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We investigate the behavior of qubits consisting of three electron spins in double and triple quantum dots subject
to external electric fields. Our model includes two independent bias parameters, ε and εM , which both couple to
external electromagnetic fields and can be controlled by gate voltages applied to the quantum dot structures. By
varying these parameters, one can switch the qubit type by shifting the energies in the single quantum dots, thus
changing the electron occupancy in each dot. Starting from the asymmetric resonant exchange qubit with a (2,0,1)
and (1,0,2) charge admixture, one can smoothly cross over to the resonant exchange qubit with a detuned (1,1,1)
charge configuration, and to the exchange-only qubit with the same charge configuration but equal energy levels
down to the hybrid qubits with (1,2,0) and (0,2,1) charge configurations. Here, (l,m,n) describes a configuration
with l electrons in the left dot, m electrons in the center dot, and n electrons in the right dot. We first focus on
random electromagnetic field fluctuations, i.e., “charge noise,” at each quantum dot resulting in dephasing of
the qubit, and we provide a complete map of the resulting dephasing time as a function of the bias parameters.
We pay special attention to the so-called sweet spots and double sweet spots of the system, which are least
susceptible to noise. In the second part, we investigate the coupling of the qubit system to the coherent quantized
electromagnetic field in a superconducting strip-line cavity, and we also provide a complete map of the coupling
strength as a function of the bias parameters. We analyze the asymmetric qubit-cavity coupling via ε and the
symmetric coupling via εM .
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I. INTRODUCTION

Qubits based on the spin of electrons trapped in quantum
dots (QDs) [1] are a leading candidate for enabling quantum
information processing. They provide long coherence times
[2–12], together with a scalable architecture for a dense qubit
implementation. Semiconductor materials such as gallium
arsenide (GaAs) [13] and silicon [14] are the most common
choices as the host material for QDs. One common feature
of these implementations is the need for control with elec-
tric fields at the nanoscale, which unavoidably couples the
qubit system to electrical noise [1]. Dominating sources of
decoherence are nuclear spins [15–17], spin-orbit interaction
[18,19], and charge noise from either the environment or the
confining gates [20–25]. The effect of the first and second
source of decoherence can be drastically reduced by using
silicon as the host material due to its highly abundant nuclear
spin free isotope and a weak spin-orbit interaction [21].
Using active noise suppression methods such as quantum error
correction [26] and composite pulse sequences [27–29] leaves
charge noise coupled to the spin as the remaining problem
to be taken care of. Thus, additional passive suppression
methods are needed, such as optimal working points (sweet
spots) [30,31], which vary in effectiveness for different qubit
implementations.

Qubit implementations using single or multiple QDs to
encode a single qubit show high-fidelity gate operations, long
decoherence times, together with fast qubit control, allowing
for many operations during the qubit lifetime [6,32–35]. An
advantage of multispin qubit encodings consists in their im-
proved protection against certain types of noise [36] together
with faster gate operations [37–41]. This ultimately leads to
the three-spin- 1

2 qubits (see Fig. 1); the exchange-only (EO)
qubit allowing for full qubit control with only the exchange

interaction [37], the resonant exchange (RX) qubit with
permanently acting exchange interaction and control through
resonant driving [22,24,34], and the always-on exchange-only
(AEON) qubit with symmetric gate control [25]. Robustness
against charge noise can be achieved by operating the qubit
on sweet spots [22] where the qubit energy splitting is
extremal with respect to one noisy parameter, or double sweet
spots [25,42] where both noisy parameters are optimized.
In this paper, we provide a full analysis of charge noise for
three-spin- 1

2 qubits (Fig. 1), and we present optimal working
points. We go beyond previous work [24,25] by exploring
the full (ε,εM ) parameter space. Moreover, we include two
noisy tunneling parameters mapping the resulting dephasing
time in this parameter space. Single sweet spots (SSSs) and
double sweet spots (DSSs) are presented for both types of

FIG. 1. Schematic illustration of a three-spin qubit coupled to a
noisy electric environment. The environment can affect the electron
spins directly through the gate voltages Vi with i ∈ {1,2,3} of each
quantum dot (QD) or the exchange coupling (green cloud) between
the electron spins through the gate-controlled tunnel hopping (tl
and tr ).
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noisy parameters and combined to provide the best working
points.

In this paper, we neglect relaxation and dephasing effects
from electric noise originating from phonons coupled to the
dipole moment of the qubit [13,16,22] due to their much longer
time scales. The time scales for spin relaxation are on the
order of milliseconds (B ≈ 4 T ) to seconds (B ≈ 1 T ) in GaAs
[16,22,43] and several orders of magnitude longer in silicon
due to the lack of piezoelectric phonons in unstrained silicon
[14,44].

Two-qubit gates are provided by the exchange interac-
tion [25,28,37,45–47], Coulomb interaction [22,48,49], and
cavity-mediated coupling [42,44], while the range of the
latter is only limited by the extension of the cavity. This
long-ranged coupling technique can be realized within the
approach of cavity electrodynamics (cQED) by coupling
the qubit capacitively to a superconducting strip-line cavity
[50,51] adapted for spin qubits [42,44,52–62]. Implementing
a three-spin qubit in a triple quantum dot (TQD) coupled
to a cavity is possible for two distinct setups: a longitudinal
coupling or asymmetric setup and a transversal or symmetric
coupling [42]. In this paper, both of these setups are discussed,
going beyond previous work for the asymmetric implemen-
tation [42] and providing a microscopic description for both
implementations.

This paper is organized as follows. In Sec. II, we define
the three-spin qubit states, and we discuss the different
regimes in parameter space where each qubit implementation
is located and their conversion into each other. In Sec. III,
we analyze in detail the optimal working points best suitable
for operating the qubit in the presence of charge noise
coupled to the qubit through detuning and tunnel parameters.
Subsequently in Sec. IV, we present two setups for coupling
three-spin qubits to a superconducting strip-line cavity in
order to find operation points with a strong and controllable
coupling. We conclude in Sec. V with a summary and
outlook.

II. QUBIT

We consider the spins of three electrons in a linearly
arranged triple quantum dot (TQD) (Fig. 1) where each
QD has a single available orbital, whereas higher orbitals
are energetically unfavorable due to a strong confinement.
Additionally, we restrict ourselves to the spin degree of
freedom (DOF) only, hence we either consider a material
with no valley DOF or a strong valley splitting surpassing
the energy of the exchange splittings and then treat the
valley as an orbital DOF. Further, we assume that the
TQD is connected to an electric environment (schematically
illustrated in Fig. 1) via the gate voltages Vi of QD i with
i ∈ {1,2,3} and via the gate-controlled tunnel barriers, which,
in addition to a static classical part, consist of random electric
fluctuations and a coherent quantized electric field. As a
model of the TQD, we use the three-site extended Hubbard

model

HHub =
3∑

i=1

[
Ũ

2
ni(ni − 1) + Vini

]

+
∑
〈i,j 〉

⎡
⎣UCninj +

∑
σ=↑,↓

(tij c
†
i,σ cj,σ +H.c.)

⎤
⎦, (1)

where c
†
i,σ (ci,σ ) creates (annihilates) an electron in QD i

with spin σ . We define the number operator ni = ∑
σ c

†
i,σ ci,σ

and the gate-controlled pairwise hopping matrix elements
tij with i,j ∈ {1,2,3}. Here, we consider symmetric, spin-
conserving nearest-neighbor hopping, t13 = t31 = 0, t12 =
t21 ≡ tl/

√
2, and t23 = t32 ≡ tr/

√
2. We also include the

Coulomb repulsion of two electrons in the same QD Ũ and in
neighboring QDs UC , which leads to a static energy shift in the
dots.

Restricting ourselves to the subspace of the three-spin
Hilbert space with total spin S = Sz = 1/2, we identify six
relevant states, two states with a (1,1,1) charge configuration,
and one each with a (2,0,1), (1,0,2), (1,2,0), and (0,2,1) charge
configuration,

|0〉 ≡ 1√
2

(c†1,↑c
†
2,↑c

†
3,↓ − c

†
1,↓c

†
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†
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= |s〉13 |↑〉2 , (2)

|1〉 ≡ 1√
6

(2c
†
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†
2,↓c

†
3,↑−c

†
1,↑c

†
2,↑c

†
3,↓−c

†
1,↓c

†
2,↑c

†
3,↑) |vac〉

=
√

2

3
|t+〉13 |↓〉2 − 1√

3
|t0〉13 |↑〉2 , (3)

|2〉 ≡ c
†
1,↑c

†
1,↓c

†
3,↑ |vac〉 = |s〉11 |↑〉3 , (4)

|3〉 ≡ c
†
1,↑c

†
3,↑c

†
3,↓ |vac〉 = |↑〉1 |s〉33 , (5)

|4〉 ≡ c
†
1,↑c

†
2,↑c

†
2,↓ |vac〉 = |↑〉1 |s〉22 , (6)

|5〉 ≡ c
†
2,↑c

†
2,↓c

†
3,↑ |vac〉 = |s〉22 |↑〉3 , (7)

where |vac〉 denotes the vacuum state, |s〉ij denotes the
singlet state, |t0〉ij denotes the Sz = 0 triplet state, and |t+〉ij
denotes the Sz = +1 triplet state. Here, (l,m,n) describes a
configuration with l electrons in the left dot, m electrons in
the center dot, and n electrons in the right dot. An additional
leakage state with S = 3/2 and Sz = 1/2 is not coupled since
charge noise conserves the total spin S.

We introduce a new set of detuning parameters Vtot =
(V1 + V2 + V3)/3, ε ≡ (V1 − V3)/2, and εM ≡ V2 − (V1 +
V3)/2 + UC . The parameter Vtot merely shifts the total energy,
hence it contributes to neither the dynamics of the qubit nor
the decoherence. The asymmetric detuning ε is the energy
difference between the left QD and the right QD, and the
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symmetric detuning εM is the energy difference between the center QD and the mean of the outer QDs. Defining the charging
energy U ≡ Ũ − UC , we find for the Hamiltonian Eq. (1) in the S = Sz = 1/2 basis {|0〉 , |1〉 , |2〉 , |3〉 , |4〉 , |5〉} the matrix
representation

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
2 tl

1
2 tr

1
2 tr

1
2 tl

0 0
√

3
2 tl −

√
3

2 tr −
√

3
2 tr

√
3

2 tl

1
2 tl

√
3

2 tl ε − εM + U 0 0 0
1
2 tr −

√
3

2 tr 0 −ε − εM + U 0 0
1
2 tr −

√
3

2 tr 0 0 ε + εM + U 0
1
2 tl

√
3

2 tl 0 0 0 −ε + εM + U

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

We assume tl,r to be real since any complex phase only
contributes a global phase to the eigenstates.

Depending on the position in the (ε,εM ) plane, different
qubit implementations are realized (Fig. 2). Directly in the
center of the (1,1,1) charge occupancy region, the exchange-
only (EO) qubit [37] and the always-on exchange-only (AEON)
qubit [25] are located. Still in the (1,1,1) charge occupancy,
but in the area with εM 
 ε, which allows transitions into the
(2,0,1) and (1,0,2) charge states, we find the resonant exchange
(RX) qubit (white dashed triangle). The asymmetric resonant
exchange (ARX) qubit is located deeper into the regime with
εM 
 ε and a strong mixture of (2,0,1) and (1,0,2) charge
configurations [24]. Due to mirror symmetry, four DSSs can
be found (black dots) in the corner of the diamond-shaped

FIG. 2. Energy landscape of the ground-state energy gap ω as a
function of the detuning parameters ε and εM in units of the charging
energy U . For the tunneling parameters, we used tl = 0.022 U and
tr = 0.015 U . Maneuvering through the (ε,εM ) plane, one can access
various parameter regimes that allow the use of different qubit
implementations in different charge configurations (l,m,n), where l

electrons are in the left, m electrons in the center, and n electrons in the
right QD. We further highlight the double sweet spots (DSSs) (black
dots), the location of the exchange-only (EO) qubit, the resonant
exchange (RX) qubit (dashed triangle), the asymmetric resonant
exchange (ARX) qubit, and the left and right hybrid (Hl,r ) qubit.

(1,1,1) charge configuration area. At the bottom left (right)
in the (ε,εM ) plane in Fig. 2, only two neighboring QDs are
occupied by three electrons giving rise to the double quantum
dot (DQD) hybrid qubit [39–41] formed in QD 1 and QD 2
(QD 2 and QD 3).

III. CHARGE DEPHASING

Recent progress for spin qubits using purified silicon as
the host material has lead to exceptionally long T1 and T2

times, emphasizing the importance of charge noise. The use of
isotopically purified Si eliminates nuclear spins as the leading
source for decoherence and leaves charge noise as the main
cause of decoherence [21]. Therefore, while our analysis is
general and valid for all material systems, it is particularly
relevant for spin qubits in Si. Charge noise or electrical noise
originates from random charge fluctuations of the material
or from the control and confinement voltages giving rise to
fluctuating energies. Formally, we describe this by substituting
q → q + δq, in which the parameter q ∈ {ε,εM,tl,tr} is
affected by random fluctuations δq ∈ {δε,δεM,δtl,δtr}. There
are two effects of decoherence for charge noise, namely
longitudinal and transversal dephasing, where the first causes
the energy gap between the qubit states |e〉 and |g〉 to fluctuate
while the second gives rise to transitions between the qubit
states. These can be divided further into decoherence due to
detuning parameters [22–25] (ε,εM ) and decoherence due to
charge noise coupled to the qubit by tunneling (tl,tr ).

The remainder of this section is organized as follows.
First, we present a generalized framework extending previous
models describing charge noise coupled to the qubit to different
control parameters. In the next step, we take only individual
control parameters into account. We start with longitudinal and
transversal noise originating from the detuning parameters ε

and εM , and we identify sweet spots [22–25], i.e., working
points in which the qubits lifetime is highly increased due to
vanishing coupling in first order of the qubit to the noise.
Subsequently, we focus on the effects of noise coupled
to the qubit via fluctuations of the tunnel amplitude, and
we show that there exist no sweet spots for both noisy
tunneling parameters simultaneously. In the last part of this
section, we take all separately discussed effects of the noisy
parameters into account in order to present the best working
points.
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A. General framework

In general, we can write the qubit Hamiltonian in its
eigenbasis [24], {|g〉 , |e〉}, as

Hnoise = �

2
[(ω + δωz)σz + δωxσx + δωyσy], (9)

with the unperturbed energy gap �ω between the qubit states.
Here, |e〉 and |g〉 are the two lowest eigenstates of H in
Eq. (8). The longitudinal effect of the charge noise up to second
order is

δωz =
∑

q

(
ωqδq + ωq,q

2
δq2

)
+ 1

2

∑
p �=q

ωp,qδp δq, (10)

where we used the definitions ωq ≡ ∂ω
∂q

and ωp,q ≡ ∂2ω
∂p∂q

with
p,q ∈ {ε,εM,tl,tr}. For the transversal effects, we consider

δωx =
∑

q

δωx,qδq, (11)

with δωx,q ≡ 〈g| H1,q |e〉 and δωy = 0 due to real valued tun-
neling. Here, H1,q is the part of the Hamiltonian from Eq. (8)
associated with the perturbation in q, thus H1,q = ∂

∂q
H δq.

Considering only longitudinal noise, one can calculate the
pure dephasing in a Ramsey free decay approach [55],

f̃ (t) ≡ 〈eiφ(t)〉 = e−〈φ(t)2〉 = e−t2/T 2
ϕ (12)

with φ(t) ≡ ∫ t

t0
dt ′δωz(t ′) in which we used δq = δq(t). For

the first equality we used Gaussian-distributed noise with zero
mean, while for the second equality we used a spectral density
exponent [63] γ = 1. This allows us to calculate for a given
spectral density of the noise Sq(ω̃) = Aq |ω̃|−γ the associated
dephasing time [24],

Tϕ = �

[∑
q

ω2
q

2
Ap log r + ω2

q,q

4
A2

q log2 r

+ 1

2

∑
p �=q

ω2
p,q

2
ApAq log2 r + 1

8
ωp,pωq,qAp Aq

⎤
⎦

− 1
2

.

(13)

Here, we assumed independent and uncorrelated noise for each
noisy parameter p,q ∈ {ε,εM,tl,tr}, and we used the ratio r ≡
ωUV/ωIR of the lower frequency cutoff ωIR and the upper
frequency cutoff ωUV needed to ensure convergence of the
integral.

With this in mind, we formally define the expression “sweet
spot” initially introduced as the best points for operations due
to a vanishing coupling of the qubit to the noise in first order.
Assuming first-order noise effects to be the dominant ones,
these points yield the longest lifetime of the qubit according to
Eq. (13), and therefore the ideal operation points for the qubit.
Taking only first-order effects into account, we obtain for the
best working points the condition∑

q

ωqδq = 0, (14)

which is in general only possible for each ωq = 0 with
q ∈ {ε,εM,tl,tr}. We now define a single “sweet spot” (SSS) if

this condition is fulfilled for one noisy parameter. Analogously,
we define a “double sweet spot” (DSS) if ωq = ωp = 0
with q �= p ∈ {ε,εM,tl,tr}. Considering a total of four noisy
parameters, we can also introduce “triple” and “quadruple
sweet spots” in which Eq. (14) is for three noisy parameters
or completely fulfilled. Unfortunately, we find that there exist
no nontrivial quadruple sweet spots in a three-spin- 1

2 qubit
in maximally three QDs. A trivial quadruple sweet spot
ε = εM = tl = tr = 0 cannot be used for quantum computing
since no gates can be performed, but instead it can be useful
for quantum storage. However, turning off the exchange
interaction increases decoherence effects due to magnetic
noise [17].

The second term in the Hamiltonian [see Eq. (9)] δωx leads
to random rotations of the qubit around the x axis with time
scales on the order of ms for realistic charge noise (assuming√

〈δq2〉 = 1 μeV at 1 Hz) [63]. Somewhat more devastating
for the qubit is the fact that transversal charge noise changes
the orientation of the eigenstates and therefore the energy gap
giving rise to an additional term for the dephasing in second
order of the fluctuations. This becomes clear when expanding
the eigenenergy difference from Eq. (9),

ω =
√

(ω0 + δωz)2 + δω2
x + δω2

y

� ω0 + δωz + δω2
x

2ω0
+ δω2

y

2ω0
+ O(δω3). (15)

Inside the (1,1,1) charge configuration regime and away
from the charge transition lines, the states |0〉 and |1〉 defined in
Eqs. (3) and (4) are nearly the qubit states, while the coupling
of the other states can be taken into account using a low-
energy Schrieffer-Wolff approximation [64]. We obtain for
the resonance frequency between the qubit eigenstates [25]

�ω =
√

J 2 + 3j 2, (16)

with the mean J ≡ (Jl + Jr )/2 and half of the difference
j ≡ (Jl − Jr )/2 of the left and right exchange interaction and
between the left (right) QD and the center QD, respectively,

Jl = 2t2
l U/[U 2 − (ε − εM )2], (17)

Jr = 2t2
r U/[U 2 − (ε + εM )2]. (18)

Utilizing this, we find a closed analytical expression for the
longitudinal fluctuation,

ωq = (J∂qJ + 3j∂qj )/ω, (19)

and the transversal effect,

δωx,q = (J∂qj − j∂qJ )/ω, (20)

in the (1,1,1) charge regime. For εM 
 0 (RX regime), these
results converge with the expressions considering only the RX
qubit [24], since there the influence of the states |4〉 and |5〉
becomes negligible.

B. Detuning noise

Longitudinal dephasing Tϕ due to low-frequency charge
noise originating from the detuning parameters ε and εM is
usually seen as the dominant source for decoherence. For
reasons of simplicity, we set in this subsection δtl = δtr = 0,
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FIG. 3. Dephasing time Tϕ given by Eq. (13) due to longitudinal noise as a function of the detuning parameters ε and εM . In the top row
[(a) and (b)] we plot Tϕ resulting from charge noise in the two detuning parameters ε and εM , in the center row [(c) and (d)] we plot Tϕ

resulting from charge noise in the two tunneling parameters tl and tr , and in the bottom row [(e) and (f)] we plot Tϕ resulting from charge
noise from all four parameters combined, where we choose the parameter settings identical in each column. The left column shows results
for weak tunneling and strong noise, while in the right column, results for strong tunneling and weak noise are plotted. Parameters are set as
follows: tl = 0.022 U, tr = 0.015 U, Aq = (10−3 U )2, where q = ε,εM in (a) and (e), and Aq = (10−4 U )2, where q = tl ,tr in (c) and (e), for
the left column, and tl = 0.22 U, tr = 0.15 U, Aq = (10−5 U )2, where q = ε,εM in (b) and (f), and Atl = Atr = (10−6 U )2, where q = tl ,tr in
(d) and (f), for the right column. To include a large frequency bandwidth, we globally set the ratio of the lower and higher frequency cutoff
r = 5 × 106. For the scale of Tϕ , we used an explicit value of U = 1 meV; note that Tϕ scales inversely proportional with U . The black dots
indicate the DSSs.

and we only consider charge noise originating from the
detuning parameters δε �= 0 and δεM �= 0. The effect of this
can be drastically reduced by working on SSS [22] or DSS
[23–25]. They fulfill the condition ωε = ωεM

= 0 such that

the longitudinal coupling given in Eq. (10) vanishes and only
second-order effects remain.

In Figs. 3(a) and 3(b), we plot the resulting dephasing
time Tϕ given in Eq. (13) as a function of the detuning
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parameters considering only longitudinal noise originating
from ε and εM for different parameter settings. We find in
total five DSSs for the three-spin qubit marked as black
dots. Two DSSs are already known, one inside the (1,1,1)
charge configuration regime [25] and one at the transition
between the (2,0,1) and (1,0,2) charge states [24], while
the other three DSSs appear at the remaining three charge
transitions, located on the left between (2,0,1) and (1,2,0), on
the right right between (1,0,2) and (0,2,1), and on the bottom
between (1,2,0) and (0,2,1) in the figures due to symmetry
considerations. For symmetric tunneling (tl = tr = t), the five
DSSs are approximately located at (ε,εM ) = (0,U ), (0, − U ),
(−U,0), (U,0), and (0,0), while for asymmetric tunneling
(tl �= tr ) all DSSs except the center one are slightly shifted
due to a shift of the charge transitions. Comparing these
DSSs with each other, the four DSSs located at the charge
transitions are unfavorable for a small tunneling and strong
noise due to strong higher-order effects limiting the coherence
of the qubit. Considering stronger tunneling between the QDs
and weaker noise, the higher-order effects are greatly reduced
due to softening of the charge transitions. If for some reason
working on the DSSs is unpractical, e.g., coupling the qubit to
a cavity, one should favor in the case tl �= tr the working points
given by ε = εM [diagonal orange line seen in Fig. 3(a); see
also Appendix C].

Comparing the resulting dephasing times considering noise
coupled to the qubit through only one of the detuning
parameters ε or εM [plotted in Figs. 7(a) and 7(e)], we find
that the results are mirror-symmetric to each other, with the
symmetry axis given by ε = εM . Single sweet spots are found
on a straight vertical (horizontal) line passing through the
center, and a serpentine vertical (horizontal) line for tl �= tr
(a comparison of symmetric and asymmetric tunnel coupling
can be found in Appendix C).

Considering transversal noise, we cannot easily find an
analytical expression for Tϕ using the free decay model from
Eq. (12). Thus, we have calculated δωx = |δωx,ε| + |δωx,εM

|
for δε = δεM �= 0 and δtl = δtr = 0, which is a good measure
for the coupling of noise to the qubit. In Figs. 8(a) and 8(b),
we plot the resulting δωx for different parameter settings. Note
that in these figures, δωx rather than the dephasing time is
plotted, thus small values lead to a longer lifetime of the qubit.
Since transversal noise leads to transitions between the qubit
states, this is also a first indication for the strength of the
coupling between a qubit and a microwave cavity. Comparison
of the results obtained for transversal charge noise (Fig. 8 in
Appendix B) and qubit-cavity coupling strength (Fig. 5) shows
a high level of agreement, as expected.

Inside the (1,1,1) charge configuration regime, and consid-
ering only noisy detuning parameters ε and εM , the sweet spot
condition from Eq. (14) simplifies to

J∂εJ + 3j∂εj = J∂εM
J + 3j∂εM

j = 0 (21)

with ∂ε,εM
J = ±J 2

l (ε − εM )/2t2
l U + J 2

r (ε + εM )/2t2
r U and

∂ε,εM
j = ±J 2

l (ε − εM )/2t2
l U − J 2

r (ε − εM )/2t2
r U . There ex-

ists only a single complete solution (DSS) in this regime
for ε = εM = 0 [25]. In contrast to the other four DSSs, the
position of the center DSS is unaffected by the strength of the
tunneling couplings tl and tr , thus it is more convenient for

symmetric gate operations to use the tunnel couplings as qubit
control parameters.

C. Tunnel noise

Symmetric qubit control by tuning the tunneling coupling
between the QDs for qubit control has been proposed from
the very beginning [65], and recent experiments in Si/SiGe
[12] and GaAs [66] indicate that symmetric operations lead to
longer coherence times. Working at the symmetric operation
points reduces the coupling to the charge noise originating
from the detuning parameters, here ε and εM , hence operating
on a sweet spot relative to these parameters. However, this
opens another channel for noise coupling to the qubit systems
via fluctuations in the tunnel amplitude, since the tunneling is
now gate-controlled and time-dependent. As a result, strong
narrow-band filtering cannot be applied as effectively as for the
static case. Thus, the tunneling of the electrons is susceptible
to charge noise.

In analogy with detuning noise, considering longitudinal
noise through the tunnel parameters tl and tr can also be
drastically reduced by working on sweet spots. Setting the
noisy tunnel parameters δtl �= 0 and δtr �= 0 and ignoring
noise coupled to the qubit through the detuning parameters
δε = δεM = 0, we again find preferable working points and
single sweet spots associated with either tl or tr . The resulting
dephasing is plotted in Figs. 3(c) and 3(d) for the same
parameter settings used previously. We find the best working
points deep inside the (1,1,1) charge-configuration regime,
however, unlike in the case of detuning noise, there is no trace
of DSSs in the entire observed regime. The best working point
we find is located at the center DSS (ε = εM = 0), which is
marginally better than the surrounding area, while the other
DSSs at the charge transitions appear very unfavorable at first
sight. A zoom-in, however, reveals a steep valley with a long
dephasing time that is broadened by larger tunneling couplings.
Therefore, the lifetime of the qubit at the DSS located at the
charge transitions is limited by higher-order effects. Strong
tunnel coupling [see Fig. 3(d)] drastically increases the lifetime
at these points due to softening of the charge transitions
challenging the center DSS.

For the case δtr = 0 [see Figs. 7(e) and 7(f) in Appendix A]
we find single sweet spots near the charge transition associated
with tr , thus (1,1,1) ↔ (1,0,2) and (1,1,1) ↔ (1,2,0) since at
these lines in parameter space, hopping from the left QD to the
center QD is energetically highly unfavorable. The opposite
case δtl = 0 is shown in Figs. 7(g) and 7(h) in Appendix A.

Inside the (1,1,1) charge configuration regime, taking only
noisy tunneling into account, the sweet spot condition can be
simplified to

Jl(2Jl − Jr ) = Jr (2Jr − Jl) = 0. (22)

This condition is only fulfilled in the trivial case Jl = Jr = 0,
thus there exist no DSSs for tunneling noise. A single sweet
spot corresponding to the tunneling parameter tl (tr ) requires
Jr,(l) = 2Jl,(r), which simplifies for ε = 0 to tr,(l) = ±√

2tl,(r).
However, the best working points are given for an overall
symmetric configuration including both tunneling and detun-
ing. Since the DSSs are all located at high symmetry points,
the optimal working points are given by tl = tr . Preferring
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points of operation near the states |3〉 and |4〉 (|2〉 and |5〉), the
optimal ratio is tl/tr > 1 (tl/tr < 1). However, the benefit is
not very large compared to operating on a DSS.

D. Combination

Combining all effects, we plot in Figs. 3(e)–3(f) the de-
phasing time Tϕ , taking into account all four noisy parameters
ε,εM,tl,tr . Note that we give less weight to the tunneling
parameters due to their smaller strength compared to the
detuning parameters. As a result, we find that the previous
areas with long coherence times considering only detuning
noise of the sweet spots become less pronounced and softened
due to the absence of DSSs for tunneling. The center DSS
still remains as the optimal point of operation in terms of
pure coherence time, however it is only slightly better than the
surrounding area in the parameter space.

IV. CAVITY QUANTUM ELECTRODYNAMICS (C-QED)

While the coupling to the uncontrolled fluctuations of
the electric field at a three-spin qubit leads to dephasing,
controlled coupling to a quantized electromagnetic field in
a microwave cavity can be used to couple qubits over long
distances. However, strong coupling usually comes with strong
dephasing, since a large dipole moment can couple both charge
noise and a cavity field to the qubit, thus usually a tradeoff has
to be taken into account. Going more into detail, one finds a
small difference between the couplings: charge noise couples
dominantly longitudinally to the qubit, which gives rise to
fluctuations in the energy gap, while in our case the cavity field
couples mainly transversal to the qubit since one is operating
in a rotating frame [42], which enables transitions between
the qubit states. Comparing the effect of longitudinal noise
with transversal noise, one can see some crucial differences
allowing for working points that have weak dephasing as
well as strong qubit-cavity coupling. This asymmetry between
dephasing and coupling strength can be expressed in terms of
the quality factor of the cavity needed to reach strong coupling
between two separated qubits.

This section is organized as follows. First we introduce the
basic framework for the qubit-cavity coupling. Subsequently,
we calculate the qubit-cavity coupling strength for the asym-
metric and symmetric architecture in a simple dipole model. In
the last part of this section, we compare the results and provide
the quality factor needed to achieve strong coupling for both
architectures.

A. General framework

We consider three-spin qubits realized in a linear TQD
embedded in a superconducting transmission line resonator
with a single-photon mode near the resonance frequency of
the qubit. Analogous to Sec. III, we calculate the qubit-
cavity coupling for the full (ε,εM ) plane including all charge
configuration numerically, and subsequently we approximate
the center of the (1,1,1) charge configuration analytically
in order to analyze the results. To generalize our previous
analysis [42] to the full range of charge states studied in
the previous sections, we extend the existing formalism to
include all six relevant states given by Eqs. (3)–(7). We model

FIG. 4. (a) Schematic illustration of a qubit implemented in a
TQD coupled to the cavity and the architecture for a (b) asymmetric
and (d) symmetric qubit-cavity coupling. The center conductor of the
superconducting transmission line resonator is on the potential Vcav

while the outer conductors are connected to the ground to screen off
surrounding fields. The corresponding potential (green) and electric
field (blue) are shown for the asymmetric (c) and symmetric (e)
arrangement as a function of the position x.

the dipolar interaction [67] between the qubit and the cavity
with

HQC = −eE · x̂ = −eE · x̂ (a + a†), (23)

and we define the qubit-cavity coupling strength as

g ≡ −e 〈0| E · x̂ |1〉 , (24)

where a† (a) creates (annihilates) a photon with frequency
ωph of the cavity mode. Note that in this paper, the formalism
using E · x̂ is more convenient than the equivalent formalism
[67] A · p̂ used in previous works [42,54]. Here, E is the
quantized electric field, E = E(a + a†), and A is the quantized
electromagnetic vector potential.

In Fig. 4(a), the basic implementation is shown schemat-
ically together with the two architectures discussed in this
work, which we label asymmetric and symmetric coupling
corresponding to the affected detuning parameter. In this set-
ting, the qubit is placed in the antinode of the electromagnetic
field of the cavity to achieve the strongest coupling. The
vacuum coupling strength of the interaction is g0, defined
here as the coupling strength of the qubit if 〈0| x̂ |1〉 ∼=
al + ar , where al (r) is the distance between the left (right)
QD and the center QD [sketched in Figs. 4(b) and 4(d)].
We find

g0 = −eE(al + ar ) (25)

with E = |E| = √
�ωph/2ε0εv, where e is the electron charge,

ε0 (ε) is the (relative) dielectric constant of the vacuum
(material), and v is the volume of the cavity [67]. Using
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realistic parameter settings for a silicon TQD (v = 3 cm ×
5 μm × 5 μm, ε ≈ 12, ωph = 4.7 GHz, and al + ar = 60 nm)
we obtain g0 = 2π × 1.96 MHz. Note that this is the pure
vacuum coupling strength, and no field enhancement was
included, which can further enhance the strength drastically
[68,69]. To make a connection with experiments, it is
sometimes more convenient to express the vacuum coupling
strength in terms of capacitance and impedance, thus E =
νωph

√
Z0/π�/2w, with ν = Ccon/(Ccon + CTQD). Here, ν is

the relative capacitance of the TQD, CTQD, and the capacitance
of the connection to the resonator, Ccon, Z0 is the charac-
teristic impedance, and w the distance at which the voltage
drop occurs [44]. Recent experiments show high impedance

resonators giving rise to a vacuum coupling strength g0 in the
order of 2π × 100 MHz [69].

We first construct the real-space wave functions of the states
|0〉 , |1〉 , |2〉 , |3〉 , |4〉, and |5〉 needed for the transition dipole
matrix element. For this we use the formalism of orthonor-
malized Wannier orbitals [42], which transforms overlapping
single-electron wave functions |φi〉 into an orthonormal basis
of maximally localized [70] wave functions |i〉 with i ∈
{1,2,3}. Here, the overlaps between the pure single-electron
wave functions are denoted as Sl ≡ 〈φ1|φ2〉, Sr ≡ 〈φ2|φ3〉,
and 0 = 〈φ1|φ3〉 due to the linear arrangement [42]. As
a result, we obtain for the position operator in the basis
{|0〉 , |1〉 , |2〉 , |3〉 , |4〉 , |5〉}

x̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1√
2
x12

1√
2
x32

1√
2
x23

1√
2
x21

0 0
√

3
2x12 −

√
3
2x32 −

√
3
2x23

√
3
2x21

1√
2
x21

√
3
2x21 x11 − x22 −x31 0 0

1√
2
x23 −

√
3
2x23 −x13 x33 − x22 0 0

1√
2
x32 −

√
3
2x32 0 0 x22 − x33 x31

1√
2
x12

√
3
2x12 0 0 x13 x22 − x11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

where xij ≡ 〈i | x̂ |j 〉 denotes the transition dipole matrix
element between the Wannier orbitals. Under the assumption
of equal confinement potentials in each QD, these transition
dipole matrix elements can always be chosen real [42].

B. Asymmetric architecture

Placing the TQD inside the cavity such that the electric field
aligns with the long axis of the qubit [42] [see Fig. 4(b)] leads
to a standard dipole coupling interaction between the qubit
and the cavity. States with an asymmetric charge configuration
interact with the electromagnetic field of the cavity via their
coupling to the opposite charge state, e.g., |2〉 ↔ |3〉 and
|4〉 ↔ |5〉, while creating or annihilating a photon in the
process. Hence, the qubit-cavity interaction gA in Eq. (23)
can be simplified to

HA = −eE x̂(a + a†), (27)

and the qubit-cavity coupling strength for the asymmetric
architecture becomes

gA ≡ −eE 〈g| x̂ |e〉 , (28)

where |g〉 is the ground and |e〉 the first excited state. In
Fig. 5 (left column), the qubit-cavity coupling is calculated
numerically and plotted for various parameter settings. The
weakest qubit-cavity coupling can be found inside the (1,1,1)
charge configuration regime, which is expected due to the
symmetric electron distribution. The strongest coupling is
located near the four outer DSSs, since at these points a
charge transfer only requires a small variation of the detuning
parameters to produce a large dipole moment. The asymmetric
implementation favors a charge transition associated with a

transfer of one electron from the left QD to the right QD
[42], thus |2〉 ↔ |3〉 and |3〉 ↔ |4〉 resulting in strong coupling
along a vertical line above and underneath the (1,1,1) charge
regime in Fig. 5.

Deep inside the (1,1,1) charge configuration regime,
the ground states are |g〉 and |e〉, which are |0〉 and
|1〉 hybridized by a small admixture of the other charge
states (|2〉 , |3〉 , |4〉 , |5〉), hence x̃ = eSx̂ e−S ≈ x̂ + [S,x̂] +
1
2 [S,[S,x̂]] + · · · . Here, S is the same Schrieffer-Wolff trans-
formation matrix used to derive the qubit splitting in the
low-energy subspace given in Eq. (16). As a result, we obtain
a closed analytical expression for the qubit-cavity coupling
strength in Eq. (28),

gA/g0 = −
√

3

2

[
Jl

tl

Re(x12)

2(al + ar )
− Jr

tr

Re(x23)

2(al + ar )

]

−
√

3

4

[
(ε−εM )

U

J 2
l

t2
l

x11

al + ar

+ (ε+εM )

U

J 2
r

t2
r

x33

al+ar

]
.

(29)

Here, the first (second) term in the second line resembles
the matrix element of a DQD in the left (right) QD and
the center QD [54], which compensate each other at the
EO DSS located at ε = 0 and εM = 0. Due to the sign
change in the first term, the overall matrix element is
nonzero at the EO DSS, as may be expected from general
considerations. For a completely symmetric setup, ε = 0, al =
ar ≡ a, Sl = Sr ≡ S0, and tl = tr ≡ t , which leads to Jl =
Jr ≡ J0 = 2t2U/(U 2 − ε2

M ), Re(x12) = −Re(x23) ≈ −3aS0,
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FIG. 5. The qubit-cavity coupling strength g in units of the vacuum coupling strength g0 as a function of the detuning parameters ε and εM

for the asymmetric coupling (left column) and symmetric coupling (right column). The parameters are chosen as follows: top row [(a) and (b)]
tl = tr = 0.02 U , center row [(c) and (d)] tl = 0.022 U and tr = 0.015 U , and bottom row [(e) and (f)] tl = tr = 0.2 U . The interdot distances
al and ar and the overlaps Sl and Sr are set by the strength of the tunneling parameters [42,71]. The black dots denote the DSSs.

and x11 = −x33 ≈ −a, Eq. (29) simplifies to

gA,0/g0 = −
√

3

2

εM J0

U 2 − ε2
M

+
√

3

2

3 J0 S0

2t
. (30)

The first term is identical to the expression for a simple charge
model gA,0/g0 = −

√
(∂εJ )2 + 3(∂εj )2/2 for this choice of

parameters [44], and it approaches zero at the DSS while the
second term remains finite. The general expression, however,
is given in Eq. (29). Introducing ξ ≡ S0/t , we find zero

qubit-cavity coupling at ξ = √
2/3 εM/(U 2 − ε2

M ), e.g., for
the exchange-only DSS εM = 0 the condition is ξ = 0, thus
S0 � t .

C. Symmetric architecture

Alternatively, one can place the TQD in the cavity such
that the center QD is connected to the transmission line while
the outer two QDs are connected with the ground plane [42]
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[see Fig. 4(d)]. In this scheme, the electric field is not aligned
continuously with the x axis or other axis, but rather, it changes
sign and strength in the center. This setup effectively couples
the qubit to the detuning parameter εM . Figure 4(e) shows
the expected electric field as a function of position, which
without screening effects can be described as a jump function.
To model the electric field, we use

E(x̂) = 1

π

{
tan−1

[
x̂

T (al + ar )

]
+ π (al − ar )

2(al + ar )

}
, (31)

where T is a screening parameter that softens the step [see
Fig. 4(e)]. Note that E is an operator here because it is a
function of the position operator, hence we obtain for the qubit-
cavity interaction

HS = −e E(x̂) x̂ (a + a†). (32)

This Hamiltonian can be understood as a generalization of the
single-mode dipole interaction [67] Hdip = −eE · x, in which
the electric field E(x̂) can be dependent on the position x̂
associated with the architecture of the qubit inside the cavity.
For the qubit-cavity strength for the symmetric architecture,
we find

gS ≡ −e 〈g| E(x̂) x̂ |e〉 , (33)

with |g〉 again being the ground state and |e〉 the first excited
state. Unfortunately, gS cannot be expressed in a closed
analytical form in the general case. In Fig. 5 (right column),
the results are numerically calculated and plotted for the same
parameter settings as for the asymmetric architecture (left
column). We find the weakest values for the qubit cavity
coupling again deep inside the (1,1,1) charge configuration
regime, which is expected due to the large energy required to
enable a charge transition. In the vicinity of the expected charge
transition areas, which includes the DSS, we find the strongest
coupling strength. For ε = 0 and tl = tr (for tl �= tr slightly
shifted), the symmetric coupling gS vanishes since for this
architecture a charge transition between (1,0,2) and (2,0,1) or
(1,2,0) and (0,2,1) is unfavorable with both outer QDs being at
the same potential. In contrast to the asymmetric architecture,
the symmetric implementation should favor a charge transition
associated with an electron transfer only between the left
(right) and center QD, thus |2〉 ↔ |4〉 (|3〉 ↔ |5〉). Thus, we
expect a strong response seen in a horizontal line from left
to right in the (ε,εM ) parameter plane through the center (see
Fig. 5). We believe the reason for the absence of this line in
the numerical results (Fig. 5, right column) is the need for two
simultaneous charge transfers, hence a two-photon process,
which is beyond the scope of this model.

Inside the (1,1,1) charge configuration regime and
assuming a large screening T > 1, thus justifying
an expansion of the position-dependent electric field,
E(x̂)/E ≈ x̂/πT (al + ar ) + (al − ar )/2(al + ar ), we find an
analytical expression for the qubit-cavity coupling defined in
Eq. (33),

gS/g0 = al − ar

2(al + ar )2
〈g| x̂ |e〉 + 1

πT (al + ar )2
〈g| x̂2 |e〉 .

(34)

The first term 〈g| x̂ |e〉 is the asymmetric coupling given in
Eq. (29), and for the second term we obtain analogously

〈g| x̂2 |e〉 =
√

3

4

(
J 2

l

t2
l

x2
11

2
− J 2

r

t2
r

x2
33

2

)

+
√

3

4

[
Re(x12) + (ε − εM )

U

Jl
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x11√
2

]2

−
√

3

4

[
Re(x23) − (ε + εM )

U

Jr

tr

x33√
2

]2

. (35)

For a completely symmetric setup, ε = 0, al = ar ≡
a, Sl = Sr ≡ S0, and tl = tr ≡ t , which leads to Jl = Jr ≡
J0, Re(x12) = −Re(x23) ≈ −3aS0, and x11 = −x33 ≈ −a.
Thus, in this fully symmetric case, both Eqs. (35) and (34)
yield gA = 0. This result is consistent with previous results
using a simple phenomenological approach [42].

D. cQED under the influence of charge noise

In a last step, both architectures are compared with respect
to both the qubit-cavity coupling strength and the dephasing
Tϕ due to charge noise from Sec. III. To achieve strong
coupling between the qubit and the cavity, two conditions
have to be fulfilled, namely g > γ,κ with the dephasing
rate γ ≡ 1/Tϕ , and the cavity-loss rate κ ≡ ωph/2πQ being
inversely proportional to the quality factor Q of the cavity
[50,53]. Recent experiments indicate that strong coupling
is denied by decoherence effects [57,58], thus the limiting
condition is

g0 >
1

Tϕ g/g0
(36)

with the relative qubit-cavity coupling g/g0 from Eq. (29) for
the asymmetric architecture or Eq. (34) for the symmetric one.
Alternatively, placing two qubits (here for simplicity assumed
to be identical) in the same cavity allows for a long-range
two-qubit interaction [42,44,54]. Working in the dispersive
regime where the cavity mode is only virtually occupied gives
rise to the universal two-qubit iSWAP gate in the time-step
[42] tiSWAP = ωph/8Qg2. To successfully entangle the qubits,
the minimal condition is tiSWAP < Tϕ , thus

Q >
ωph

8Tϕg2
. (37)

In Fig. 6, the key requirement for strong coupling, Eq. (36),
and for entanglement, Eq. (37), are plotted as a function of
the detuning parameters for the asymmetric (left column)
and the symmetric (right column) architecture. Concerning
charge noise, all electric fluctuations except fluctuations in
the coupling parameter (ε or εM ) are neglected due to a
strong suppression in ideal resonators. Independently of the
used architecture, the strongest response and therefore the
weakest requirements (both g0 and Q) are located at their
respective SSS for charge noise if they do not intersect
with the lines where g ≈ 0 for the qubit-cavity coupling.
Note that in this simple model, the DSSs play no role
since we are considering only a single noise parameter
and our results indicate that the asymmetric coupling is
beneficial due to a stronger qubit-cavity coupling under the
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FIG. 6. Top row: The minimal vacuum coupling g0 [see Eq. (36)] needed to reach strong coupling between the qubit and the cavity under
the assumption that qubit dephasing is the dominant loss mechanism. Bottom row: Minimal Q-factor of the cavity [see Eq. (37)] needed
for successful entanglement between two qubits in the same cavity. Parts (a) and (c) show the results for the asymmetric architecture and
only noise in the asymmetric detuning parameter ε, while (b) and (d) show the results for the symmetric architecture and only noise in the
symmetric detuning parameter εM . The parameters are chosen as follows: ωph = 4.7 GHz, g0 = 2π × 10 MHz, tl = 0.022 U, tr = 0.015 U ,
and Aq = (10−3 U ), where q = ε in (a) and q = εM in (b). The datasets for Tϕ are obtained from Figs. 7(a) and 7(c). For the scale of Tϕ and g,
we used an explicit value of U = 1 meV. The black dots denote the DSS.

assumption of identical noise in both detuning parameters.
However, recent investigations suggest that noise coupled to
the symmetric detuning parameter εM is considerably weaker
than for the asymmetric detuning parameter ε [72]. Including
tunneling noise does not discriminate further between the two
architectures since both are affected in the same way, thus
tunneling noise is neglected in this comparison. Estimating
realistic numbers, we find that a qubit-cavity vacuum coupling
g0 > 1 kHz is sufficient for reaching strong coupling, and one
can successfully entangle two qubits with Q > 10 if the qubit
is operated at the corresponding DSS, i.e., top and bottom
DSSs for the asymmetric architecture, and left and right DSSs
for the symmetric architecture.

V. CONCLUSION

In this work, we have analyzed different types of three-
spin- 1

2 qubits in an electric environment, either coupled to
charge noise or to coherent electric fields in a superconducting
strip-line cavity. The first coupling needs to be minimized or

eliminated in order to achieve long-lived qubits. On the other
hand, we want to maximize and control the coupling between
the qubit and the electric field of the cavity in order to acquire
the strong coupling regime needed for a fast long-distance
two-qubit gate [42].

In the case of a fluctuating electromagnetic environment,
we have provided an extended description considering external
electric fluctuations coupled to the qubit through four distinct
noisy parameters, two detuning parameters, and two tunneling
parameters. We presented and discussed the best suitable
working points that take all these couplings into account
and minimize the impact limiting the coherence time at
the detuning sweet spot. However, no quadruple sweet spot
was found suppressing first-order noise effects of all four
noisy parameters simultaneously. We found that charge noise
coupled to the tunneling parameters is the limiting factor due to
the possibility of working on one of the five double sweet spots
(DSSs) for noisy detuning parameters. Four of the five DSSs
are located each at the crossover regions between connecting
asymmetric charge configurations, with the fifth sitting in the
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FIG. 7. Dephasing time Tϕ due to longitudinal noise for each noisy parameter ε, εM, tl , and tr individually in the (ε,εM ) plane. Each row
shows the dephasing time due to a single noisy parameter (from top to bottom: ε, εM, tl, tr ), while we choose the parameter settings identical in
each column. The left column contains the results for weak tunneling and strong noise, while the right column comprises the results for strong
tunneling and weak noise. Parameters are set as follows; tl = 0.022 U,tr = 0.015 U,Aq = (10−3 U )2, where q = ε in (a) and q = εM in (c),
and Aq = (10−4 U )2, where q = tl in (e) and q = tr in (g), for the left column, and tl = 0.22 U,tr = 0.15 U,Aq = (10−5 U )2, where q = ε in
(b) and q = εM in (d), and Aq = (10−6 U )2, where q = tl in (f) and q = tr in (h), for the right column. For the scale of Tϕ , we used an explicit
value of U = 1 meV; note that Tϕ scales inversely proportional with U . The black dots represent DSS.
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center of the (1,1,1) charge configuration regime. We have pre-
sented a full map of the dephasing time in the (ε,εM ) parameter
plane, taking either the effect of all four noisy parameters, pairs
of two noisy parameters, or each noisy parameter individually
into account. The optimal strategy depends on the strength

of the noise and the strength of each tunneling parameter,
however it appears that a symmetric implementation (tl = tr )
typically provides the best result exactly at the DSS, while
a slightly asymmetric implementation (tl �= tr ) elongates the
favorable area surrounding the DSS.

FIG. 8. Impact of transversal noise as a function of the detuning parameters ε and εM . In this figure, δωx rather than the dephasing time is
plotted, thus small values lead to longer coherence times of the qubit. In the top row [(a) and (b)] we consider charge noise only from the two
detuning parameters ε and εM , in the center row [(c) and (d)] we consider charge noise only from the two tunneling parameters tl and tr , and in
the bottom row [(e) and (f)] we consider charge noise from all four parameters simultaneously, while we choose the parameter settings identical
in each column. The left column contains the results for weak tunneling and strong noise, while the right column comprises the results for
strong tunneling and weak noise. The black dots indicate DSS. Parameters are set as follows: tl = 0.022 U,tr = 0.015 U,δq = 10−3 U , where
q = ε,εM in (a) and (e), and δq = 10−4 U , where q = tl ,tr in (c) and (e), for the left column and tl = 0.22 U,tr = 0.15 U,δq = 10−5 U , where
q = ε,εM in (b) and (f), and δq = 10−6 U , where q = tl ,tr in (d) and (f), for the right column. For the scale of |δωx | we used an explicit value
of U = 1 meV.
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In the second part of the paper, we presented a full
description of the coupling between the qubit and a high-
finesse transmission line cavity, taking both basic alignments
of connecting the physical qubit and the cavity into account,
an asymmetric one being the intuitive where the first and the

last QDs are on opposite potentials with a constant electric
field. For the symmetric coupling, both outer QDs are on
the same potential while the center QD is connected with
the transmission line of the cavity. For both alignments,
we have provided a detailed map of the coupling strength

FIG. 9. Comparison of the dephasing time Tϕ as a function of the detuning parameters ε and εM for symmetric and asymmetric tunnel
coupling. In the top row [(a) and (b)] we consider charge noise only from ε, in the center row [(c) and (d)] we consider charge noise only
from εM , and in the bottom row [(e) and (f)] we consider charge noise from both detuning parameters, ε and εM , simultaneously, while we
choose the parameter settings identical in each column. The left column comprises the results for symmetric tunneling, while the right column
repeats the results for asymmetric tunneling given in Fig. 3(a) and Figs. 7(a) and 7(c). The black dots denote DSS. Parameters are set as
follows: tl = tr = t = 0.02 U for the left column and tl = 0.022 U,tr = 0.015 U for the right column. Furthermore, we set Aq = (10−3 U )2,
where q = ε in (a) and (b), q = εM in (c) and (d), and q = ε,εM in (e) and (f). For the scale of Tϕ , we used an explicit value of U = 1 meV;
note that Tϕ scales inversely proportional with U .
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in parameter space and derived analytical results inside the
(1,1,1) charge regime fully agreeing and extending previous
results where they exist. Additional features only appearing
in the extended model were discussed. The best working
points for the asymmetric alignment were located near the
(2,0,1) ↔ (1,0,2) and (1,2,0) ↔ (0,2,1) charge transitions
(the exact position depending on the parameter setting)
featuring the top and bottom DSSs as favorable choices.
For the symmetric alignment, these points turn out to be
less favorable within the scope of our model, and working
points near the (1,1,1) charge transitions should be favored
in order to obtain decent coupling strength combined with
long coherence of the qubit. In a direct comparison assum-
ing identical noise, the asymmetric coupling is beneficial
due to the stronger qubit-cavity coupling. However, for the
symmetric architecture, we expect an additional influence of
two-photon processes, which are beyond the scope of this
paper.
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APPENDIX A: LONGITUDINAL NOISE COUPLED ONLY
THROUGH A SINGLE NOISY PARAMETER

In Fig. 7, the dephasing times are plotted considering the
case in which charge noise is coupled to the qubit through only
a single noisy parameter for two different parameter settings.
Comparing the plots, we find that the resulting dephasing times
for detuning noise in ε and εM are mirror symmetric to each
other with the symmetry axis given by ε = εM , while there is
no such symmetry axis for tunneling noise in the general case
tl �= tr . The SSS for detuning noise are located on a serpentine
vertical or horizontal line with the crossing points given by
the DSS. For tunneling noise (tl or tr ) we find that the SSS are
located on a narrow curve connecting the top DSS and the right
DSS as well as the right DSS and the bottom DSS. A zoom
in, however, reveals that the DSSs are not directly located on
the line. More precisely, the SSS for tunneling noise in tl (tr )
are slightly shifted to the right (left) in parameter space. In

contrast to detuning noise, there exist no crossing points for
the SSS in tunneling noise.

APPENDIX B: TRANSVERSAL NOISE

In Fig. 8, we plot the transversal effect of charge noise for
the same parameter settings as for longitudinal noise. Since
the dephasing time cannot be calculated easily for transversal
noise, we plot instead δωx = ∑

q �=p |δωx,q | + |δωx,p| with
q,p ∈ {ε,εM,tl,tr} and δωx,q given in Sec. III A, which is a
good measure for the susceptibility of the noise.

In Fig. 8, the combined effects of only noisy detuning
(top row), only noisy tunnel coupling (center row), and
the combined effects of two noisy detuning and tunneling
parameters (bottom row) are shown. Comparison leads to
results similar to those for longitudinal noise. The well-
protected spot in the center of the (1,1,1) charge configuration
considering only detuning noise fades away in the bottom row
due to the influence of tunneling noise and becomes as well
protected against transversal charge noise as its surroundings.
Since the outer DSSs are located at charge transitions, they are
very susceptible to transversal noise, and, therefore, they will
dephase much faster than other points. A zoom-in, however,
reveals that the outer DSSs are not located at a maximum,
although they are much more susceptible than the center DSS
to transversal charge noise.

APPENDIX C: DEPHASING FOR SYMMETRIC
TUNNEL COUPLING

In Fig. 9 we plot the resulting dephasing time Tϕ for
symmetric tunnel couplings tl = tr = t (left column) and
asymmetric tunnel coupling tl �= tr (right column), taking
into account only the noise from the detuning parameters.
Comparing these two situations, we find that in the case of
only a single noisy parameter ε (εM ) and symmetric tunneling,
the SSS can be found on a straight vertical (horizontal) line
through the center DSS in contrast to the serpentine vertical
(horizontal) lines for asymmetric tunneling. Taking both noisy
parameters into account, this leads to a single crossing point
of the two lines at the center DSS in the symmetric case (tl =
tr = t) while we find an elongated area in the asymmetric case
(tl �= tr ) for the center DSS. Therefore, the asymmetric case
allows for greater flexibility in choosing the point of operation
while still being protected against longitudinal charge noise.
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