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Electric dipole spin resonance of two-dimensional semiconductor spin qubits
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Monolayer transition metal dichalcogenides (TMDs) offer a novel two-dimensional platform for semicon-
ductor devices. One such application, whereby the added low-dimensional crystal physics (i.e., optical spin
selection rules) may prove TMDs a competitive candidate, are quantum dots as qubits. The band structure of
TMD monolayers offers a number of different degrees of freedom and combinations thereof as potential qubit
bases, primarily electron spin, valley isospin, and the combination of the two due to the strong spin-orbit coupling
known as a Kramers qubit. Pure spin qubits in monolayer MoX2 (where X = S or Se) can be achieved by
energetically isolating a single valley and tuning to a spin degenerate regime within that valley by a combination
of a sufficiently small quantum dot radius and a large perpendicular magnetic field. Within such a TMD spin
qubit, we theoretically analyze single-qubit rotations induced by electric dipole spin resonance. We employ a
rotating-wave approximation within a second-order time-dependent Schrieffer-Wolf effective Hamiltonian to
derive analytic expressions for the Rabi frequency of single-qubit oscillations, and optimize the mechanism or
the parameters to show oscillations up to 250 MHz. This is significantly faster than similar predictions found for
TMD qubits in the Kramers pair spin-valley or valley-only basis as well as experimental results for conventional
semiconductor devices.

DOI: 10.1103/PhysRevB.101.035204

I. INTRODUCTION

Transition metal dichalcogenides (TMDs) are graphitelike
indirect band-gap semiconductors in bulk, that when isolated
down to the monolayer (ML) limit become two-dimensional
visible range direct band-gap semiconductors, with a hexag-
onal crystal lattice structure [1–7]. The combination of opti-
cally addressable electron spin and valley isospin degrees of
freedom [8,9] and strong spin-orbit coupling [10,11] within
a mechanically flexible ML [12,13] which may be stacked
with other ML materials as part of the van der Waals (vdW)
heterostructure engineering architecture [14–16], has allowed
for TMDs to be a viable and desirable host for quantum
technologies. Quantum dots (QDs) [17], single-photon emit-
ters [13,18,19], gate-defined nanowires [20,21], topological
materials [22,23], ML superconductors [24,25], as well as
spin- [26,27] and valleytronics [28,29] have all been proposed
or demonstrated with TMD MLs.

Chemically, the semiconducting TMD MLs consist of MX2

where M = Mo or W and X = S or Se, where the M atomic
layer is sandwiched between two X atomic layers [1–4], with
broken inversion symmetry [1,9,30], and an M-X alternating
hexagonal structure in the plane of the ML [1,3,31]. The
M atoms introduce strong spin-orbit coupling [10,11], which
with the broken inversion symmetry gives rise to spin-split
conduction and valence bands [8,32,33]. Under an out-of-
plane magnetic field, the splitting between the spin states in
the conduction band is shifted due to both a spin- and valley-
Zeeman effect [34–37] introduced by a significant Berry
curvature at the band edges [34,38,39]. Additionally, the Berry
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curvature allows for optically addressable spin-valley states
by correctly applied circularly polarized light [8,38].

QDs in TMD monolayers have been demonstrated by a
number of different methods. Electrostatic gating [17], strain
[13,18], nanoflakes [40,41], and lattice defects [42] have all
been shown to achieve zero-dimensional behavior in TMD
monolayers. Strain and electrostatic gating, however, exhibit
the most promise for QDs for quantum information purposes
[43], and a number of different methods of implementing
a qubit in a TMD QD have been proposed including spin-
valley Kramers qubits [41,44], in which one- and two-qubit
gates have been proposed [44,45], valley qubits [40,41], and
pure-spin qubits [46]. Pure-spin qubits were shown to be
achievable by tuning a combination of the QD radius and
the out-of-plane magnetic field such that, within one valley, a
near spin degeneracy is reached. The magnetic field required
to do so in specifically an MoS2 QD is high (∼20–30 T)
when considering only the natural spin- and valley-Zeeman
contributions of the ML, even though this ML contains the
smallest energy to overcome. However, as previously men-
tioned, one of the benefits of 2D semiconductors is the ac-
cess to vdW heterostructure engineering. Thus, it has been
shown that by layering TMDs with magnetic monolayers
such as CrI3, EuS, and EuO, local time reversal symmetry
violation in the TMD occurs, significantly enhancing the
valley-Zeeman effect observed in the TMD [16,47–52]. A
similar result may also be achieved with doping [53]. The
modularity of vdW heterostructure devices, along with an
optically initializable spin state, makes TMD QDs a strong
contender to more conventional bulk semiconductor qubit
realizations.

Towards building a 2D quantum processor, the next step,
after realizing a qubit, is a scheme for single-qubit gates,
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i.e., a reliable method of single-qubit state initialization and
control. In this paper, we demonstrate that electric dipole
spin resonance (EDSR) may be achieved in TMD pure-spin
qubits. EDSR requires the coupling of the qubit spin states
to an external ac-electric field [54,55], which drives rotations
between the spin states, such that ideally microwave pulses
can be used to perform the desired single-qubit gate. This
has been theoretically shown to be achievable in TMD QDs
adopting a Kramers qubit architecture, with the aid of an
additional lattice defect to mix the valley states [44]. We
show that in a valley-polarized pure-spin qubit architecture,
EDSR is achievable and with some parameter optimization
(dot radius, magnetic fields, etc.) oscillations of the qubit in
the ∼100 MHz regime are feasible.

This paper is structured as follows: First, in Sec. II, the
TMD QD Hamiltonian is given and the studied material
type and parameter regime for the pure-spin qubit architec-
tures is detailed. Then, in Sec. III, the EDSR mechanism
is introduced in detail, giving all relevant matrix elements,
as well as an effective qubit Hamiltonian given by a time-
dependent Schrieffer-Wolff transformation. Third, in Sec. IV,
the rotating-wave approximation (RWA) is applied to derive
expressions for the Rabi frequency in the rotating frame. This
is followed in Sec. V by an analysis of the relevant parameters
of the system to maximize the qubit frequency. Lastly, in
Sec. VI, a discussion and comparison of this architecture with
other known architectures is provided.

II. MONOLAYER TMD QUANTUM DOTS

In this paper, we assume an electrostatic-gate-defined QD
in a TMD monolayer, as is schematically shown in the inset
of Fig. 1. With the appropriate selection of the TMD type, and
a sufficiently large external magnetic field, it has been shown
that the spin-valley locking may be overcome to provide a host
for a valley-polarized pure-spin qubit [46].

A. Effective Hamiltonian

The energy levels of a single electron in a TMD quantum
dot in a perpendicular magnetic field (B⊥) at the K or K ′
valleys may be obtained by solving the effective low-energy
Hamiltonian [43,46]

H τ,s
B⊥ = h̄ωτ,s

c α+α− + τ s
�cb

2
+ 1 + τ

2

B⊥
|B⊥| h̄ωτ,s

c

+ 1

2
(τgvl + sgsp)μBB⊥, (1)

where τ = ±1 is the valley index with 1(−1) ≡ K (K ′), s =
±1 is the spin index with 1(−1) ≡↑ (↓), ωτ,s

c is the spin-
valley-dependent cyclotron frequency, �cb is the spin-orbit
splitting in the conduction band of the TMD, gvl and gsp

are the valley and spin out-of-plane g-factors, respectively,
and μB is the Bohr magneton. The spin-valley dependence
of ωτ,s

c is due to the spin-valley dependence of the effective
mass at the band edges given as 1/mτ,s

eff = 1/m0 − τ s/δmeff,
where δmeff is contingent on the TMD type and m0 is the
free-electron mass. The modified wave-number operators α±
are α± = ∓ilBq±/

√
2 where lB = √

h̄/eB⊥ is the magnetic
length and q± = qx ± iqy where qk = −i∂k . The potential of

FIG. 1. Rabi frequency �̃ of a MoS2 QD in dependence of
the dot radius Rd and out-of-plane magnetic field B⊥ where Eac =
10−2 mV/nm and B‖ = 1 T. The black dashed line gives the points
of spin degeneracy in the ground states of the K ′ valley. Note that the
region where the RWA is valid is where the frequencies calculated
off-resonantly from the spin degeneracy line are small (blue), while
the region where the maximum �̃ deviates from the spin degeneracy
line is where the RWA breaks down. Inset: Diagram of the setup
considered in this paper of a gated TMD QD of radius Rd (purple
representing the TMD ML and cyan representing the top gate),
exposed to a static out-of-plane magnetic field B⊥, in-plane magnetic
field B‖, and an in-plane ac-electric field Eac.

the QD is assumed to be an infinite square well of radius Rd,
which is reasonable when assuming the electrostatic gates of
the dot to be contacted to or separated by one to two layers
of 2D dielectric hexagonal boron nitride [17,56]. Thus the
quantum dot levels as a function of B⊥ and Rd are given as

ε̃τ,s
n,l = ετ,s

n,l + τ s
�cb

2
, (2)

where

ετ,s
n,l = h̄ωτ,s

c

(
1 + τ

2

B⊥
|B⊥| + |l| + l

2
− γn,l

)

+ 1

2
(τgvl + sgsp)μBB⊥. (3)

Here, γn,l is the nth solution to M(γn,l , |l| + 1, R2
d/2l2

B) = 0,
where M(a, b, c) is the confluent hypergeometric function of
the first kind, given by the hard-wall boundary condition to
Eq. (1).

B. Single-dot spin qubit

The spin-valley locking due to spin-orbit coupling and
crystal symmetries can be shown to be overcome, resulting
in a pure-spin qubit [46] with a TMD QD as opposed to a
spin-valley Kramers’ qubit [44]. By selecting the appropriate
TMD type, dot size, and perpendicular magnetic field, a
regime where ε

K (K ′ ),↑
n,l = ε

K (K ′ ),↓
n,l may be achieved. MoS2 is
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FIG. 2. Level diagrams of the orbital ground states for all com-
binations of spin and valley of an MoX2 QD operating in a Kramers
qubit basis (small external out-of-plane magnetic field B⊥) and a spin
qubit basis (large external out-of-plane magnetic field B⊥). The levels
in which the qubits are encoded are shown in red.

the semiconducting TMD monolayer with the smallest zero-
field spin splitting in the conduction band �cb and a δmeff

such that the condition ε
K ′,↑
1,0 = ε

K ′,↓
1,0 may be achieved for

B⊥ ≈ 16 T in the first excited state (n = 1, l = −1) and B⊥ ≈
21 T in the ground state (n = 1, l = 0) assuming Rd ≈ 10 nm.
This is shown with comparison to a Kramers qubit in Fig. 2.
Assuming that the QD is charged by a valley-polarized source,
either optically or by valley-polarized leads, a pure-spin qubit
in an MoS2 monolayer gated quantum dot may be realized.

III. ELECTRIC DIPOLE SPIN RESONANCE

A. External influences

To achieve control over the qubit spin states, two additional
ingredients to the spin-orbit interaction inherent in the crystal
are needed: a spin-mixing interaction and a driving field.
These are achieved by subjecting the QD to a static in-plane
magnetic field and ac in-plane electric field.

The Hamiltonian describing an in-plane magnetic field
along the x direction is given as

HB‖ = 1
2μBg‖B‖sx, (4)

where g‖ is the in-plane g-factor, B‖ is the in-plane magnetic
field, and si where i = (x, y, z) is the ith spin Pauli matrix,
i.e., si = (h̄/2)σi. The in-plane g-factor g‖ is assumed in this
paper to originate purely from the spin degree of freedom, and
thereby to be equal to g‖ = 2. The out-of-plane g-factor gs is
material dependent and given by the same seven-band k · p
analysis used to derive the effective Hamiltonian Eq. (1) [43].

The real-space Hamiltonian of an ac-electric driving field
along the x direction is given as

H̃ac = ex̂Eac cos(ωt ), (5)

where e is the elementary charge, Eac and ω denote the field
strength and frequency of the ac field, and t is time. In
the orbital basis this can be rewritten as approximately (see
Appendix A)

Hac = eEacRd cos(ωt )

2
√

2
σx, (6)

where σi is the ith orbital Pauli matrix. From these matrix
elements, the full Hamiltonian for ESDR in TMD QDs may
be written.

B. 4 × 4 valley-polarized Hamiltonian

Due to our choice of material and B⊥ direction (positive
along the z axis), the valley in which the spin qubit is achieved
is the K ′ (see Fig. 2). From all the elements collected in
Secs. II and III A, the full Hamiltonian of the valley-polarized
TMD dot with an in-plane magnetic field and ac-electric
field is

HK ′ = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

2ε
K ′,↑
1,0 − �cb μBg‖B‖ eEacRd cos(ωt )√

2
0

μBg‖B‖ 2ε
K ′,↓
1,0 + �cb 0 eEacRd cos(ωt )√

2

eEacRd cos(ωt )√
2

0 2ε
K ′,↑
1,−1 − �cb μBg‖B‖

0 eEacRd cos(ωt )√
2

μBg‖B‖ 2ε
K ′,↓
1,−1 + �cb

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

for the qubit basis and the first excited orbital spin states ({|l =
0, K ′,↑〉, |l = 0, K ′,↓〉, |l = −1, K ′,↑〉, |l = −1, K ′,↓〉}) to
which the qubit couples by the driving field. From this, an
approximate 2 × 2 time-dependent qubit Hamiltonian may be
derived.

C. Time-dependent Schrieffer-Wolff transformation

A second-order time-dependent Schrieffer-Wolff transfor-
mation (TDSWT) is employed to isolate a time-dependent
effective qubit Hamiltonian [57] (for a complete derivation,
see Appendix B). The relevant terms of the transformation
are

HEDSR(t ) = H̃(0) + H̃(1) + H̃(2)(t ), (8)

where

H̃(0) =
∑
s,l

˜ετ,s
1,l |s, l〉 〈s, l| , (9a)

H̃(1) = μBg‖B‖
2

sx, (9b)

H̃(t )(2) = E2
acR2

d[1 + cos(2ωt )]

36h̄ω0,−1
s,s

σz, (9c)

where ωl,l ′
s,s′ is the energy difference between the two QD

levels εK ′,s
1,l and εK ′,s′

1,l ′ expressed as an angular frequency

such that, for example, ε
K ′,↑
1,0 − ε

K ′,↓
1,−1 = h̄ω0,−1

↑,↓ . To ensure
the validity of our perturbative TDSWT analysis, the off-
diagonal matrix elements of the Hamiltonian need to be
significantly smaller than its on-diagonal matrix elements.
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Therefore, the corresponding small parameters are the elec-
tric field strength eEacRd/h̄ω0,0

↑,↓ � 1 and in-plane magnetic

field strength μBg‖B‖/2h̄ω0,0
↑,↓ � 1. Accordingly, Eq. (8)

leads to a block diagonal Hamiltonian for which the rele-
vant time-dependent qubit basis portion may be extracted
as

HEDSR(t ) =

⎛
⎜⎝ε

K ′,↑
1,0 + e2E2

acR2
d[1+cos(2ωt )]

16h̄ω0,−1
↑,↑

μBg‖B‖
2

μBg‖B‖
2 ε

K ′,↓
1,0 + e2E2

acR2
d[1+cos(2ωt )]

16h̄ω0,−1
↓,↓

⎞
⎟⎠. (10)

IV. RABI OSCILLATIONS

From the time-dependent qubit Hamiltonian given in Eq. (10), a transformation into the rotating basis may be performed and
the rotating-wave approximation applied to derive the Rabi-oscillation frequency in the rotating frame as

�̃ = 3μBg‖B‖e2E2
acR2

d

(
ω0,−1

↓,↓ − ω0,−1
↑,↑

)
4
√(

36μBg‖B‖ω0,−1
↑,↑ ω0,−1

↓,↓ h̄
)2 + (

e2E2
acR2

d

[
ω0,−1

↓,↓ − ω0,−1
↑,↑

] − 36ω0,0
↑,↓ω0,−1

↑,↑ ω0,−1
↓,↓ h̄2

)2
. (11)

Note that in this form, the implicit dependence of the Rabi fre-
quency �̃ on B⊥ is within all the ωl,l ′

s,s′ (B⊥) frequencies while
the dependence of �̃ on the spin-orbit splitting of the conduc-
tion band �cb is within ω0,−1

↑,↑ (B⊥,�cb) and ω0,−1
↓,↓ (B⊥,�cb).

The difference between the two, however, present in the
numerator of Eq. (11), is not dependent on the spin-orbit
splitting. Note that, as the spin splitting due to the spin-
orbit interaction is decreased, so too is the maximum Rabi
frequency achievable, and as �cb → 0 the in-plane magnetic
field small parameter condition of the TDSWT is violated and
all of the calculations made up to this point are no longer valid.

A further simplification of Eq. (11) may be given as its
dominant term,

� = μBg‖B‖e2E2
acR2

d

(
ε

K ′,↑
1,−1 − ε

K ′,↓
1,−1

)
48�cb

[
ε

K ′,↑
1,0 − ε

K ′,↑
1,−1

][
ε

K ′,↓
1,0 − ε

K ′,↓
1,−1

]
h̄2

, (12)

assuming ε
K ′,↑
1,0 ≈ ε

K ′,↓
1,0 , i.e., operating at the spin qubit

regime. The physics of the terms dropped from (11) to give
(12) are apparent from the following expansion,

�̃ = �(1 + δ1 + δ2 + · · · ), (13)

where

δ1 = e2E2
acR2

d

[
ω0,−1

↓,↓ − ω0,−1
↑,↑

]
36ω0,0

↑,↓ω0,−1
↑,↑ ω0,−1

↓,↓ h̄2

×
(

1 + e2E2
acR2

d

[
ω0,−1

↓,↓ − ω0,−1
↑,↑

]
72ω0,0

↑,↓ω0,−1
↑,↑ ω0,−1

↓,↓ h̄2

)
, (14a)

δ2 = (μBg‖B‖)2

2(ω0,0
↑,↓h̄)2

. (14b)

From this, δ1 can be reasoned as a shift due to the ac Stark
effect as it is a perturbation in a higher order of Eac and δ2 is
the plane Zeeman shift due to B‖. From this form of the Rabi
frequency, the effect of the EDSR fields may be probed.

First, the effect of the strength of the ac-electric field Eac

is clearly quadratic. As such, this value shall be fixed at
10−2 mV/nm to allow for a direct comparison with previ-
ous proposals concerning Kramers qubits [44]. This is an
achievable electric field amplitude that is consistent the small
parameter conditions stated in Sec. III C. The effect of B⊥ can
be seen in both Figs. 3 and 4. Figure 3 shows the dependence
of � on B⊥ for a number of dot radii. There is a clear peak
for each radius and clear minimum, where � → 0, at which
ω0,−1

↓,↓ = ω0,−1
↑,↑ . The reason for this interference is clear in

Fig. 4. The avoided crossings for the qubit states and the
orbitally excited states do not align with B⊥, and as such,
there are values of B⊥ that are after one avoided crossing
and before the second. This manifests itself in Fig. 4 where
each of the kinks in the gradient of the ω0,−1

↓,↓ and ω0,−1
↑,↑ lines

occur at the avoided crossings. It is in between these two kinks
that the destructive interference is such that ω0,−1

↓,↓ = ω0,−1
↑,↑

FIG. 3. The out-of-plane magnetic field B⊥ dependence of the
Rabi frequency � for MoS2 QDs with Rd = 11 nm (red), 12 nm
(black), 13 nm (purple), 14 nm (blue), and 15 nm (green), with Eac =
10−2 mV/nm and B‖ = 50 mT.
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FIG. 4. The out-of-plane magnetic field B⊥ dependence of the
QD level splittings expressed as angular frequencies ω0,−1

↓,↓ (red),

ω0,−1
↑,↑ (black), ω0,0

↑,↓ (purple), and ω−1,−1
↑,↓ (blue), for MoS2 QDs of

with Eac = 10−2 mV/nm, B‖ = 50 mT, and Rd = 15 nm.

and � → 0. The effect of B‖ is also not fully apparent from
Eq. (12). Of course, from the numerator as B‖ → 0 so does
� → 0, as there is no spin mixing mechanism at this limit,
but the relationship between the two is not linear, as a wider
avoided crossing can be detrimental to the rotation speed. As
is seen in Fig. 5, there is a clear peak in the achievable � at
some small B‖ specific and inversely proportional to the dot
radius. For values of B‖ larger than this critical field strength,
the potential Rabi frequency decreases, converging to some
minimum frequency that is proportional to the dot radius.

V. OPTIMAL OPERATIONS

Understanding in detail the effects of each of the contribut-
ing EDSR mechanisms on the derived single-qubit rotational
frequency now allows for an optimization of the EDSR pro-
cedure. However, there is still one parameter with which the
mechanism may be optimized, the dot radius. Figure 1 gives

FIG. 5. Rabi frequency on resonance for MoS2 QDs with Rd =
11 nm (red), 12 nm (black), 13 nm (purple), 14 nm (blue), and
15 nm (green), and Eac = 10−2 mV/nm. Inset: Extracted maximum
Rabi frequency � with dot radius Rd for MoS2 QDs with Eac =
10−2 mV/nm and B‖ = 1 T.

FIG. 6. The out-of-plane B⊥ and in-plane B‖ magnetic field
dependencies of the Rabi frequency � for an MoS2 QD of radius
Rd = 20 nm where Eac = 10−2 mV/nm only within the microwave
qubit detuning range.

�̃ in dependence of Rd and B⊥ at constant Eac and B‖, showing
a clear peak running along the spin degeneracy line as well as
the interference line under the peak. Note that here the full
expression �̃ is plotted as to demonstrate where the RWA
starts to break down, as for Rd � 22.5 nm, the higher-order
terms deviate the peak from around the spin degeneracy point
and the Rabi frequency diverges past the reasonable range
of the assumed driving frequency (microwave). The reduced
form of the Rabi frequency � gives exactly the same result
below this point, without showing the deviation at larger
dot radii. The inset of Fig. 5 shows more explicitly the Rd

dependence of the maximum Rabi frequency achievable when
at a fixed B‖ = 1 T. Here, a close-to-exponential increase in
achievable Rabi frequency is observed. This trend is easily
exploitable but comes with a significant cost in B⊥ needed to
achieve spin qubits with increasing dot radius.

As a proposal for an optimal operational regime, consider a
dot of Rd = 20 nm. To satisfy both the conditions of the RWA
and experimental preferences, only the regime where the qubit
detuning is within the microwave range <300 GHz shall be
considered. This is shown in Fig. 6, where a clear peak region
at B⊥ = 23.5 T and B‖ = 20 mT can be seen. At this opti-
mized point a very desirable Rabi frequency of ∼250 MHz
is reached. However, there is a band where Rabi frequencies
∼100 MHz are attainable, allowing for less precise control of
the magnetic fields to access a desirable frequency range.

VI. DISCUSSION

To implement a pure-spin qubit with fast single-gate oper-
ations we find that a good choice consists of an MoS2 QD
of radius Rd = 20 nm, in a external out-of-plane magnetic
field B⊥ = 23.5 T, in-plane magnetic field B‖ = 20 mT, and
a microwave frequency ac-electric field of strength Eac =
10−2 mV/nm. This allows for a Rabi frequency of � =
250 MHz. All of the assumed field parameters are within
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reasonable viability. The B⊥ requirement is high, however,
this can be reasonably mitigated by vdW heterostructure
engineering with magnetic monolayers. All calculations given
assume the qubit is implemented in a free-standing TMD
ML, to give an upper limit on what would be experimentally
required. Recent advances in vdW heterostructure engineering
have shown that significant valley-Zeeman enhancement can
be achieved by layering the TMD on a ML or low-dimensional
magnetic material [16,47,48]. Ideally, a vdW stack of hexag-
onal boron nitride (hBN)-CrI3 or EuS-MoS2-hBN would be
used to implement a TMD spin quantum processor. The pur-
pose of the hBN is to protect the other MLs from degradation
as well as improve the optical response of the TMD for state
initialization [58–60].

The gate speed shown here is an order of magnitude faster
within reasonable experimental limitations than has been
shown in the alternative single-dot approach to TMD qubits,
the Kramers qubit [44]. This assumes a clean crystal, unlike
the Kramers qubit that requires a defect to mix the valleys.
While defects are currently inherent to TMD samples, they
are usually undesirable, and in the proposed pure-spin qubit
scheme offer a dephasing mechanism. However, the K-valley
levels are higher in energy and become more energetically
separated at lower Rd, therefore, some tradeoff between gate
speed and stability can be made in the case of valley-mixing
crystal defects. Additionally, there has been recent significant
progress in synthesizing low defect rate monolayers by chem-
ical as opposed to mechanical means [61].

The ∼100-MHz single-gate rotations makes this 2D qubit
implementation competitive with more conventional bulk
semiconductor architectures due to the intrinsic spin-orbit
coupling, removing the need for spin-mixing micromagnets
[62] of the MLs and the validity of a square walled potential
of the dot model due to gating directly to an ML or ML-
hBN heterostructure [46]. Both GaAs and Si 2D electron
gas gated single spin qubits have experimentally shown Rabi
oscillations in the order of ∼10 MHz [54,63,64]. However, in
TMDs, these fast gate speeds are required as spin lifetimes
have only been measured up to a few nanoseconds [65]. This
is, however, expected to improve with the advent of cleaner
crystal samples. The promise of similar to improved speeds at-
tainable with the TMD device proposed here, in a flexible and
optically active medium, further position 2D semiconductors
as exciting novel materials for quantum device applications.
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APPENDIX A: DIPOLE MATRIX

The dipole matrix elements represent the off-diagonal ele-
ments that in the case of this paper couple the qubit states with
the first excited orbital states. These are calculated as follows,

dnl,n′l ′ = 〈ψnl |H̃ac|ψn′l ′ 〉, (A1)

where H̃ac is given by (5). Here, the wave functions are derived
from Eq. (1) as [46]

ψn,l = A(γn,l , ρ)eilθρ|l|/2e−ρ/2M(γn,l , |l| + 1, ρ), (A2)

where A(γn,l , ρ) is the normalizing factor. Importantly for
this paper, the matrix element 〈ψn,l |H̃ac|ψn,l〉 = 0 while
〈ψn,l |H̃ac|ψn,l ′ 〉 �= 0 for l �= l ′. The value of these matrix
elements can be calculated numerically. The corresponding
matrix element is dependent on B⊥ and Rd, however, we find
that the dependence on B⊥ is so slight (<0.01%) that for this
paper we shall simply assume

〈ψ0,1|H̃ac|ψ0,0〉 ≈ eEacRd

2
√

2
. (A3)

APPENDIX B: FULL TDSWT DERIVATION

The time-dependent Schrieffer-Wolff transformation is a
perturbative method to derive an effective block diagonal
Hamiltonian H̃(t ) from a dense Hamiltonian H(t ) such as
Eq. (7) [57]. We proceed by applying the unitary transforma-
tion U (t ) = e−S(t ), such that

ψ̃ (t ) = e−S(t )ψ (t ), (B1)

and, using the time-dependent Schrödinger equation,
−ih̄ ∂

∂t ψ (t ) + H(t )ψ (t ) = 0, leading to the transformed
Hamiltonian

H̃(t ) = e−S(t )H(t )eS(t ) + ih̄
∂e−S(t )

∂t
eS(t ). (B2)

Here, S(t ) is some block off-diagonal matrix. From this setup,
a power-series expansion can then be applied which can be
simplified to give

H̃(t ) =
∞∑
j=0

1

j!
[H(t ), S(t )]( j)−ih̄

∞∑
j=0

1

( j + 1)!
[Ṡ(t ), S(t )]( j),

(B3)
where [A, B](0) = A and [A, B](n+1) = [[A, B](n), B]. Here,
S(t ) is solved for by assuming H̃(t )off-diagonal = 0. At this point
no approximation has been made. The approximation made
to solve Eq. (B2) such that H̃(t )off-diagonal = 0 is a power-
series expansion of the small parameters (in-plane electric and
magnetic fields) of the S(t ) matrix,

S(t ) = S(t )(1) + S(t )(2) + S(t )(3) + · · · , (B4)

where S(t )n is the nth order of the power series.
At this point, all the necessary definitions have been

made to perform a general TDSWT, and as such, now only
a second-order perturbation of Eq. (7) will be considered
with the small parameters being the electric field strength
eEacRd/h̄ω0,0

↑,↓(B⊥) � 1 and in-plane magnetic field strength

μBg‖B‖/h̄ω0,0
↑,↓(B⊥) � 1. The effective Hamiltonian with cor-

rections up to second order is given by

H̃(t ) = H̃(0) + H̃(1) + H̃(t )(2). (B5)

From this, the expansions in H̃(t ) can be solved from Eq. (B2)
as

H̃(0) = H0, (B6a)

H̃(1) = H1, (B6b)
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H̃(2)(t ) = 1
2 [H2(t ), S(t )(1)]. (B6c)

Here, H0 is the diagonal part of Eq. (B2), H1 is the block
diagonal part omitting the diagonal part of Eq. (B2), and H2(t )
is the block off-diagonal part of Eq. (B2), which for the case
of the EDSR mechanism described translates as the QD levels
H0 = ∑

s,l εK ′,s
1,l |s, l〉 〈s, l|, in-plane magnetic field Eq. (4) for

H1, and ac-electric field matrix elements Eq. (6) for H2. Only

S1(t ) needs to be solved for, which is done by applying the
H̃(t )off-diagonal = 0 condition, giving

[H0, S(t )(1)] = −H2. (B7)

So finally, a block diagonal of the qubit and the excited orbital
space may be approximated where the qubit space of Eq. (B5)
is given as Eq. (10).
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