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Defect centers in diamond are exceptional solid-state quantum systems that can have exceedingly long electron
and nuclear spin coherence times. So far, single-qubit gates for the nitrogen nuclear spin, a two-qubit gate with a
nitrogen-vacancy (NV) center electron spin, and entanglement between nearby nitrogen nuclear spins have been
demonstrated. Here, we develop a scheme to implement a universal two-qubit gate between two distant nitrogen
nuclear spins. Virtual excitation of an NV center that is embedded in an optical cavity can scatter a laser photon
into the cavity mode; we show that this process depends on the nuclear spin state of the nitrogen atom. If two
NV centers are simultaneously coupled to a common cavity mode and individually excited, virtual cavity photon
exchange can mediate an effective interaction between the nuclear spin qubits, conditioned on the spin state of
both nuclei, which implements a universal controlled-Z gate. We predict operation times below 10 μs, which is
four orders of magnitude faster than the decoherence time of nuclear spin qubits in diamond.
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I. INTRODUCTION

Substantial experimental progress has been made in demon-
strating the viability of nuclear spins coupled to nitrogen-
vacancy (NV) centers in diamond as qubits. Compared with
the NV electron spin, the nuclear spin offers for superior
coherence properties, but so far, a scheme for the necessary
two-qubit gates is lacking. Candidate nuclear spins are the
intrinsic nitrogen nuclear spin ( 14N or 15N) [1] or incidental
proximal nuclear spins (e.g., 13C) [2]. Decoherence times
of T ∗

2 ≈ 11 ms at low temperature (<10 K) have been
measured [3], and elementary single-qubit operations were
implemented, including manipulation [1,4–6], initialization
[1,4,7–9], and high-fidelity single-shot readout [1,8–11]. It
was further demonstrated that the nitrogen nuclear spin can be
a functioning part of a small quantum register [3,9,11–14] or
can act as a quantum memory to store and later retrieve the
NV electron spin state [15]. Nuclear spin entanglement has
been studied both experimentally [3,16–19] and theoretically
[20–23]. However, a deterministic long-distance coupling
scheme that does not utilize prior electron entanglement
has not yet been demonstrated. The coupling of nuclear
spins is fundamentally required in the context of quantum
information processing, e.g., to perform universal quantum
computation [24].

In this article, we develop and analyze a mechanism to
optically generate a controlled quantum gate between two
distant nitrogen nuclear spins (Fig. 1) that works at low
temperatures. The coupling between the nuclear spins is
achieved by exchanging virtual cavity photons among two
NV centers. External laser photons incident on each NV
center can be scattered into the cavity mode, or vice versa,
by exciting electronic Raman-type transitions between the
NV ground and excited state. We find that in the appropriate
parameter regime, the scattering process depends on the
nitrogen nuclear-spin state and can be completely suppressed
for a specific nuclear spin configuration by properly tuning
the laser frequency. This nuclear-spin-dependent scattering
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mediates an effective interaction between two nitrogen nuclear
spins. For a specific interaction time, a universal controlled-Z
(CZ) gate is implemented, which is equivalent to CNOT up to
single-qubit operations. A quantitative analysis of the proposed
mechanism yields gate operation times of 10 μs, which is about
four orders of magnitude shorter than the decoherence time
of several milliseconds for the nitrogen nuclear spin. While
cavity-mediated coupling between NV electron spins relies on
the zero-field splitting [25], the coupling of NV nuclear spins
has its physical origin in the hyperfine interaction.

II. MODEL

We start our analysis by describing a single NV center
coupled to a single cavity mode and to an external laser
field. The extension to two NV centers interacting with the
same cavity mode, as required for the two-qubit gate, is
straightforward and will be given later. To model the combined
system of a single NV center, an optical cavity, and the external
laser, we use the time-dependent Hamiltonian

H (t) = HNV + Hc + HL(t), (1)

where HNV = He + Hn + Hhf describes the electron (e) and
nuclear (n) spin systems coupled through hyperfine (hf)
interactions, Hc the coupling to the cavity, and HL(t) the
interaction with the laser field. In the presence of an external
magnetic field B = Bez along the defect symmetry axis (z
axis), the electron spin (S) and nuclear spin (I) Hamiltonians
are given by (� = 1) [25–27]

He = γeBSz + DS2
z − 1

2�S2
z τz + 1

2Egτz, (2)

Hn = −γnBIz + QI 2
z . (3)

Here, γe/2π = 2.803 MHz/G is the electron gyromagnetic
ratio, Eg = 1.945 eV is the energy gap between ground and
excited state, and D = (Dgs + Des)/2 and � = Dgs − Des

with the zero-field spin splittings of the ground (Dgs/2π =
2.88 GHz) and excited state (Des/2π = 1.42 GHz). The
nuclear gyromagnetic ratio is denoted γn and Q is the nuclear
electric quadrupole coupling (see Table I). To describe the
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FIG. 1. (a) NV center formed by a substitutional nitro-
gen (N) atom next to a vacancy (V) in the diamond lattice.
(b) Magnetic field (B) direction along the defect axis (z) and N
nuclear spin I. (c) Interaction between two NV centers (NV 1 and NV
2) that are coupled to the same mode ωc of an optical cavity. The NV
centers are excited by two lasers of frequency ωL. Scattering of a laser
photon mediates an effective interaction between NV 1 and NV 2.
(d) Hyperfine levels mI = 0, ±1 of the mS = −1 subspace for 14N
in the ground (gs) and excited (es) states, qubit states are indicated.
δL and δc are the detunings of the laser frequency ωL from the mI = 0
orbital transition energy Eg − � and from the cavity frequency ωc.
(e) Hyperfine levels mI = ±1/2 for 15N.

orbital degree of freedom, we use Pauli matrices τi (i = x,y,z),
and choose the ground and excited states as τz eigenvectors
with eigenvalues −1 and +1, respectively. We only consider
the lower orbital branch of the excited state doublet (Ey). This
is justified by naturally occurring strain fields of 10 GHz and
more [28], which split the excited state into two well-separated
orbital branches.

Hyperfine interaction in the excited state is modeled by
a diagonal hyperfine tensor, which has the same form as in
the ground state [29,30]. However, since the electron density

TABLE I. Relevant nuclear-spin parameters for the NV center.

Parameter 14N 15N

Nuclear spin I 1 1/2
γn/2π 0.308 kHz/G [33] −0.432 kHz/G [33]
Q/2π −5 MHz [1,4,34] 0
Ags/2π −2.2 MHz [1,4,5,34] 3.0 MHz [32,34]
Aes/2π 40 MHz [4] 61 MHz [32]

at the nitrogen site is larger in the excited state [31], the
hyperfine interaction is about 20 times stronger compared to
the ground state according to measurements under ambient
conditions [4,32]. The difference δA between the hyperfine
coupling in the ground and the excited state forms the basis
of the nuclear-spin-dependent light-scattering effect, which
we predict. Working at magnetic field strengths away from
the ground- and excited-state level anticrossings, electron-
nuclear spin flip-flop processes are energetically suppressed.
Therefore, we neglect the transverse part of the hyperfine
tensor and only include the longitudinal coupling. Denoting
the hyperfine coupling strengths by Ags and Aes for the ground
and excited state (Table I), we arrive at

Hhf = ASzIz + 1
2δA τzSzIz, (4)

where A = (Aes + Ags)/2 and δA = Aes − Ags.
We consider the NV electronic orbital transition between

the ground and excited state to be coupled to a single mode of
the optical cavity, which, in the rotating-wave approximation,
is described by Hc = ωca

†a + g(τ+a + τ−a†), where ωc is the
cavity frequency, a(†) the cavity-photon annihilation (creation)
operator, g the coupling strength (which can be assumed real),
and τ± = (τx ± iτy)/2. The external laser is described by a
classical field of frequency ωL that excites electronic orbital
transitions between states having the same spin projections
mS and mI , HL(t) = �e−iωLt τ+ + �∗eiωLt τ−. Here, � is the
complex Rabi frequency that depends on the phase of the laser
field. The Hamiltonian H (t) can be made time-independent
by transforming into a rotating frame, H ′ = eiξ tH (t)e−iξ t −
ξ with ξ = ωL(a†a + τz/2), and we obtain H ′ = H ′

e + Hn +
Hhf + H ′

c + H ′
L. The transformed part H ′

e of the electronic
Hamiltonian is obtained by replacing Eg with the detuning
δ̃L = Eg − ωL in He. In the Hamiltonian Hc, the transformation
causes a shift of the cavity frequency to δc = ωc − ωL, which
is the detuning of the laser from the cavity mode. The laser
Hamiltonian HL(t) becomes time-independent, H ′

L = �τ+ +
�∗τ−.

III. NUCLEAR-SPIN DEPENDENT SCATTERING

Virtually exciting the NV center by the external laser field
can finally lead to an excitation of the cavity mode through the
coupling g. We describe this process by using quasidegenerate
perturbation theory in terms of a Schrieffer-Wolff (SW)
transformation [35,36] to eliminate the intermediate virtual
transition to the excited state, and we obtain a model that
effectively describes the scattering of a laser photon into
the cavity mode, and vice versa, that particularly depends
on the nitrogen nuclear spin projection mI . It is exactly this
spin-dependent scattering that eventually enables a conditional
two-qubit quantum gate.

To implement the SW transformation, we construct an anti-
Hermitian operator S such that [S,H0] = V (see Appendix B
for details), where the part H0 = H ′

e + Hn + Hhf + δca
†a only

acts on the ground- and excited-state manifold, respectively,
and V describes transitions between these two Hilbert sub-
spaces. In the transformed Hamiltonian H̃ = e−SH ′eS , we
keep the lowest order in the interaction V and continue with
the effective Hamiltonian H̃ ≈ H0 + [V,S]/2. The effective
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ground-state Hamiltonian becomes

H̃ (gs) = −(Ags + γnB)Iz + QI 2
z + δca

†a

+ 1
2 [g�((δA Iz − δL)−1 + (δA Iz + δc − δL)−1)a†

+ H.c.]. (5)

Here, we restrict our consideration to the mS = −1 subspace,
and define the detuning δL = δ̃L − � of the laser frequency
from the mI = 0 orbital transition (Fig. 1). We omit all constant
terms and neglect small energy shifts proportional to g2

and |�|2.
On the basis of previous experimental work [3,5,15] using

the 14N nuclear spin as a qubit, we choose the nuclear
spin sublevels |mI = +1〉 = |1〉 and |mI = 0〉 = |0〉 as the
computational basis. We can neglect the mI = −1 state
because the transition frequency between these two levels is
well separated from other transitions [5]. From Eq. (5), one
can see that the effective coupling of the NV center to the
cavity via the virtual laser excitation depends on the spin state
of nitrogen nucleus and can, e.g., be completely suppressed for
one of the two spin states. This is the case if the laser frequency
is chosen such that, e.g., δL = δc/2, where only scattering
from the mI = +1 state is possible. By using Iz = |1〉〈1| and
1 = |1〉〈1| + |0〉〈0|, we find the qubit Hamiltonian

H̃ (qubit) = (Q − Ags − γnB)|1〉〈1| + δca
†a

+ g′|1〉〈1|a† + (g′)∗|1〉〈1|a, (6)

with an effective coupling strength

g′ = g�
δA

δA2 − (
δc
2

)2 . (7)

Scattering only from the mI = 0 state is possible for δL =
δA + δc/2 occurring with the same effective coupling strength
g′ [Eq. (7)]; however, we concentrate on mI = +1 scattering
in the following.

IV. SPIN-SPIN INTERACTIONS

To understand the scattering mechanism of a laser photon
into the cavity mode qualitatively, we so far neglected spin-
mixing terms in the lower branch of the excited state doublet
[26,32,37–39]. However, to make quantitative predictions of
the effective scattering process, we take into account the
fine structure of the excited state manifold. So far, electronic
spin-spin interactions were only incorporated by the zero-field
splittings Dgs and Des. In the limit of high strain considered
here, the two branches of the excited-state orbital doublet split
and anticrossings in the lower branch mix spin states with
different quantum numbers mS . The Hamiltonian describing
the spin mixing is [27,39]

Hs = 1

2
(1 + τz)

[
�1

2

(
S2

x − S2
y

) − �2√
2

(SxSz + SzSx)

]
, (8)

where transitions between the excited state orbitals have
been neglected due to the high strain, and the fine structure
parameters are given by �1/2π = 1.54 GHz and �2/2π =
0.154 GHz [39]. The effective coupling strength g̃ analogous
to Eq. (7) can be obtained by adding Hs to the bare NV
Hamiltonian HNV, and then performing the SW transformation.
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FIG. 2. (a) Effective coupling strength g̃ as a
function of the cavity detuning δc for �/2π =
50 MHz, g/2π = 50 MHz, and B = 150 G. (b) Ratio f (δc) = g̃/g′

of coupling strengths with (g̃) and without (g′) spin-spin interaction
in the excited state. Magnetic field strengths B are chosen such that
mI is a good quantum number in the ground and excited state.

In doing so, we assume the cavity to be populated by at most
one photon, and only if the NV center is in the ground state. In
the excited state, we need to include all spin states mS = 0, ±1.
The effective ground-state Hamiltonian in the case of mI = +1
scattering has the same form as given in Eq. (6) with a different
coupling strength g̃ = g′f (δc). Explicit values for g̃ and for
the detuning-dependent part f (δc) are given in Fig. 2.

V. CONTROLLED QUANTUM GATE

For the two-qubit gate, we consider two NV centers (i =
1,2) coupled to the same cavity mode and each individually
driven by a laser of frequency ωL [Fig. 1(c)] [40]. In the
following, we keep only the lowest order of the interaction
parts, and consider mI = +1 scattering on both NV centers.
Furthermore, we assume detunings δL and δc such that the
cavity is excited only virtually, which, in turn, leads to
an effective interaction between the two NV centers. To
describe this interaction, we apply a second SW transfor-
mation to H̃

(gs)
2 = δca

†a + ∑2
i=1 (Q − Ags − γnB)|1〉i〈1| +

(g̃i |1〉i〈1|a† + H.c.) to eliminate the cavity mode by choosing
S = −∑2

i=1(g̃i/δc|1〉i〈1|a† − H.c.), which leads to an effec-
tive Hamiltonian Heff = e−SH̃

(gs)
2 eS , where again only the

lowest order contribution of the off-diagonal elements is kept
(see Appendix C for details). Heff comprises single-qubit terms
H

(i)
eff = (Q − Ags − γnB − |g̃i |2/δc)|1〉i〈1|, and a two-qubit

interaction term,

Hint = −g12|11〉〈11|. (9)

Here, |11〉 = |1〉1|1〉2 is the nuclear spin state of both NV
centers 1 and 2, and the effective two-qubit coupling strength
g12 is found to be

g12 = 2
|g̃1||g̃2|

δc
cos(φ1 − φ2), (10)

where φi denotes the phase of the ith laser field, �i = |�i |eiφi .
Quantitative predictions of g12 are plotted in Fig. 3(a).

Since [H (i)
eff ,Hint] = 0, the time evolution U generated by

the Hamiltonian Heff can be written as

U (t) = e−iHeff t = [U1(t) ⊗ U2(t)]U12(t), (11)
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FIG. 3. (a) Effective two-qubit coupling strength g12 between
14N and 15N nuclear spins, respectively, as a function of δc for
Rabi frequencies �1/2π = �2/2π = 50 MHz and cavity couplings
g1/2π = g2/2π = 50 MHz. (b) Time τCZ to generate a CZ gate
between the two nuclear spins as a function of δc using the same
parameter values. All calculations performed at B = 150 G.

where Ui(t) is a single-qubit rotation of nuclear spin i

and U12(t) describes a two-qubit operation generated by
the interaction part Hint. In Eq. (11), the time evolution of
the cavity field has been omitted, since the nuclear spin
degree of freedom has been decoupled from the cavity field
by the above transformation. In the following, we only
concentrate on the two-qubit interaction part, and disregard
single-qubit rotations since they can be undone afterwards,
e.g., by off-resonant excitation of the ground-state electronic
spin transition, thereby implementing a phase gate on the N
nuclear spin [5] or direct driving of the nuclear spin transitions
[41].

For an operation time of τCZ = π/g12, a CZ gate is
implemented on the two nuclear spin qubits,

U12(τCZ) = |00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|, (12)

from which CNOT can be created using additional Hadamard
gates [24]. In Fig. 3(b), values of τCZ are shown for different
Rabi frequencies �. As the main result of our paper, we
find operation times below 10 μs. In our calculations, we
assumed large detunings |δc| � |g̃i | and |δL| � |�| to justify
the effective model used.

VI. LIMITS ON GATE FIDELITY

In this section, we identify possible mechanisms that may
reduce the fidelity of the intended CZ gate. We find that finite
linewidths of the excited-state hyperfine levels are the main
source of fidelity reduction, and we give a detailed analysis to
quantify this effect. The short lifetime of the excited state (8–
12 ns [42]) and spectral diffusion due to surrounding impurities
cause the excitation energy to fluctuate [43]. Especially for
synthesized type Ib diamond with implanted NV centers, e.g.,
used to fabricate nanodiamonds, spectral diffusion becomes
apparent due to a higher concentration of nitrogen impurities.
However, it was demonstrated that stable excitation lines of NV
centers can be observed for both type IIa bulk diamond [43,44]
and synthesized type Ib diamond [45], where the linewidth is
only limited by the finite lifetime of the excited state. We
therefore include only the effect of lifetime broadening in our
analysis, which results in a linewidth of � ≈ 13 MHz [43,44].

The effect of finite excitation linewidths is that the
nuclear-spin-dependent scattering mechanism explained in
Sec. III does not work perfectly. Complete suppression of
photon scattering for one of the nuclear-spin states cannot be
guaranteed if the excited state has a finite linewidth and there
will be some residual scattering as well if the nuclear-spin
qubit is in the respective other state. Eventually, this effect
leads to the implementation of a nonperfect CZ gate, for which
we quantify the fidelity in the following.

In general, the Hamiltonian H̃
(gs)
2 contains scattering matrix

elements η(i)
ν for both qubit states ν = 0 and 1,

H̃
(gs)
2 = δca

†a +
2∑

i=1

(Q − Ags − γnB)|1〉i〈1|

+ (
η

(i)
1 |1〉i〈1|a† + η

(i)
0 |0〉i〈0|a† + H.c.

)
. (13)

We incorporate finite excited-state linewidths by assuming the
scattering matrix elements to depend on the laser detuning
independently, i.e.,

η(i)
ν ≡ η(i)

ν

(
δ

(i)
L,ν

)
, (14)

because the detuning δ
(i)
L,ν of the ith laser from the respective

optical transition energies varies independently for each
transition. The line shape of the excited-state levels directly
transforms into a probabilistic distribution of laser detunings,
for which we assume a Lorentzian probability density function
of the form [4,32,43–46]

p
(
δ

(i)
L,ν

) = 1

π

�
2(

δ
(i)
L,ν − δ̄

)2 + (
�
2

)2 , (15)

where � denotes the linewidth and δ̄ the mean detuning,
assumed to be equally large for each transition. One obtains
perfect suppression of scattering for one of the nuclear spin
states if the detuning is equal to δ̄ and therefore a perfect
CZ gate; i.e., we have η

(i)
0 (δ̄) = 0, which corresponds to

the case discussed before. Following the procedure given in
Sec. V, we eventually obtain a different two-qubit operation
U ′

12(τCZ,{δ(i)
L,ν}) for finite deviations δ

(i)
L,ν from the mean value δ̄

after the same operation time τCZ.
The fidelity F of the actually implemented quantum gate

with respect to a perfect CZ gate UCZ ≡ U12(τCZ) is quantified
via [47]

F
({

δ
(i)
L,ν

}) = 4 + ∣∣Tr
[
U

†
CZU

′
12

(
τCZ,

{
δ

(i)
L,ν

})]∣∣2

20
. (16)

To include the effect of finite linewidths, we calculate an
average fidelity,

F̄ =
∫ (∏

i,ν

dδ
(i)
L,ν p

(
δ

(i)
L,ν

))
F

({
δ

(i)
L,ν

})
. (17)

The averaging process is performed numerically by choosing a
set of random values for the four detunings that are distributed
according to Eq. (15) and then calculating the fidelity for
those values. We find that averaging over a sufficiently large
number of such sets of detunings leads to good convergence
of the average. For our proposed gate mechanism, one can still
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achieve fidelities that are larger than 91 (92)% for 14N ( 15N)
nuclear spins, including the finite linewidth of the excited state.

An increase in fidelity could be achieved by using NV cen-
ters with longer excited-state lifetimes and therefore smaller
linewidths. Recent studies on NV centers in nanodiamonds
showed increased excited-state lifetimes between 16 and 29 ns
[48]. Provided that those NV centers exhibit a stable excitation
line [45], increased average fidelities up to 96 (97)% for 14N
( 15N) nuclear spins could be achieved for the longest lifetime
of 29 ns.

We estimate level broadening to be the main source
of gate errors. The probability for cavity loss is ploss ≈
(|g̃i |/δc)2(1 − e−κt ) ≈ (|g̃i |/δc)2, where κ is the cavity-loss
rate and (|g̃i |/δc)2 � 0.04% is the probability for cavity popu-
lation by a single photon for parameter values used previously.
If we assume perfect fidelity if no photon is emitted and zero
fidelity if the photon is lost, the average fidelity with respect
to this mechanism is 1 − ploss and we can thus neglect cavity
decay. Another source of errors is spontaneous emission from
the excited states. The probability for populating the excited
state is (|�|/δL)2 � 1%, and for the same reasoning as before
we can also neglect fidelity loss due to spontaneous emission.

VII. CONCLUSIONS

Nitrogen nuclear spins in diamond have proved to be highly
promising candidates to physically realize qubits. We have
presented a theoretical proposal for the implementation of
a controlled optical cavity-mediated quantum gate between
two nitrogen nuclear spin qubits intrinsic to NV centers in
diamond. The robustness of two-qubit gates that are generated
by an effective interaction using an optical cavity has been
demonstrated in previous works, e.g., for NV center electron
spins [25,49–53].

The derived scheme requires lifetime-limited line broaden-
ing in the excited state and therefore works at low temperatures.
Gate operation can be achieved within 10 μs or less, which
is about four orders of magnitude below the nuclear-spin
decoherence time. Our proposal requires the interaction
between a NV center and an optical cavity to be in the strong
coupling regime of cavity QED. Using whispering gallery
modes of silica microsphere cavities with large quality factors
(about 108), it has been demonstrated experimentally that
single NV centers can be strongly coupled to cavities. Further
progress in the development of optical cavities exceeding
quality factors of 105 has recently been achieved for photonic
crystal cavities in bulk diamond [54], which are promising
elements of diamond-based nanophotonics [55,56].

In addition to the presented findings, an equivalent analysis
for the 15N nuclear spin with I = 1/2 shows that the proposed
scheme also works for this isotope if the computational
basis is chosen as |1〉 = |mI = +1/2〉 and |0〉 = |mI = −1/2〉
[Fig. 1(e)]. We find the same effective scattering rate g′
[Eq. (7)] for mI = ±1/2 scattering for laser detunings δL =
(δc ∓ δA)/2. Including spin-spin interactions, the effective
two-qubit coupling strength g12 and the gate time τCZ show
qualitatively the same behavior as for the 14N nuclear spin,
and are also depicted in Fig. 3.

During the fast electronic excitation cycles, the nuclear
spins are subject to a time-varying hyperfine interaction.

However, it has been shown that the effect on the nuclear-
spin coherence is negligibly small and coherence can be
preserved in the presence of incoherent spontaneous emission
processes from the NV center excited state [12,57]. Together
with elementary and experimentally demonstrated single-qubit
operations, the realization of a universal CZ gate makes the
nitrogen nuclear spin valuable for quantum computation in
addition to its remarkable quality as a quantum memory [15].
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APPENDIX A: NV CENTER HAMILTONIAN

The form of the NV center Hamiltonian HNV [Eqs. (2)–(4)]
can be obtained from the known 3A2 ground and 3E excited-
state Hamiltonians. The ground state (gs) of a single NV center
is described by the Hamiltonian Hgs [26,27,38],

Hgs = DgsS
2
z + γeB · S − γnB · I

+ A⊥
gs(SxIx + SyIy) + A‖

gsSzIz + QI 2
z . (A1)

Here S and I denote the electron and nuclear spin, respectively.
Dgs is the zero-field splitting separating the mS = 0 state from
the mS = ±1 states at zero magnetic field, γe(n) is the electron
(nuclear) gyromagnetic ratio, and Q the nuclear electric
quadrupole coupling. Hyperfine interaction in the ground state
is described by a transversal (A⊥

gs) and longitudinal (A‖
gs)

part. However, we assume magnetic field strengths that are
sufficiently far away from the ground-state level anticrossing
such that the energy splitting of the electron-spin states is much
larger than the transversal component of the hyperfine tensor
A⊥

gs and therefore, electron-nuclear spin flip-flop processes are
energetically suppressed. The terms proportional to A⊥

gs can

thus be neglected in our description and we denote A
‖
gs ≡ Ags.

We model hyperfine interaction in the excited state as
well through a diagonal hyperfine tensor of a form equivalent
to the ground state [29,30]. Accordingly, the excited-state
Hamiltonian Hes has the same structure as the ground-state
Hamiltonian,

Hes = DesS
2
z + γeB · S − γnB · I

+A⊥
es(SxIx + SyIy) + A‖

esSzIz + QI 2
z , (A2)

where additional terms originating from spin-spin interactions
(see Sec. IV) are so far not included but are taken into account
for quantitative analyses. Spin states are also split in the excited
state by a different zero-field splitting Des and the hyperfine
coupling constants are different due to a redistribution of
electron density in the excited state [4,31,32]. We neglect
transversal hyperfine coupling by assuming magnetic field
strengths also sufficiently far away from the excited-state
level anticrossing and denote A

‖
es ≡ Aes in the main text.

To use a single Hamiltonian for the NV center, we introduce
Pauli matrices τi (i = x,y,z) that operate on the orbital degree
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of freedom [25], i.e.,

τz|es〉 = |es〉, (A3)

τz|gs〉 = −|gs〉, (A4)

and |gs〉 (|es〉) denotes the electronic orbital ground (excited)
state. The Hamiltonian HNV of a single NV center is thus given
by

HNV = 1
2 (1 − τz)Hgs + 1

2 (1 + τz)(Hes + Eg)

= He + Hn + Hhf + 1
2Eg, (A5)

where Eg denotes the transition energy between the ground and
excited state. The Hamiltonian HNV obtains the form given in
the main text by assuming a magnetic field along the defect
symmetry axis, i.e., B = Bez, and by neglecting the constant
energy shift Eg/2 in Eq. (A5).

APPENDIX B: SCHRIEFFER-WOLFF TRANSFORMATION
TO ELIMINATE EXCITED STATE

We separate the Hamiltonian H ′ into a block-diagonal
part H0 that only acts within the ground- and the excited-
state manifold, respectively, and an off-diagonal part V that
connects these two manifolds,

H ′ = H0 + V. (B1)

To implement the Schrieffer-Wolff (SW) transformation
[35,36], we construct a unitary transformation exp(−S) with
some anti-Hermitian matrix S to obtain a new Hamiltonian H̃ ,

H̃ = e−SH ′eS, (B2)

which contains no matrix elements that connect the ground
and the excited states up to a desired order in V . If we choose
the anti-Hermitian operator S in such a way that

[S,H0] = V (B3)

holds, the leading order in V cancels. If we keep the lowest
order in V , the Hamiltonian H̃ is approximately given by

H̃ ≈ H0 + 1
2 [V,S]. (B4)

The block-diagonal part H0 of H ′ is given by

H0 = H ′
e + Hn + Hhf + δca

†a, (B5)

and the interaction terms are

V = g(τ+a + τ−a†) + �τ+ + �∗τ−. (B6)

From the condition in Eq. (B3), we find

S = �
(
�S2

z − �hfSzIz − δ̃L

)−1
τ+ − H.c.

+ g
(
�S2

z − �hfSzIz + δc − δ̃L

)−1
τ+a − H.c., (B7)

and the effective Hamiltonian for the decoupled ground-state
manifold becomes

H̃ (gs) = −(Ags + γnB)Iz + QI 2
z + δca

†a

+ 1
2 [g�((�hfIz − δL)−1

+(�hfIz + δc − δL)−1)a† + H.c.]. (B8)

Here, we restrict our consideration to the mS = −1 subspace,
and define the detuning δL = δ̃L − � of the laser frequency
from the mI = 0 orbital transition. We omit all constant terms
and neglect small energy shifts proportional to g2 and |�|2.

APPENDIX C: SW TRANSFORMATION TO ELIMINATE
VIRTUAL PHOTON

We start from a Hamiltonian H̃
(gs)
2 that describes two NV

centers (i = 1,2) coupled to a common cavity mode and each
driven by a laser of frequency ωL,

H̃
(gs)
2 = δca

†a +
2∑

i=1

(Q − Ags − γnB)|1〉i〈1|

+ g̃i |1〉i〈1|a† + g̃∗
i |1〉i〈1|a, (C1)

where we consider mI = +1 scattering on both NV centers
and assume detunings δL and δc, such that the cavity is excited
only virtually. The effective coupling strength g̃i is given by

g̃i = g′
if (δc) = gi�i

δA

δA2 − (
δc
2

)2 f (δc), (C2)

where gi is the coupling strength of NV center i to the cavity
and �i is the Rabi frequency of the ith laser field.

To derive an effective interaction between the two nuclear
spin qubits, we apply a second SW transformation to eliminate
the cavity mode, i.e., to decouple the subspaces containing zero
and one cavity photon, by choosing

S = −
2∑

i=1

(
g̃i

δc
|1〉i〈1|a† − H.c.

)
. (C3)

We obtain an effective Hamiltonian through the unitary
transformation

Heff = e−SH̃
(gs)
2 eS ≈

2∑
i=1

H
(i)
eff + Hint + δca

†a, (C4)

where we also keep terms up to the lowest order in the
off-diagonal matrix elements. The Hamiltonian Heff contains
terms that only act on a single nuclear spin i,

H
(i)
eff =

(
Q − Ags − γnB − |g̃i |2

δc

)
|1〉i〈1|, (C5)

and an interaction part Hint that couples the two nuclear spin
qubits,

Hint = −g12|11〉〈11|. (C6)

The last term in Eq. (C4) is zero in the considered subspace
that contains no photons.
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