE NV CENTER IN A CAVITY

The NV center in its GS and ES spin triplet will be described
by the Hamiltonian

HNV = geμBBSz +
(

Eg + DesS
2
z g∗

Le−itωL

gLeitωL DgsS
2
z

)
, (1)

where the first term describes the Zeeman splitting of the spin
S = (Sx,Sy,Sz) with eigenvalues ms = −1,0,1 in a magnetic
field applied along the NV (z) axis with identical electronic
Landé g factors ge for the GS and ES (μB denotes the
Bohr magneton). See Appendix A for a discussion of a
possible magnetic-field misalignment. The second term in
Eq. (1) includes the GS-ES energy gap Eg = 1.945 eV and the
distinct GS and ES zero-field spin splittings Dgs = 2.88 GHz
and Des = 1.44 GHz. The off-diagonal terms describe laser
excitation at a frequency ωL, with the spin-independent dipole
matrix element gL. We assume that the ES orbital-state
energies are strongly split by the strain in the diamond crystal,
and we can concentrate on one of the two orbital ES triplets.
The prerequisite for this to be a reasonable approximation
is that the strain splitting exceeds the ES spin-orbit coupling
λ = 5.3 GHz. Strain splittings in excess of this value and up to
20 GHz have been observed [17,18]. Taking only one orbital
ES into account, we can view the Hamiltonian HNV in Eq. (1)
as a 6 × 6 matrix consisting of four 3 × 3 blocks. The Zeeman
splitting described by the first term in Eq. (1) is independent of
the orbital state. Using Pauli matrices τi to describe the GS-ES
orbital state, i.e., τz = −1 for the GS and τz = +1 for the ES,
and working in a rotating frame with the frequency ωL, we can
write

HNV = gμBBSz + DS2
z − �

2
S2

z τz + δL

2
τz + gLτ− + g∗

Lτ+,

(2)

where D = (Dgs + Des)/2 = 2.16 GHz and � = Dgs −
Des = 1.44 GHz denote the mean and difference between the
GS and ES zero-field splittings, τ± = (τx ± iτy)/2 describe
transitions between the GS and ES, and δL = Eg − ωL is
the laser detuning. We have so far neglected the spin-spin
couplings in the ES but will discuss their effect further below.

We now consider a single NV center coupled to a near-
resonant mode of a surrounding optical cavity which we
describe, using the rotating-wave approximation, with the
following Hamiltonian:

H = HNV + δCa†a + gC(τ+a + τ−a†), (3)

where δC = ωC − ωL denotes the detuning of the cavity
mode from the laser excitation frequency and a† (a) creates
(annihilates) a cavity photon. The dipole matrix element gC

of the cavity field can be made real valued by an appropriate
phase convention in the excited state. However, gL cannot, in
general, be made real valued at the same time; its phase φ

depends on the phase of the laser field.
The magnetic field is chosen at a working point around

the GS level crossing B0 = Dgs/geμB , where we focus our
description on the nearly degenerate ms = −1 and ms = 0
levels (the ms = +1 level will be included further below).
This approximation is justified because the mS = +1 level is
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split off by the zero-field splitting, which is much larger than
the spin-spin splittings coupling it to the other two spin levels.
We describe here the situation of an initially empty cavity,
which subsequently holds at most one virtual photon. Starting
from an empty cavity and assuming sufficiently large detunings
δC � gC and δL � gL of the cavity and laser frequencies, we
can further reduce the relevant states to |G0〉 = |G,n= 0〉,
|G1〉 = |G,n = 1〉, and |E0〉 = |E,n = 0〉, where G and E

denote the GS and ES, respectively, and n denotes the cavity
photon number. Including the two remaining spin projections,
ms = −1,0 this leaves us with six states for a single NV and
the cavity.

The combined action of the coupling to the laser and cavity
fields can scatter a photon from the laser into the cavity
or vice versa via an intermediate virtual ES. Starting from
the Hamiltonian (3) and assuming that the electric dipole
couplings gL,C are much smaller than the detuning from
the one-photon resonances, we can derive an effective GS
Hamiltonian for such second-order processes (see below),

H̃ = δCa†a + δB|0〉〈0|
+

∑
ms=0,−1

|ms〉〈ms |
(
gms

a + g∗
ms

a†), (4)

where |ms〉〈ms | denotes the projection operator on the spin
state with projection ms ,

gms
= −gLgC

δL − δC/2 + ms�

(δL + ms�)(δL − δC + ms�)
(5)

is the effective coupling strength, and δB = B − Dgs/geμB

is the magnetic-field detuning from the GS level crossing.
The last term in Eq. (4) describes spin-dependent scattering
processes at the NV center of a cavity photon into a laser
photon or vice versa. Generally, we find that in order to
construct a CPHASE gate, it is sufficient if g0 �= g−1 (see also
below). A possible extreme case where g0 = 0 is described
in Appendix B. In Eq. (4), we have suppressed optical Stark
and Lamb shifts of order g2

L and g2
C , which will not play an

essential role in what follows.
We now give a more detailed derivation of Eqs. (4)

and (5), starting from Eq. (3). To describe the combined action
of the coupling between the NV center and the laser and cavity
fields we write Eq. (3) as H = H0 + V with the perturbation
Hamiltonian

V = gLτ− + g∗
Lτ+ + gC(τ+a + τ−a†) (6)

and eliminate the ES in order to derive an effective interaction
using the Schrieffer-Wolff transformation [19,20],

Heff = eSHe−S = H0 + 1
2 [S,V ] + · · · , (7)

generated by the anti-Hermitian operator

S = −gL(δL − � + �|0〉〈0|)−1|G0〉〈E0|
− gC(δL − δC − � + �|0〉〈0|)−1|G1〉〈E0| − H.c., (8)

such that [S,H0] = −V , and we obtain the effective GS
interaction Hamiltonian

H̃ = H0 + 1
2 [S,V ]

∣∣
GS, (9)

which directly leads to Eqs. (4) and (5).

III. TWO NV CENTERS COUPLED TO A COMMON
CAVITY MODE

The scattering of a photon from the laser to the cavity
field and vice versa, conditional on the spin (qubit) state of an
NV center, can be used to construct a cavity-photon-mediated
quantum gate between two NV spin qubits coupled to a
common cavity mode. Starting from two NV centers (i = 1,2),
each coupled to the same cavity mode as described above
(Fig. 1), we derive the effective coupling Hamiltonian for two
NV spins by eliminating the virtual cavity photon.

It is important to recognize that the cavity-mediated
interaction between the NV centers is a fourth-order process
in the coupling strengths which prevents us from using the
second-order Hamiltonian equation (4) directly to calculate
the coupling between the NV center spins. In order to system-
atically account for all contributions up to the fourth order, we
perform a fourth-order Schrieffer-Wolff transformation of the
Hamiltonian describing two NV centers coupled to a common
cavity mode,

H = H0 + Hint,

H0 = δCa†a +
∑
i=1,2

[
1 + τ i

z

2
(δLi + �Szi) + δBiSzi

]
,

Hint =
∑
i=1,2

(gLiτ
i
− + gCia

†τ i
− + H.c.), (10)

where we have restricted ourselves to the Sz = 0 and Sz = −1
states near the GS level crossing where S2

z = −Sz. As this
Hamiltonian commutes with the operators Sz1 and Sz2 of the
NV centers, we can treat it separately for each of the four
ground-state spin configurations, which represent the logical
basis for our two-qubit system. For each spin configuration,
we consider the five states |GG0〉, |GG1〉, |EG0〉, |GE0〉,
and |EE0〉, where |X1X2n〉 denotes the state with NV
i (i = 1,2) in the ground (Xi = G) or excited (Xi = E)
state, while the cavity mode is occupied with n photons.
In analogy with the previous section we are interested only
in the effective interaction between the NV centers and the
cavity in the NV ground state. To derive an effective spin
Hamiltonian for the NV ground states, we decouple the two
states |GG0〉 and |GG1〉 from the remaining three states
by performing a Schrieffer-Wolff transformation [19,20]. In
analogy with Eq. (7) and expanding to fourth order, we
have

Heff = eSHe−S = H + [S,H ] + 1
2 [S,[S,H ]]

+ 1
6 [S,[S,[S,H ]]] + 1

24 [S,[S,[S,[S,H ]]]]. (11)

We then expand the matrix S as a series S = S1 + S2 +
S3 + S4 + · · · , where each term Si is derived using Eq. (11)
under the requirement that there is no coupling between
the |GGn〉 (n = 0,1) subspace and the excited states of the
NV centers up to ith order in the coupling constants gL

and gC . In the sum (11), we then calculate all the residual
terms and obtain the effective Hamiltonian in the basis
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|GG0〉, |GG1〉,

Heff =
(

WGG0 + |g̃|2/δC g̃∗

g̃ WGG1 − |g̃|2/δC

)
. (12)

Introducing the phases φi of the lasers as gLi = |gLi |eiφi , we
find for the eigenenergies of this effective Hamiltonian

WGG0 =
∑
i=1,2

[
δBimsi − |gLi |2

δLi + �msi

+ |gLi |4
(δLi + �msi)3

− |gLi |2|gCi |2
(δLi + �msi)2δC

]

− 2|gL1gL2|gC1gC2 cos (φ1 − φ2)

(δL1 + �ms1)(δL2 + �ms2)δC

(13)

and WGG1 ≈ δc + ∑
i=1,2 δBimsi , whereas for the off-

diagonal matrix element we obtain

g̃ = −
∑
i=1,2

eiφi gCi |gLi |(δLi + �msi − δC/2)

(δLi + �msi)(δLi + �msi − δC)
. (14)

We present WGG0 only up to the fourth-order corrections, as
only these terms will be important for the following discussion.
We have also calculated WGG0 using conventional perturbation
theory, rather than a Schrieffer-Wolff transformation, with
identical results (see Appendix C). The expression for WGG0 in
Eq. (13) consists of two parts, where each term of the first part
depends on the spin state of only one NV center and thus leads
only to single-qubit dynamics. Entanglement can be generated
by the second part (last term) of Eq. (13),

εms1,ms2 = −2|gL1gL2|gC1gC2 cos (φ1 − φ2)

(δL1 + �ms1)(δL2 + �ms2)δC

, (15)

as it depends on the spin state of both NV centers. We note that
these energy shifts consist of many fourth-order contributions.
While some of these terms have the form ∼gm1gm2/δC ,
the particular structure of the second-order scattering matrix
element (5) does not appear after the summation of all terms.

Calculating this term for each spin configuration
|ms1,ms2〉 = |−1,−1〉,|−1,0〉,|0,−1〉,|0,0〉 leaves us with the
diagonal spin Hamiltonian

H2q =

⎛
⎜⎝

ε−1,−1 0 0 0
0 ε−1,0 0 0
0 0 ε0,−1 0
0 0 0 ε0,0

⎞
⎟⎠. (16)

This Hamiltonian generates a quantum gate exp(−itH2q)
which up to single-qubit operations is the CPHASE gate
U = diag(1,1,1,eiγ ) with

γ = 2|gL1gL2|gC1gC2�
2 cos(φ1 − φ2)

δCδL1δL2(δL1 − �)(δL2 − �)
t. (17)

Equation (17) proves that the interaction of two NVs through
the cavity can give rise to an entangling gate. This gate can
be controlled both by the amplitude |gLi | and phase φi of the
lasers and by the detuning of the laser frequency from the
cavity mode δLi .

The results of this section can be considered only a
qualitative proof of the entangling gate. They are valid as
long as the perturbation analysis works, which implies that

the couplings gLi,gCi are much smaller than the detunings
δC,δLi . Moreover, to make predictions one should take into
account the spin-spin interaction in the excited state of the
NVs, which will be done in the next section in the description
of our numerical results.

IV. SPIN-SPIN INTERACTION

To make quantitative predictions, we need to include the
spin-spin interactions in the ES which have been studied both
experimentally [17,18,21] and theoretically [22,23],

Hs = 1

2
(1 + τz)

[
�1

2

(
S2

y − S2
x

) + �2√
2

(SxSz + SzSx)

]
,

(18)

where �1 = 1.55 GHz and �2 	 0.15 GHz.
The Hamiltonian of the system will then take the form

H = H0 + Hint + Hs, (19)

where H0 and Hint were introduced in the previous section.
In the spin Hamiltonian the �1 term mixes the spin states
ms = −1 and ms = 1, while the �2 term mixes ms = −1 and
ms = 0, as well as ms = 0 and ms = 1. Therefore, we can no
longer treat each of the four logical states separately.

It is important to note that both cavity photon creation
and spin-spin interaction are possible only when one of the
NVs is in the excited state. To achieve this and thus create a
quantum gate, laser excitation can be used to transform the
initial ground state of the NVs. But it is also important that
after the excitation is switched off, the system should remain
in a final state that is the coherent superposition of the logical
basis states. Thus, the probability of having an excited NV
after the laser pulse is turned off should be very low. This will
be the case if the intensity of the lasers changes slowly, such
that the adiabatic theorem ensures that the system remains
in the same eigenstate of the time-dependent Hamiltonian.
The final state of the system after the pulse is turned off will
correspond to the ground state of the NVs and zero-cavity
photons, the logical basis of the two-qubit system.

We now introduce our numerical results obtained for this
system, including spin-spin interactions. The laser detuning
δL and the cavity detuning δC are assumed to be 1640 and
400 MHz, respectively. The distance between the ground state
and the lower excited state of the NV is then δL − � =
200 MHz for an ms = −1 spin state and δL = 1640 MHz for
an ms = 0 spin state. The energy of the cavity excitation is
δC = 400 MHz. The inverses of these values (5, 0.6, 2.5 ns,
respectively) define the internal dynamical rate of the system,
with respect to which one has to choose the ramp time of
the pulse. To stay within the adiabatic regime we took the pulse
gL(t) to be a convolution of a rectangle and a Gaussian with
a full width at half maximum (FWHM) of 133 ns and 20 ns,
respectively. The coupling gL at the maximum of the pulse
is assumed to be gL,max = 24 MHz. The coupling between
the NV and the cavity is assumed to be gC = 100 MHz. We
consider both NVs to be identical and driven by two identical
and synchronized lasers with the same amplitude, phase, and
pulse form described above. Note that the two-qubit gate
operation requires neither the NV centers nor the driving fields
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FIG. 3. Time dependence of the Makhlin invariants G1 and G2

during the operation of a cavity-mediated two-qubit gate. Before
the lasers are turned on, G1 = 1 and G2 = 3, which corresponds to
the identity operation. When the lasers are turned on, the two NVs
start to interact through the cavity, which leads to the appearance of
entanglement and change in Makhlin invariants. After the lasers are
turned off, the final state of the system is related to the initial one
by a CNOT operation, characterized by Makhlin invariants G1 = 0
and G2 = 1. The parameters chosen for this plot are gC = 100 MHz,
δC = 400 MHz, δL = 1640 MHz. Inset: Laser pulse shape with max-
imum gL,max = 24 MHz.

to be identical; this choice is made here only to simplify the
analysis. Under these assumptions we numerically propagate
each of the four logical states of the system. This results in a
4 × 4 unitary in the logical space of the two-qubit system,
corresponding to a CNOT gate, as shown by the Makhlin
invariants G1 and G2 (Fig. 3), for which the values 1 and
0, respectively, were obtained, which is a characteristic of a
CNOT gate [24].

V. DISCUSSION

We have shown that virtual exchange of photons in an
optical cavity can mediate the two-qubit CPHASE gate between
two NV spin qubits in diamond. Combined with single-qubit
operations, produced by rf excitation or by laser fields [25],
the CPHASE gate allows for arbitrary (universal) quantum
computations. Therefore, optical cavity QED with NV centers
in diamond represents a realistic path towards spin-based quan-
tum information processing. The cavity-mediated quantum
gate proposed here could be applied to other defects with a
similar level structure, i.e., comprising spin-triplet ground and
excited states with deviating zero-field splittings. For example,
we expect that the gate protocol would also work for certain
divacancy centers in silicon carbide.

As a further prerequisite for the scheme to work, the NV
spin coherence time and average time between cavity photon
loss must be longer than the gate operation time t ∼ 200 ns.
The NV spin coherence time can reach 1/γ2 = T2 ∼ 10 μs,
even at elevated temperatures. The photon loss rate can be
estimated as τ−1 ∼ (g/δC)2ωC/2πQ, where (g/δC)2 ∼ 10−3

is the probability for the cavity mode to be occupied by a
virtual photon during the gate operation and κ = ωC/2πQ is
the photon loss rate in the cavity with quality factor Q. For the

parameters used above, a Q factor of Q ∼ 105 is needed to
achieve τ ∼ 200 ns. Because τ ∼ δ2

C while t ∼ 1/g12 ∼ δC ,
increasing the detuning δC allows the use of cavities with
lower Q at the expense of slower gates, which in turn are
admissible for sufficiently long T2. The limit of this scaling
can be described in terms of a (coherent) cooperativity factor
[26] C2 = g/

√
κγ2 
 1.

Finally, we expect this scheme to work below a temperature
of about 20 K, where the excited-state levels are stable. It is an
open question whether a variation of this scheme would also
work at higher temperatures.

In a scalable qubit architecture, pairs of qubits need to be
selectively coupled within a large array. A possible architecture
comprises single NV centers in optical cavities linked via
optical fibers [27]. The coupling mechanism described here
lends itself to another architecture where many NV centers
are embedded in a single cavity. In an array with separations
between NV centers on the order of 10 to 100 nm, selective
pairwise coupling can be accomplished with a combination of
spatial and spectral selectivity of the laser excitation.
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APPENDIX A: MAGNETIC-FIELD ALIGNMENT

In our model, we have so far assumed that the magnetic field
is perfectly aligned with the NV axis of both defects involved
in the CPHASE gate. This raises two important issues: (1) how
to treat NV centers with different orientations with respect to
the diamond crystal and (2) the extent to which the CPHASE

operation will be disturbed by any small misalignment of the
magnetic field. As for point (1), we note that there are four
distinct NV orientations (up to small misalignments which we
discuss below). Only NV centers with their orientation along
the external B field will be near resonance and will participate
in the CPHASE gate operation, while the NV centers oriented
along the three other axes can be safely ignored. Regarding
point (2), the field misalignment will add a term gμBBxSx

to the Hamiltonian equation (1), where Bx = B tan φ ≈ Bφ

is the transverse (misalignment) field (chosen to point in the
x direction) and φ � 1 denotes the misalignment angle. The
effect of the misalignment field is small if Bx � δB. For a
misalignment of 1◦, the NV center should be operated at least
δB ≈ 20 G away from the level anticrossing.

APPENDIX B: MINIMAL MODEL FOR SPIN-DEPENDENT
LASER-CAVITY PHOTON SCATTERING

Here, we provide a minimal model to explain the spin-
dependent cancellation of laser-cavity photon scattering. Ne-
glecting spin-spin coupling and assuming gL and gC to be
real, we can treat the two spin states mS = 0 and mS = −1
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separately, with the Hamiltonian

H (mS) =
⎛
⎝ 0 0 gL

0 δC gC

gL gC δL + mS�

⎞
⎠, (B1)

in the basis |G0〉, |G1〉, |E0〉. For simplicity, we choose
δL = � + δC/2 and find for the mS = −1 state

H (mS = −1) =
⎛
⎝ 0 0 gL

0 δC gC

gL gC δC/2

⎞
⎠. (B2)

Note that in the rotating frame, the excited state now lies
exactly in between the states with zero and one cavity photons.
We introduce the dressed states |X̃〉 = eS |X〉,

|G̃0〉 =
(

1 − 2g2
L

δ2
C

)
|G0〉 + 2gCgL

δ2
C

|G1〉 − 2gL

δC

|E0〉,

|G̃1〉 =
(

1 − 2g2
C

δ2
C

)
|G1〉 + 2gCgL

δ2
C

|G0〉 + 2gC

δC

|E0〉,

|Ẽ0〉 =
(

1 − 2
g2

L + g2
C

δ2
C

)
|E0〉 + 2gL

δC

|G0〉 − 2gC

δC

|G1〉,

and note that up to corrections cubic in gL,C/δC they form an
orthonormal basis of the space spanned by |G0〉, |G1〉, and
|E0〉. In this new basis, the Hamiltonian equation (B2) takes
the form

H̃ (mS = −1) =

⎛
⎜⎜⎝

− 2g2
L

δC
0 0

0 δC + 2g2
C

δC
0

0 0 δC

2 − 2 g2
L+g2

C

δC

⎞
⎟⎟⎠.

(B3)

Note that H̃ (mS = −1) is diagonal only for δL = � + δC/2,
while for general δL we find an effective coupling between
|G̃0〉 and |G̃1〉. The absence of any effective coupling between
|G̃0〉 and |G̃1〉 in the mS = −1 state for δL = δC/2 + � can
be traced back to the equal and opposite contributions from
coupling the excited state |E0〉 to the two states |G0〉 and |G1〉,
which are symmetrically arranged in energy around |E0〉 in
the rotating frame. In contrast to this result, we find for the
mS = 0 state that

H̃ (mS = 0) =

⎛
⎜⎝− 2g2

L

δC+2�
g 0

g δC + 2g2
C

δC−2�
0

0 0 δ

⎞
⎟⎠, (B4)

with a nonzero amplitude for emitting or absorbing a cavity
photon,

g = gLgC

δC − 2�
− gLgC

δC + 2�
= �

gLgC

(δC/2)2 − �2
(B5)

and

δ = δC

2
+ g2

L

δ/2 + �
− g2

C

δC/2 − �
. (B6)

Note that for � = 0, the destructive interference of the two
terms in Eq. (B5) leads to a decoupling, g = 0. For general
δL and � �= 0, we find distinct values of g for ms = 0 and

mS = −1 and thus a spin-dependent scattering of photons
between the laser and cavity modes.

Using our minimal model, we can also discuss the validity
of the effective Hamiltonian derived using the Schrieffer-Wolff
transformation. The realization of a quantum gate (CPHASE)
operation leads to a time-dependent problem because the
control lasers need to be switched on and off to perform the
quantum gate. The Schrieffer-Wolff transformation and use
of the obtained effective Hamiltonian for this time-dependent
problem are appropriate if the following two conditions are
satisfied: (i) weak coupling (also mentioned in the main text),
more specifically, gL,C,g � δC , and (ii) adiabatic switching
on and off of the laser fields (sufficiently long ramp time τL)
compared to the separation of ground and excited states (for
mS = −1 in the rotating frame), τL � h̄/�.

APPENDIX C: PERTURBATION ANALYSIS

In this Appendix we will give an alternative derivation of
Eq. (13), using conventional time-independent perturbation
theory. We are interested in the shift of the ground state of H0,
induced by the perturbation Hint. The matrix element of Hint,
which causes the transition from the initial state |i〉 to the final
state |f 〉, is

H
i 
→f
int = 〈f |Hint|i〉. (C1)

Thus, the matrix elements of the perturbation are

HGG0
→EG0
int = HGE0
→EE0

int = gL1, (C2)

HGG0
→GE0
int = HEG0
→EE0

int = gL2, (C3)

which account for the interaction between the NV centers and
the laser, and

HEG0
→GG1
int = gC1, (C4)

HGE0
→GG1
int = gC2, (C5)

which account for the interaction between the NV centers
and the cavity. There are also six inverse transitions with
the conjugate matrix elements. We consider only the first
five energy levels of H0, as we use fourth-order perturbation
theory and higher-energy levels are not excited under this
approximation.

One can think of the perturbation to the particular eigenen-
ergy level of H0 as arising from transitions that start and end at
this level. First-order processes are thus absent as we have no
diagonal terms in the perturbation. The second-order processes
are

|GG0〉 
−→ |EG0〉 
−→ |GG0〉, (C6)

|GG0〉 
−→ |GE0〉 
−→ |GG0〉, (C7)

and the second-order energy correction will be

δE2 = − |gL1|2
δL1 + �ms1

− |gL2|2
δL2 + �ms2

. (C8)

There are no third-order processes that would start and end
in the ground state, and therefore, the third-order correction
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to the energy is zero. Now we include all of the fourth-order
processes, described by the formula

δE4 = −
∑

i,j,k �=GG0

HGG0
→i
int H

i 
→j
int H

j 
→k
int Hk 
→GG0

int

〈i|H0|i〉〈j |H0|j 〉〈k|H0|k〉

− δE2

∑
i �=GG0

HGG0
→i
int Hi 
→GG0

int

〈i|H0|i〉2
, (C9)

where we have used that the orbital energy of the state |GG0〉
can be set to zero. Also, we have omitted all the terms that
contain the diagonal perturbation elements, as those are zero
for our system. The first term in this equation contains all eight
fourth-order processes that exist for this system. The second
term is responsible for renormalization of the perturbed wave
function. After the calculation, we find

δE4 = |gL1|4
(δL1 + �ms1)3

+ |gL2|4
(δL2 + �ms2)3

− |gL1|2|gc1|2
(δL1 + �ms1)2δc

− |gL2|2|gc2|2
(δL2 + �ms2)2δc

− 2|gL1gL2|gC1gC2 cos (φ1 − φ2)

(δL1 + �ms1)(δL2 + �ms2)δc

. (C10)

It can easily be seen that δB1ms1 + δB2ms2 + δE2 + δE4

coincides with the result (13) obtained in Sec. III.

APPENDIX D: MAKHLIN INVARIANTS

We are interested in producing a two-qubit gate
(e.g., UCPHASE) only up to single-qubit operations, i.e.,

U (t) = exp(−2πitH2q) = (W1 ⊗ W2)UCPHASE(V1 ⊗ V2),

(D1)

with Vi and Wi being arbitrary single-qubit unitaries. To test
whether U (t) and UCPHASE are equivalent in this sense, one
can use two invariants (G1,G2) [24] of a two-qubit unitary U ,
defined as

G1 = (tr m)2/16 det U, (D2)

G2 = [(tr m)2 − tr (m2)]/4 det U, (D3)

where m = UT
B UB and UB = Q†UQ, with Q being the

transformation into the Bell basis,

Q = 1√
2

⎛
⎜⎝

1 0 0 i

0 i 1 0
0 i −1 0
1 0 0 −i

⎞
⎟⎠. (D4)

For the identity operation U (0) = 1, we find G1 = 1,G2 = 3,
whereas the CPHASE gate lies in the same class as the CNOT

gate, with G1 = 0,G2 = 1. Finding the latter values for G1

and G2 with U (t) for some time t > 0 therefore proves that we
have generated the CPHASE gate (and with this also the CNOT

gate) up to single-qubit operations.
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