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We theoretically analyze a system where two electrons are trapped separately in two quantum dots on a sus-
pended carbon nanotube (CNT), subject to external ac electric driving. An indirect mechanically induced coupling
of two distant single electron spins is induced by the interaction between the spins and the mechanical motion of
the CNT. We show that a two-qubit iSWAP gate and arbitrary single-qubit gates can be obtained from the intrinsic
spin-orbit coupling. Combining the iSWAP gate and single-qubit gates, maximally entangled states of two spins
can be generated in a single step by varying the frequency and the strength of the external electric driving field. The
spin-phonon coupling can be turned off by electrostatically shifting the electron wave function on the nanotube.
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I. INTRODUCTION

As mechanical resonators with potentially high Q factors
and large resonance frequencies [1–3], ultraclean single wall
carbon nanotubes (CNTs) are promising systems for studying
the coupling of the electron degrees of freedom to the
mechanical motion of the resonator [4–9].

On the other hand, the properties of CNT such as valley
degeneracy and the curvature induced spin-orbit interaction
attract much attention [10–12]. The two valleys in the electron
energy spectrum distinguish semiconducting CNT from III-V
semiconductors [13]. Qubits can be defined as the electron
(hole) spins or the valleys in quantum dots (QDs) in CNT
[14–16]. The spin-orbit interaction due to the curvature of
CNTs has been studied both in theory [17–22] and observed
in the laboratory [23,24]. The spin-orbit interaction plays an
important role as a source of spin decoherence [25] and at
the same time it allows the electrical control of the spin in
bent CNT in a magnetic field as well as cooling of the CNT
resonator using spin-polarized current [26,27]. Furthermore,
the coupling of the spin in a single QD and the deflection of the
CNT was studied [28], and the spin-phonon coupling, which is
induced from the spin-orbit coupling where the tangent vector
instantaneously depends on the phonon displacement, provides
a new platform for operating spins and quantized flexural
modes [29]. The readout of the resonator vibration frequency
and the detection of the single electron spin in the QD have
been proposed based on the spin-phonon coupling [30,31].

Previously, we have proposed arbitrary single-qubit gates
using an electron spin in a single QD which lies in a
suspended CNT making use of the spin-phonon coupling of the
mechanical motion of the CNT [32]. For quantum information
and quantum computation, one-qubit and two-qubit gates are
universal [33]. Unitary operations acting on n qubits are called
n-qubit gates. Individual two-qubit gates that can form a
universal set in combination with single-qubit gates are, e.g.,
controlled-NOT (CNOT),

√
SWAP, and iSWAP which is given by

the matrix [34–36]

iSWAP =

⎛
⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎠ (1)

in the basis |00〉 , |01〉 , |10〉 , |11〉. There are approaches
related to inhomogeneous magnetic fields to produce universal
gates of spins and to achieve coupling of long distance spins in
nitrogen vacancy centers using mechanical resonators [37–39].
Compared with the use of inhomogeneous magnetic fields,
electric fields are easier to control temporally and spatially.
Universal quantum computation requires that arbitrary pairs
of two qubits can interact with each other. It is usually not
easy to fulfill this requirement because long distance coupling
can be very demanding. In the present paper we theoretically
study a two-qubit iSWAP gate and arbitrary single-qubit gates
in a nanomechanical scheme where two electrons are trapped
separately in two QDs on a suspended CNT. The indirect
coupling of two distant single-electron spins in two separated
dots is mediated by the vibrational motion of the CNT.
A single-step preparation of maximally entangled states is
obtained by combining the iSWAP gate and single-qubit gates.
All quantum gates proposed here can be controlled electrically.
We show that the spin-phonon coupling in each QD can
be turned off by electrostatically shifting the electron wave
function on the nanotube. We predict that arbitrary pairs of
QDs can be coupled through the spin-phonon coupling on
CNT with multiple QDs. When there are more than two QDs
in the CNT, it is possible to couple arbitrary pairs of distant
electron spins and at the same time turn off the spin-phonon
coupling in the other QDs.

This paper is organized as follows. In Sec. II the nanome-
chanical system and the model Hamiltonian are introduced. In
Sec. III a Schrieffer-Wolff transformation is applied to obtain
the effective Hamiltonian in spin space and to obtain the iSWAP

gate from the effective Hamiltonian. In Sec. IV we determine
the wave function of the qubit state by solving the Schrödinger
equation and in Sec. V we simulate numerically the fidelity of
the maximally entangled states in an open quantum system by
using a quantum master equation. In Sec. VI we describe how
to shift the electron wave function to turn off the spin-phonon
coupling.

II. MODEL

We assume that a doubly clamped, suspended CNT is fixed
on two supports at both ends [3,4] [see Fig. 1(a)]. Two QDs
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FIG. 1. (Color online) (a) Schematic of the nanomechanical sys-
tem where two quantum dots (QDs) lie in a doubly clamped,
suspended CNT which is fixed by two supports at two ends. QDs
are formed by the electronic potentials applied by the gate electrodes
No. 1, No. 5, and No. 9 to form two QDs. Here, we assume that
the third harmonic flexural excited mode of the CNT is excited. The
standing wave in each QD is asymmetric and has one single electron
trapped inside. The charged CNT is driven to vibrate along the x axis
by a pulsed external ac electric field applied by an antenna or the gate
electrodes. A magnetic field is applied along the z axis. (b) To switch
off the coupling between two QDs, the QDs can be electrostatically
shifted. The left QD between gates No. 1 and No. 3 as well as the right
QD between gates No. 5 and No. 7 are both left-right symmetric.

can be formed by applying proper voltages on gate electrodes
below the suspended CNT. We further assume that a voltage
is applied to gates No. 1, No. 5, and No. 9 so that the
electrons are prevented from tunneling out of the CNT or
from tunneling between QDs. The other gates can be used to
tune the resonance frequency of the CNT. We assume that two
electrons are trapped in two QDs [9], separately, and that an
external longitudinal magnetic field B‖ is applied along the
z axis of the CNT. An external ac electric field is applied by
an antenna on the top or on the gates to excite the vibration of
the charged CNT.

Here, two single-electron spins in two QDs are assumed to
couple to the vibrational motion simultaneously, hence these
two spins are indirectly coupled via phonon exchange. We
describe this system using the Hamiltonian

H = H0 + H1, (2)

H0 =
∑

i

�ωqi

2
σzi + �ωpa

†a, (3)

H1 = 2�λ(a + a†) cos(ωt) +
∑

i

�gi(a + a†)(σ+i + σ−i),

(4)

where i = 1,2 refers to two electrons in two separate QDs.
The pulsed driving electric field with strength λ is applied by
an external antenna or the back gates. The driving is applied
to obtain the rotation σx which corresponds to electron spin
resonance, as shown in Sec. III. To obtain an iSWAP gate, the
pulsed driving electric field needs to be off. The two spin
states cross at the magnetic field B∗ ≈ �so/(2μB) in the K

valley of the ground state of a single-electron QD in CNT

[29–32], where �so is the spin-orbit coupling strength and
μB is the spin magnetic moment. We choose these two spin
states as the qubit and assume that we are near the crossing
point. The Zeeman splitting energy between qubits induced by
the magnetic field Bi is �ωqi = gμB(Bi − B∗). The quantized
mechanical motion is described by the phonon mode with
frequency ωp and a (a†) is the phonon annihilation (creation)
operator. We assume the system to be at low temperature
�ωp � kBT . Here σzi is the Pauli z matrix of the electron
spins and σ±i are the corresponding spin raising and lowering
operators. For simplicity, we only consider the third excited
flexural mode along the x axis of the CNT in the present
paper.

Due to the curvature caused by the vibrational motion, the
local tangent vector t of the CNT depends on the displace-
ment coordinate [28], and it induces an interaction between
the mechanical motion and the electron spin. Spin-phonon
coupling originates from the dynamical spin-orbit interaction
σ · t(z) = σz + (du/dz)σx , where u(z) is the displacement at
the coordinate point z, u(z) = f (z) l0√

2
(a + a†), where f (z) is

the waveform of the phonon mode and l0 is the zero-point
displacement. For different QDs in the nanotube, the spin-
phonon coupling strengths are gi = �so 〈f ′(z)〉i l0/2

√
2. Here

f ′(z) is the derivative of the waveform of the phonon mode
and �so is the spin-orbit coupling strength. Considering the
electron distribution on the CNT, we obtain the average of
the derivative of the waveform 〈f ′(z)〉i = ∫ li /2

−li /2 dz
df (z)
dz

Di(z)
where Di(z) are the charge densities of two QDs and each
quantum dot is between −li/2 and li/2. The length of the
CNT is L = ∑

i li . For simplicity, we assume the spin-phonon
coupling to be the same for both quantum dots, g1 = g2 = g,
as in Sec. IV. We use realistic parameters l1 = l2 = 400 nm,
�so = 370 μeV, l0 = 2.5 pm and obtain the value of the
coupling strength g/(2π ) = 0.56 MHz for each symmetric
quantum dot and a waveform with one node [29].

We assume that Di(z) are symmetric functions in the QDs.
In this case, the spin-phonon coupling strength is nonzero
when the parity of f (z) is odd in the QD. In other words, if
the parity of the charge density function is even in a QD, to
avoid canceling out the spin-orbit interaction, there should be
a left-right asymmetric standing wave in the QD [29].

III. EFFECTIVE HAMILTONIAN FROM
SCHRIEFFER-WOLFF TRANSFORMATION

For a better understanding of the evolution of the spins, we
derive the effective Hamiltonian in the subspace of the spins.
We assume that the difference between the phonon energy and
the qubit energy is much larger than the spin-phonon coupling
strength and the driving strength, i.e., that ωp − ωqi 	 gi,λ.
The Schrieffer-Wolff transformation can be applied when the
subspaces with different phonon numbers are energetically
well separated. First, we obtain the effective Hamiltonian in the
lowest subspace with zero phonon, then we can use the same
method to obtain the effective Hamiltonian in all subspaces.
The effective Hamiltonian from the time-dependent Schrieffer-
Wolff transformation in the lowest phonon subspace can be
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written as [32,40]

Heff = H 0
eff + H 1

eff, (5)

H 0
eff =

∑
i

ζiσzi + γ σx1σx2, (6)

H 1
eff = 2 cos ωt

∑
i

βiσxi, (7)

where

ζi = �ωqi

2
− (2n + 1)�ωqig

2
i

ω2
p − ω2

qi

, (8)

βi = −�λgiωp

(
ω2 − 2ω2

p + ω2
qi

)
(
ω2 − ω2

p

)(
ω2

p − ω2
qi

) , (9)

γ = −�g1g2ωp

(−2ω2
p + ω2

q1 + ω2
q2

)
(
ω2

p − ω2
q1

)(
ω2

p − ω2
q2

) . (10)

It is worth pointing out that in Eq. (5) there is not only the
coupling term which denotes coupling of two spins, but also
the single-electron spin rotation terms σx and σz.

To get rid of the time dependence in H 1
eff , we trans-

form Eq. (5) into the rotating frame with frequency ω,
using the transformation HI

eff = UHeffU
† − iUU̇ † with U =

ei(ω/2)t
∑

i σzi . We assume ωp ∼ ωq ∼ ω, � = ωp − ω, and
� 	 g. The fast oscillating terms with e±2iωt can be dropped
in the rotating-wave approximation. We extend our analysis
to the full phonon space and obtain the effective Hamiltonian
from the Schrieffer-Wolff transformation in the rotating frame
(see Appendix A)

H ′
eff =

∑
i

(αiσzi + βiσxi) + γ (σ+1σ−2 + σ−1σ+2), (11)

where

αi = �ωqi

2
− (2n + 1)�ωqig

2
i

ω2
p − ω2

qi

− �ω

2
, (12)

and n = a†a is the phonon number operator. The energy-level
spectrum is shown in Fig. 2. Arbitrary single-qubit gates of the
single-electron spin can be obtained by combining rotations
about the x axis and the z axis [32]. The rotations about the
z axis of each QD can be adjusted by changing the driving
frequency, and can be switched off by setting ω = ωqi(1 −
2(2n+1)g2

i

ω2
p−ω2

qi

). The rotations about the x axis can be adjusted by

choosing different strengths of the driving field, and it can be
switched off by setting λ = 0. With the rotations about the
x axis (z axis) and the iSWAP gate, maximally entangled states
could be obtained from arbitrary initial states, as in Sec. IV.
From rotations about the x axis (z axis), the X (Z) gate of one
single spin, X = σx (Z = σz), can be obtained if it is decoupled
from the other spin [32], e.g., the spin-phonon coupling of the
other spin is zero as discussed in Sec. VI.

The third term in the effective Hamiltonian in Eq. (11) is
an XY interaction from which one can obtain the iSWAP gate
[36]. We assume ωi = ωq , ω = ωq , and gi = g. The iSWAP

gate is obtained in the absence of driving, λ = 0 where the
phonon vacuum fluctuations couple the two QDs. Choosing
the appropriate pulse length t = π (ω2

p − ω2
q)/(4g2ωp), we

FIG. 2. (Color online) The energy-level diagram of the combined
two-qubit and phonon system. |σσ ′n〉 denotes a state, where σ (σ ′)
represents the first (second) spin state and n is the number of phonons.
The dashed lines denote the coupling strength of the external ac
electric field λ and the spin-phonon coupling strength g. The ac
electric field is detuned from the phonon frequency by �. The
coherent coupling between states |↓↓ 0〉 and |↑↓ 0〉 is mediated by the
state |↓↓ 1〉 through the driving and the spin-phonon coupling. The
effective single-spin resonance coupling strength β and the effective
two-spin interaction strength γ are obtained by deriving the effective
Hamiltonian for the n = 0 subspace and thereby eliminating the
|σσ ′1〉 states with a Schrieffer-Wolff transformation (similarly for
n > 0). Here � is the damping rate of the CNT.

obtain the evolution operator U ′ = e−iH ′
eff t/� in the basis

{|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} in the following form [38]:

U ′ =

⎛
⎜⎜⎜⎝

e−i(πωq/2ωp) 0 0 0

0 0 i 0

0 i 0 0

0 0 0 ei(πωq/2ωp)

⎞
⎟⎟⎟⎠. (13)

We can see from Eq. (13) that the evolution operator is an iSWAP

gate with relative phases. We can apply single-qubit gates σzi

on the two QDs for t = π (2/ωq − 1/2ωp) to eliminate the
relative phases between states |↑↑〉 and |↓↓〉.

IV. WAVE FUNCTION AND MAXIMALLY
ENTANGLED STATES

One can combine the iSWAP and single-qubit gates to
obtain any maximally entangled states from any initial product
state. In our case, we can achieve a single-step prepara-
tion of maximally entangled state by adjusting the driving
strength and driving frequency. The effective Hamiltonian
in Eq. (11) is time independent. We solve the Schrödinger
equation i

∂(|n〉⊗|ψ(t)〉)
∂t

= H ′
eff(|n〉 ⊗ |ψ(t)〉) in the subspace

with phonon number n = 0, where |ψ(t)〉 = c1(t) |↑↑〉 +
c2(t) |↑↓〉 + c3(t) |↓↑〉 + c4(t) |↓↓〉 is the wave function of
the qubit states with an initial product state. The exact
maximally entangled states and the corresponding time points
can both be obtained by solving the Schrödinger equation. The
Hamiltonian in the product basis is

H ′
eff =

⎛
⎜⎝

2αi β β 0
β 0 γ β

β γ 0 β

0 β β −2αi

⎞
⎟⎠. (14)

We can use the four eigenvalues μi(�,λ,g) and four
eigenstates |ψi〉 to obtain the general solution of the wave
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function |ψ(t)〉 = A1 |ψ1(t)〉 e−iμ1t + A2 |ψ2(t)〉 e−iμ2t + A3

|ψ3(t)〉 e−iμ3t + A4 |ψ4(t)〉 e−iμ4t , where Ai is dependent on
the initial state.

To quantify the generated entanglement, the concurrence,
as a measure of entanglement, is evaluated. The concurrence
C is a measure of entanglement which assumes the values 0 or
1 for unentangled or maximally entangled states, and values
between 0 and 1 for partially entangled states [41]. The con-
currence for pure two-qubit state can be written as C(|ψ(t)〉 =
|〈ψ(t)|σy ⊗ σy |ψ(t)∗〉| = 2|c1(t)c4(t) − c2(t)c3(t)|. We show
the concurrence as a function of time and driving strength for
different initial states in Fig. 3. Since the concurrence reaches
the value C = 1, we know that maximally entangled states can
be obtained. From the solution of the Schrödinger equation, we
obtain the time-dependent C(t) of the concurrence. The period
of the concurrence depends on the initial state, the driving
strength, and the spin-phonon coupling strength. Varying in
time the driving strength, we can shift the maximum of the
concurrence. In the following we take two initial states as
examples in Fig. 3. When λ = 0, the period of the concurrence
is t = π (ω2

p − ω2
q)/(4g2ωp) and only the iSWAP gate acts on

the initial state. The iSWAP gate creates entanglement on the
initial state |↑↓〉 in Fig. 3(a) but no effect with initial state
|↑↑〉 in Fig. 3(b). To obtain a maximally entangled state from
the initial state |↑↑〉, the assistance of single-spin rotations is
necessary. When the driving strength is nonzero, the electron
spin resonances corresponding to X gates are on. Maximally
entangled states of two spins could be obtained from arbitrary
initial states with the external driving field in two coupled
quantum dots in a CNT. When 0 < λ � g, the frequency of the
electron spin resonances is slower than that of the iSWAP gate,
therefore the period between high concurrence peaks depends
on the spin resonance frequency. We can see from Fig. 3 that
the frequencies of the blurred oblique lines in Fig. 3(a) and
the bright oblique lines in Fig. 3(b) are determined by the
strength β of the single-electron rotation σx . When λ > g, the
frequency of the spin resonances is higher than for the iSWAP

gate. The electron spin resonances contribute a fast oscillation
of the wave function. The periods of the concurrence depend
on the strength of the iSWAP gate. Corresponding to the vertical
strips in Fig. 3, the periods of the concurrence cycles are t ≈
π (ω2

p − ω2
q)/(3g2ωp) in Fig. 3(a) and t ≈ π (ω2

p − ω2
q)/(g2ωp)

in Fig. 3(b). We also show the time evolution of the wave func-
tion with driving strength λ/(2π ) = 4 MHz in Fig. 4, which
corresponds to the dashed line in Fig. 3 with λ � g. Although
the coefficients of the wave function are fast oscillating due to
the strong rotation σx , the envelopes of the time evolution of
coefficients still correspond to the iSWAP gate.

V. THERMAL BATH

To include the damping of the CNT due to the coupling
to a thermal bath at temperature T , we use a master equation
for the nonunitrary dynamical simulation. The damping of the
CNT with a rate � and the spontaneous qubit relaxation 1/T1

are considered in the nonunitrary evolution. They both couple
to the thermal bath which contains the phonons in the CNT and
in the surrounding (e.g., the substrate). The density of states of
the phonon modes, except the third excited phonon mode in the
CNT, is small near the qubit frequency ωq in the CNT and in

FIG. 3. (Color online) The time evolution of the concurrence
(color scale) as a function of the driving strength λ with different
initial states (a) |↑↓〉 and (b) |↑↑〉. The dashed lines denote the
time evolutions of the concurrence with a fixed driving strength
which are shown in Fig. 4. When λ = 0, in (a) the period between
high concurrence peaks is t0 = π (ω2

p − ω2
q )/(4g2ωp), which depends

on the strength g of the spin-phonon coupling, while in (b), the
spin-phonon coupling does not have any effect on initial state
|↑↑〉. When λ 	 g, the period of the concurrence peaks depends
on the initial state and the periods are t ≈ (4/3)t0 in (a) and
t ≈ 4t0 in (b). The system parameters are chosen to be ωp/(2π ) =
1500 MHz, ω/(2π ) = ωq/(2π ) = 1450 MHz, g/(2π ) = 0.56 MHz,
and n = 0.

the surrounding, therefore we can expect a small spontaneous
qubit relaxation rate 1/T1 and neglect it in the following. We
obtain the master equation for the density matrix ρ,

ρ̇ = − i

�
[H,ρ] + (nB + 1)�

(
aρa† − 1

2
{a†a,ρ}

)

+ nB�

(
a†ρa − 1

2
{aa†,ρ}

)
, (15)

where nB = 1/(e�ωp/kBT − 1) is the Bose-Einstein
occupation factor, and � � g. The phonons follow
the Bose-Einstein statistics in the thermal equilibrium
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FIG. 4. (Color online) The time evolution of the coefficients
ci(t) = 〈i|ψ(t)〉 of the wave function and the concurrence with
driving strength λ/(2π ) = 4 MHz for different initial states,
(a) |↑↓〉 and (b) |↑↑〉. (a) The maximally entangled state ob-
tained at t1 = 26.5 μs is ψ(t1) ≈ (−0.09 + 0.23i) |↑↑〉 + (−0.13 −
0.65i) |↑↓〉 + (−0.62 + 0.23i) |↓↑〉 + (−0.16 + 0.21i) |↓↓〉.
(b) The maximally entangled state obtained at t2 = 76.8 μs
is ψ(t2) ≈ (0.52 + 0.51i) |↑↑〉 + (−0.02i) |↑↓〉 + (−0.02i) |↓↑〉 +
(−0.48 + 0.49i) |↓↓〉. The other parameters are the same as in
Fig. 3.

in the initial state of the density matrix that ρ =
1
Z

∑∞
n=0 e−n�ωp/(kBT ) |n〉 〈n| ⊗ |ψ〉 〈ψ |, where Z = ∑∞

n=0

e−n�ωp/(kBT ) is the partition function. The total spin state is
given by the partial trace over the phonons ρs = Trphρ. The
fidelity relative to the two-qubit entangled state is defined as
F = √〈�| ρs |�〉. The fidelity F indicates how close a given
state ρs is to a desired target state |�〉 [42].

We solve the master equation to evaluate the fidelity
of the entangled qubit state at a finite temperature in
the presence of damping of the CNT. We choose the
qubit state as |�〉 ≈ (0.52 + 0.51i) |↑↑〉 + (−0.02i) |↑↓〉 +
(−0.02i) |↓↑〉 + (−0.48 + 0.50i) |↓↓〉 which can be obtained
at time tideal = 76.8 μs with initial state |↑↑〉 at zero tem-
perature with the parameters in Fig. 3. We obtain ρs(tideal)
by solving the master equation. Since |�〉 is obtained at
tideal at zero temperature and the initial distribution is chosen
to be thermal, the fidelity F = √〈�| ρs(tideal) |�〉 is not
equal to one with zero damping at finite temperatures. In
Fig. 5, we plot the time evolution of the fidelity with fixed
� = ωp/Q ≈ 3 × 105 s−1 where Q ≈ 30 000 is reachable in
experiment [2,3]. Because of the temperature T = 30 mK, the

FIG. 5. (Color online) (a) The time evolution of the fidelity
F = √〈�|ρs |�〉 with driving strength λ/(2π ) = 4.0 MHz with
a maximum near tideal = 76.8 μs obtained by solving the master
equation, Eq. (15), which takes into account the thermal equilibrium
phonon bath at T = 30 mK and the damping rate of the resonator.
We magnify the circle in (b). (b) The fidelity for the case without
damping is smaller than 1 due to the finite temperature. The shift
between the peaks and the dashed line decreases when the damping
rates increase. We truncate the phonon Hilbert space for n > 6. The
other parameters are the same as in Fig. 3.

fidelity of the case with � = 0 is less than 1. From Fig. 5(b),
we can see the peak of the fidelity with � = 0 is shifted
from tideal = 76.8 μs. Although the iSWAP gate and the spin
resonance mediated with virtual phonons are not affected by
the phonon numbers, the coefficient α of the rotation σz at
finite temperature is related to the phonons. The shift of the
peak of the fidelity is larger at high temperature than at low
temperature due to the higher average phonon number in the
thermal bath (see Appendix B).

We assume that the initial state is in the thermal equilibrium,
so the damping does not change the phonon distribution. In
Fig. 6(a), we plot the fidelity at tideal = 76.8 μs for |�〉 with
the initial state |↑↑〉 as a function of the damping rate. While
the damping rate increases, the fidelity surprisingly displays
a minimum when the damping rate approaches � ≈ 2β and
which we interpret as a stochastic resonance [43]. The damping
� of the phonon leads to transitions between configurations
with the same qubit states and different phonon numbers. The
effective coupling β is generated by the ac electric driving field
with a large detuning as in Fig. 2. From the effective coupling
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FIG. 6. (Color online) (a) The fidelity F of obtaining the maxi-
mally entangled state |�〉 as a function of the damping rate � with
initial state |↑↑〉, taking into account the phonon bath in the thermal
equilibrium at T = 30 mK. The initial state is |↑↑〉. The maximum
of resonance occurs at � = 2β = 0.56 × 10−6 s−1. The system
parameters are chosen to be ωp/(2π ) = 1500 MHz, ω/(2π ) =
ωq/(2π ) = 1450 MHz, g/(2π ) = 0.56 MHz. The fidelity for � = 0
is limited by the finite temperature T > 0. (b) The fidelity F of
obtaining the maximally entangled states with different parameters as
a function of the damping rate �. We separately modify the parameters
λ, �, and g by a factor of 2, as λ/(2π ) = 2 MHz, g/2π = 0.28 MHz,
or ω/2π = ωq/2π = 1400 MHz, while keeping other parameters
as in (a). Hence the value of β ≈ λg/� is the same for all three
cases, and half of its value in (a). The maximally entangled states in
these three cases are different and obtained at a different time. The
minimal fidelities in all these cases occurs at � = 0.28 × 10−6 s−1,
which shows that the maximum of the stochastic resonance is at
� ≈ 2β (vertical dashed line). We truncate the phonon Hilbert space
for n > 6.

strength αi in Eq. (11), one can see that the phonon number n

and therefore the effective coupling strengths αi fluctuate
around their thermal average value with correlation time 1/�.
These fluctuations of the phonon number do not significantly
affect the coherent Rabi oscillation with Rabi frequency β,
except when their correlation time of the fluctuations is half of
the period of the driving field. The stochastic resonance reaches
its maximum at an optimal moderate value of the damping
rate where � ≈ 2β [44]. On the other hand, the ac electric
driving field is important for the electron spin resonance, but it
does not have the effect of increasing phonon numbers for the
large detuning � = ωp − ω. With the stochastic resonance of

the driving field and the damping, the phase of the electron
spin resonance between states with the same phonon numbers
and different spins is different. While the XY interaction in
Eq. (11) with strength γ couples to the states with opposite
spins and the same phonon number as shown in Fig. 2, there
is a larger population on the intermediate states |↑↓〉 and |↓↑〉
at stochastic resonance, which is detrimental for obtaining the
ideal maximally entangled states. Therefore, we find a minimal
fidelity at the maximal stochastic resonance.

VI. COUPLING OF ARBITRARY QD PAIR IN A QD ARRAY

Universal quantum computation requires that arbitrary pairs
of qubits can be coupled. We extend the case of two QDs to
several QDs on the CNT, with one single electron trapped in
each QD. To couple an arbitrary pair of QDs, the coupling
between different pairs of QDs should be controllable. In
other words, we should be able to turn on and off the
two-qubit coupling between any arbitrary two qubits on the
CNT. The coupling of two qubits is bridged by the spin-phonon
interaction, hence it is possible to cut the coupling by breaking
the spin-phonon coupling. We show in the following that the
interaction between any arbitrary two qubits can be switched
off and on by controlling the spin-phonon coupling in each QD.

The spin-spin coupling in two QDs is induced by the
inherent spin-phonon coupling in each QD. As we have
discussed in Sec. II, under the precondition of a symmetric
charge density function, the spin-phonon coupling is canceled
if there is a symmetric distribution of the phonon waveform
in the QD. By adiabatically changing the voltages which
form the QDs, we can tune the location of the QDs to lie
at the antinodes of the vibrational standing wave. When the
phonon waveform is symmetric in the QD, the spin-phonon
coupling is eliminated. In other words, we can turn off the spin-
phonon coupling by electrostatically shifting the electron wave
function on the CNT. The left dot, for example, is between
gates No. 1 and No. 3 in Fig. 1(b), therefore both distributions
of the electron and the phonon waveform are symmetric in the
QDs and the coupling strength of the spin-phonon coupling
is zero for each QD. To switch the interaction on, we can
electrostatically shift the electron wave function to have an
asymmetric phonon waveform in the QDs when charge density
function is symmetric. Therefore, arbitrary pairs of QDs could
be coupled from multiple QDs in CNT.

It is possible to produce the X, Z, and iSWAP gates,
separately or together, by adjusting the strength and frequency
of the driving field and the positions of the two QDs in CNT.
A series of one-qubit gates and iSWAP gates is sufficient for
arbitrary quantum computation.

VII. CONCLUSIONS

In summary, we have studied a nanomechanical system
consisting of a suspended CNT where two separated single-
electron spins in two QDs are coupled indirectly via the
exchange of virtual phonons. The CNT is driven by an ac
electric field in a parallel static magnetic field. The indirect
coupling of the two spins is provided by the simultaneous
coupling between the two spins and the vibrational mode
of the CNT. We show that an iSWAP gate can be obtained
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by analyzing the effective Hamiltonian derived from the
time-dependent Schrieffer-Wolff transformation and the time
evolution operator when the driving electric field is off.
Arbitrary single-qubit gates can be obtained in each QD by
adjusting the strength and the frequency of the electric driving
field. The iSWAP gate can be switched off when suppressing the
spin-phonon coupling by electrostatically shifting the electron
wave function on the CNT. Combining the iSWAP gate and
single-qubit gates in the double QDs in the CNT, a universal set
of quantum gates can be built and maximally entangled states
of two spins can be generated in a single step by varying the
frequency and the strength of the external electric driving field.
In this way, arbitrary pairs of distant spins in a QD array could
be coupled. The fidelity for obtaining a maximally entangled
state at a fixed time at finite temperature can be highly
increased by increasing the damping rate of the CNT resonator.
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APPENDIX A: EFFECTIVE HAMILTONIAN FROM
SCHRIEFFER-WOLFF TRANSFORMATION

In Appendix A we show how to obtain the effective
Hamiltonian from the Schrieffer-Wolff transformation and
obtain the form in the interaction picture. We can obtain
the time-dependent Schrieffer-Wolf transformation from the
Schrödinger equation as

Heff = UHU † − iU (∂tU
†), (A1)

where U (t) is a unitary transformation. If one writes U (t) =
eS(t), where S(t) = −S(t)† ∝ O(H1), the transformed Hamil-
tonian at second order is

Heff = H0 + O(H1) + O
(
H 2

1

)
. (A2)

The first-order terms O(H1) are eliminated to obtain a block-
diagonal Hamiltonian

H1 + [S(t),H0] + iṠ(t) = 0, (A3)
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FIG. 7. (Color online) Time evolution of the fidelity near tideal =
76.8 μs with driving strength λ/(2π ) = 4.0 MHz at finite temperature
T = 10 mK in (a) and T = 100 mK in (b). Inset: Fidelity over a larger
time range; the circle denotes the area of the main plot. The other
parameters are the same as in Fig. 3.

from which the expression of S(t) can be obtained. By
substituting the expression of S(t) in Eq. (A1), we can obtain
the transformed effective Hamiltonian Heff . For simplicity, we
assume gA = gB = g, ωqi = ωq , � = ωp − ω, and � 	 g.
We obtain the effective Hamiltonian in the lowest subspace
with zero phonon from the time-dependent Schrieffer-Wolff
transformation in matrix form

Heff =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ωq(2g2−ω2
p+ω2

q)
−ω2

p+ω2
q

− 2λgωp(ω2−2ω2
p+ω2

q) cos ωt

(ω2−ω2
p)(ω2

p−ω2
q)

− 2λgωp(ω2−2ω2
p+ω2

q) cos ωt

(ω2−ω2
p)(ω2

p−ω2
q)

− 2g2ωp

ω2
p−ω2

q

− 2λgωp(ω2−2ω2
p+ω2

q) cos ωt

(ω2−ω2
p)(ω2

p−ω2
q)

0 − 2g2ωp

ω2
p−ω2

q
− 2λgωp(ω2−2ω2

p+ω2
q) cos ωt

(ω2−ω2
p)(ω2

p−ω2
q)

− 2λgωp(ω2−2ω2
p+ω2

q) cos ωt

(ω2−ω2
p)(ω2

p−ω2
q)

− 2g2ωp

ω2
p−ω2

q
0 − 2λgωp(ω2−2ω2

p+ω2
q) cos ωt

(ω2−ω2
p)(ω2

p−ω2
q)

− 2g2ωp

ω2
p−ω2

q
− 2λgωp(ω2−2ω2

p+ω2
q) cos ωt

(ω2−ω2
p)(ω2

p−ω2
q)

− 2λgωp(ω2−2ω2
p+ω2

q) cos ωt

(ω2−ω2
p)(ω2

p−ω2
q)

−ωq(2g2−ω2
p+ω2

q)
−ω2

p+ω2
q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

We transform Eq. (A4) into the interaction picture with respect to H0. The fast oscillating terms with e±i(ω+ωq )t and e±2iωq t

can be dropped in the rotating-wave approximation. We find

HI
eff/� =

(
ωqg

2

−ω2
p + ω2

q

)
(σAz + σBz) − λgωp

(
ω2 − 2ω2

p +ω2
q

)
(
ω2 − ω2

p

)(
ω2

p − ω2
q

) (eiωt + e−iωt )(σA+eiωq t + σB+eiωq t + σA−e−iωq t + σB−e−iωq t )

− 2g2ωp

ω2
p − ω2

q

(σA+σB− + σA−σB+ + σA+σB+e2iωq t + σA−σB−e−2iωq t ). (A5)
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We obtain the effective Hamiltonian in the rotating frame with U = eiωt :

HI
eff/� = − (ωp − �)g2

(2ωp − �)�
(σAz + σBz) − λg2ωp

(2ωp − �)�
(σAx + σBx) − 2g2ωp

(2ωp−�)�
(σA+σB− + σA−σB+). (A6)

APPENDIX B: FIDELITY WITH T = 10 mK
AND T = 100 mK

When we consider the case with the phonon bath and the
damping effect, the detunings between the peaks of the fidelity
without damping and the ideal time point Tideal = 76.8 μs
increase while the temperature increases. We can compare
the two cases at T = 10 mK and T = 100 mK in Fig. 7.
The shifting is obvious at T = 100 mK but very small at

T = 10 mK. The best fidelity of the maximally entangled
state at fixed damping � is smaller at high temperature than
at low temperature, due to the high average phonon number.
With the same damping, the best fidelity of the maximally
entangled state is obtained faster at high temperature than at
low temperature, which causes the shift of the peaks. This is
because the coefficient αi of the rotation σz in the effective
Hamiltonian in Eq. (11) depends on the phonon number.
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J. Nygård, K. Flensberg, and L. P. Kouwenhoven, Rev. Mod.
Phys. 87, 703 (2015).
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