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Electric-field control and noise protection of the flopping-mode spin qubit
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We propose and analyze a “flopping-mode” mechanism for electric dipole spin resonance based on the delo-
calization of a single electron across a double quantum dot confinement potential. Delocalization of the charge
maximizes the electronic dipole moment compared to the conventional single-dot spin resonance configuration.
We present a theoretical investigation of the flopping-mode spin qubit properties through the crossover from the
double- to the single-dot configuration by calculating effective spin Rabi frequencies and single-qubit gate fideli-
ties. The flopping-mode regime optimizes the artificial spin-orbit effect generated by an external micromagnet
and draws on the existence of an externally controllable sweet spot, where the coupling of the qubit to charge
noise is highly suppressed. We further analyze the sweet spot behavior in the presence of a longitudinal magnetic
field gradient, which gives rise to a second-order sweet spot with reduced sensitivity to charge fluctuations.
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I. INTRODUCTION

Control of individual electron spins is one of the corner-
stones of spin-based quantum technology. Although standard
single-electron spin resonance has been demonstrated [1],
there is a strong incentive to avoid the use of local oscil-
lating magnetic fields since these are technically demanding
to generate at the nanoscale, hinder individual addressability,
and limit the Rabi frequency due to sample heating issues.
Electric dipole spin resonance (EDSR) techniques offer a
more robust method to electrically control the electron spin
state. Traditionally, successful implementations have used
spin-orbit coupling [2], hyperfine interaction [3], and g-factor
modulation [4].

The transition from GaAs- to Si-based spin qubits has led
to dramatic advances in the field of spin-based quantum com-
puting. Site-selective single-qubit control [5–7], two-qubit
operations with high fidelity [8–13], electron shuttling [14],
and strong coupling to microwave photons [15,16] have been
demonstrated. Recent demonstrations of strong spin-photon
coupling have used double quantum dot (DQD) structures
where the charge of one electron is delocalized between both
dots [“flopping mode”; Fig. 1(a)], thus enhancing the coupling
strength to the cavity electric field beyond the decoherence
rate [17–19] and enabling the transfer of information between
electron-spin qubits and microwave photons [15,16,20]. This
suggests that the manipulation of electron spins with classical
electric fields will also be efficient in the flopping-mode
configuration.

The scalability of spin qubit processors hinges upon the
use of resources that permit fast control without a significant
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degradation in coherence times. The same properties that
make silicon-based QDs extremely attractive for quantum in-
formation processing make it challenging to use their intrinsic
properties for electrical spin manipulation. Not only is the
hyperfine interaction to nuclear spins largely reduced, but the
intrinsic spin-orbit coupling for electrons in Si is very weak
[21]. Recently, this weak effect combined with the rich valley
physics in Si has been harnessed to achieve EDSR for single-
electron spin qubits [22,23] and singlet-triplet qubits [24,25].
A more flexible solution applicable to any semiconductor is
the mixing of orbital motion and spin via an externally im-
posed magnetic field gradient [7,26,27]. Beyond this effective
spin-orbit effect, the control over the magnetic field profile
allows for selective addressing of spins placed in neigh-
boring dots, since the resonance frequency varies spatially
[6,26,28–32]. Here we investigate the effect of the micromag-
net stray field on the coherence of the flopping-mode spin
qubit.

In this work we envision the generation of single-electron
spin rotations via a flopping-mode approach, which benefits
from the electron delocalization between two gate-defined
tunnel-coupled QDs [33], and track its performance as the
electron is spatially localized in a single quantum dot (SQD).
The electron tunneling in such a double-dot potential has a
large electric dipole moment, which is partially transferred to
the spin via the magnetic field gradient induced by the stray
field of a micromagnet placed over the DQD; see Fig. 1(a).
Moreover, due to the spatial separation between the two QDs,
obtaining a sizable magnetic field inhomogeneity, with the re-
sulting large effective spin-orbit coupling, becomes relatively
easy. A driving field on one of the gate electrodes that shapes
the QD modulates the potential and allows full electrical spin
control via EDSR.

The paper is organized as follows: In Sec. II we introduce
the flopping-mode spin qubit and derive the Rabi frequency
and the relevant relaxation and dephasing rates under the
effect of a transverse magnetic field gradient for the case of
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FIG. 1. (a) Schematic illustration of the flopping-mode EDSR
mechanism, where the spin of an electron (shown as green circles)
delocalized between two QDs is driven via an electric field (purple
line) in a magnetic field gradient (represented with red arrows).
(b) Energy levels E0,...,3 of the Hamiltonian (17) as a function of
the interdot detuning ε, calculated with tc = 20μeV, Ez = 24μeV,
gμBbx = 15μeV, and gμBbz = 4μeV. The asymmetry with respect
to ε is due to the longitudinal magnetic field gradient. Around
zero detuning, |ε| � 2tc, the electron delocalizes across the DQD,
yielding a larger electric dipole moment p compared to the single-dot
regime. The arrows represent the electrically addressable spin (solid
line), charge (dashed line), and spin-charge (dotted line) transitions.

zero energy level detuning. In Sec. III we take into account
the effect of a general detuning and analyze the electrical
control of the flopping-mode spin qubit as a function of
externally controllable parameters. In Sec. IV we investigate
the behavior of the flopping-mode spin qubit in the presence
of a longitudinal magnetic field gradient and how this affects
the working points with maximal single-qubit average gate
fidelity. In Sec. V we summarize our results and conclude.

II. FLOPPING-MODE SPIN QUBIT

An electron trapped in a symmetric DQD, with zero energy
level detuning ε = 0 between the left (L) and right (R) QDs,
will form bonding and antibonding charge states, which are
separated by an energy 2tc, where tc is the interdot tunnel cou-
pling. The transition dipole moment between the bonding and
antibonding states, |∓〉 = (|R〉 ∓ |L〉)/

√
2, is proportional to

the electronic charge e and the distance between the two QDs
d [15,18,19,34]; therefore an electric field with amplitude Eac

at the position of the DQD can drive transitions with Rabi
frequency �c = edEac/h̄. Spins can be addressed via electric
fields by splitting the spin states via a homogeneous magnetic
field, Bz, and inducing an inhomogeneous magnetic field
perpendicular to the spin quantization axis, i.e., transverse
(±bx in the left/right QD). We model the spin and charge
dynamics with the Hamiltonian

H ε=0
0 = tcτ̃z + Ez

2
σ̃z − gμBbx

2
σ̃x τ̃x, (1)

where τ̃α and σ̃α (α = x, y, z) are the Pauli matrices in
the charge (|±〉) and spin subspace, respectively, Ez is the
Zeeman energy Ez = gμBBz, g is the electronic g factor, and
μB the Bohr magneton. The magnetic field gradient acts
as an artificial spin-orbit interaction and hybridizes bonding
and antibonding states with opposite spin direction via the

two spin-orbit mixing angles φ± = arctan [gμBbx/(2tc ± Ez )]
(φ± ∈ [0, π ]). As a consequence of this mixing, the electric
dipole moment operator acquires off-diagonal matrix ele-
ments in the eigenbasis of Eq. (1) which involve spin-flip
transitions [35,36]. In particular, given the four eigenenergies
E0,...,3, with 2E3(2) = −2E0(1) =

√
(2tc ± Ez )2 + (gμBbx )2, if

τ denotes the two-level system with energy splitting Eτ =
E2 − E0 and σ the one with splitting Eσ = E1 − E0 [see
Fig. 1(b)], the electric dipole moment operator reads

p = ed[− cos φ̄τx + sin φ̄σxτz], (2)

where φ̄ = (φ+ + φ−)/2, and τ (σ )α (α = x, y, z) are the Pauli
matrices in the corresponding τ (σ ) subspace. This implies
that the electric field can drive transitions between the ground
state and the first and second excited states with Rabi fre-
quency �σ = �c sin φ̄ and �τ = �c cos φ̄, respectively; see
the center part of Fig. 1(b), where we have defined 2τ± =
τx ± iτy and 2σ± = σx ± iσy.

For 2tc < Ez (2tc > Ez), we define the spin qubit as s =
τ (s = σ ), i.e., as the ground state and the second (first)
excited state, with Rabi frequency �s = �τ (�s = �σ ). If
the transverse magnetic field is small, gμBbx � |2tc − Ez|, the
expansion to first order yields

�s = 2tcgμBbx�c/
∣∣4t2

c − E2
z

∣∣ + O
(
b3

x

)
(3)

for both 2tc < Ez and 2tc > Ez. For a very small (or very large)
tunnel splitting, 2tc, the qubit is an almost pure spin qubit and
it is hardly addressable electrically, while in the region 2tc ≈
Ez the spin–electric field coupling is maximal [35] but the spin
qubit coherence suffers to some extent from charge noise (see
below).

The spin or charge character of the qubit will be reflected
in the decoherence time. The spin-charge mixing mechanism
also couples the spin to the phonons in the host material;
therefore the relaxation rates via phonon emission are γ1,σ =
γ1,c sin2(φ̄) and γ1,τ = γ1,c cos2(φ̄) [37], respectively, where
we have introduced γ1,c as the relaxation rate from the an-
tibonding to the bonding state evaluated at the qubit energy.
Since the spin qubit energy is essentially given by the Zeeman
splitting Ez (weakly corrected by the spin-charge mixing),
we can safely assume a constant value for γ1,c, neglecting
both oscillations of the form cos (qd ) (q is the phonon quasi-
momentum) and polynomial dependencies on the transition
frequency [38–42]. The expansion to the lowest order in bx

yields

γ1,s = γ1,c
[
2tcgμBbx/

(
4t2

c − E2
z

)]2 + O
(
b4

x

)
, (4)

where we can evaluate γ1,c at the Zeeman splitting energy
Ez. In the symmetric configuration ε = 0, pure dephasing is
strongly suppressed since the qubit is in a sweet spot protected
to some extent from charge fluctuations [43,44].

Although the qubit energy splitting is first-order insen-
sitive to electrical fluctuations in detuning ε, we account
here for pure dephasing due to second-order coupling to
charge fluctuations, which induces a Gaussian decay of co-

herences (∝e−(γ (2)
φ,σ (τ )t )2

) with rates γ
(2)
φ,σ = (γ 2

φ /Eσ ) sin2 φ̄ and

γ
(2)
φ,τ = (γ 2

φ /Eτ ) cos2 φ̄, where γφ is the magnitude of the low-
frequency detuning charge fluctuations (see Appendix A). The
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expansion to the lowest order in bx yields

γ
(2)
φ,s = γ 2

φ

Ez

[
2tcgμBbx/

(
4t2

c − E2
z

)]2 + O
(
b4

x

)
. (5)

Note that far from the resonant point 2tc ≈ Ez, other de-
coherence sources related to the spin, such as the hyperfine
interaction with nuclear spins, would start dominating the de-
phasing. The dephasing corresponding to quasistatic magnetic
noise [45,46] with magnitude γM is also quadratic, and the
corresponding rates are γM,σ = γM (cos φ+ + cos φ−)/2 and
γM,τ = γM (cos φ+ − cos φ−)/2 (see Appendix B). Therefore,
to lowest order in bx, the spin qubit magnetic noise dephasing
rate is

γM,s = γM

[
1 − (gμBbx )2

(
4t2

c + E2
z

)
2
(
4t2

c − E2
z

)2

]
+ O

(
b4

x

)
. (6)

In this architecture the electric field can induce spin ro-
tations with Rabi frequency �s. We focus on the shortest
single-qubit spin rotation (Xπ gate), performed in the gate time
tg = π/�s. Using a master equation with qubit relaxation and
a noise term, we calculate the average gate fidelity (see Ap-
pendix C) and average this result over a Gaussian distribution
for the noise with standard deviation given by the total mag-

nitude of the low-frequency noise, Var(δ) = 2(γ (2)
φ,s

2 + γ 2
M,s).

The optimal tunnel coupling value to achieve the best single-
qubit average gate fidelity depends on the relation between
the charge-induced dephasing and the magnetic noise (see
Sec. III). Note that if the DQD is coupled to a microwave
resonator the spin qubit couples also to the confined electric
field and the Purcell effect opens another relaxation channel
via photon emission. Single-spin control was demonstrated in
Ref. [15] in a detuned DQD configuration, where the spin-
charge mixing, and therefore the coupling of the spin to the
electric field, is much weaker. In the following we analyze the
crossover from a symmetric (DQD) to a far-detuned (SQD)
configuration.

III. CROSSOVER FROM DQD TO SQD

In this section we calculate the spin Rabi frequency and
the single-qubit average gate fidelity for a general detuning
ε and study the crossover from the molecular or DQD regime
(ε = 0) to the SQD regime with the electron strongly localized
in the left or right QD (|ε| 	 2tc). An electron trapped in a
detuned DQD, with energy detuning ε between the left and
the right QDs, forms charge states separated by an energy � =√

ε2 + 4t2
c . The detuning reduces the off-diagonal matrix ele-

ments of the transition dipole moment operator in the eigen-
basis resulting in a Rabi frequency �′

c = �c cos θ , where
we have introduced the orbital angle θ = arctan (ε/2tc), and
incorporates diagonal matrix elements. With a magnetic field
profile as explained above, the model Hamiltonian reads [35]

H0 = �

2
τ̃z + Ez

2
σ̃z − gμBbxσ̃x

2
(cos θ τ̃x − sin θ τ̃z ). (7)

The eigenenergies, labeled as E0,...,3, read 2E3(2) =
−2E0(1) =

√
(� ± b)2 + (gμBbx cos θ )2, with b =√

E2
z + (gμBbx sin θ )2, and all the off-diagonal matrix

elements of the electric dipole moment operator in the

FIG. 2. (a) Ratio between the spin Rabi frequency �s and the
charge Rabi frequency �c as a function of detuning ε for tc =
15 μeV. The spin Rabi frequency is maximized for ε = 0. (b) Single-
qubit average gate infidelity as a function of ε and tc. As expected,
F̄ is symmetric about ε = 0, with the highest values achieved at
ε = 0 and slightly away from the line with maximal spin-charge
mixing, � = Ez (black dashed line). The other parameters are chosen
to be Ez = 24 μeV, gμBbx = 2 μeV, �c/2π = 500 MHz, γ1,c/2π =
18 MHz, γφ/2π = 600 MHz, and γM/2π = 2 MHz.

eigenbasis are nonzero. Therefore all the transitions
can be addressed electrically, as shown in Fig. 1(b) via
colored arrows. The Rabi frequencies for the transitions
involving the lower energy states are (see Appendix A)
�σ = �′

c cos  sin φ̄ and �τ = �′
c cos  cos φ̄, where

the angle  = arctan (bx sin θ/Bz ) describes an orbital-
dependent spin rotation, φ± = arctan [gμBbx cos θ/(� ± b)]
(φ± ∈ [0, π ]) generalize the spin-orbit mixing angles, and
φ̄ = (φ+ + φ−)/2.

Analogously to the previous section, we define the spin
qubit as s = τ (s = σ ) for � < Ez (� > Ez), i.e., as the
ground state and the second (first) excited state. As expected,
the spin qubit Rabi frequency is reduced as ε increases. The
expansion of �s for small bx (gμBbx � |� − Ez|) yields

�s = 2tcgμBbx�
′
c/

∣∣�2 − E2
z

∣∣ + O
(
b3

x

)
, (8)

generalizing Eq. (3) to ε �= 0. In Fig. 2(a), we plot the ratio
�s/�c as a function of ε for tunnel coupling tc = 15μeV and
fixed magnetic field profile, Ez = 24μeV and gμBbx = 2μeV.
As expected, for a given amplitude of the applied electric
field the Rabi frequency is larger at zero detuning, which
implies that at ε ≈ 0 one can drive Rabi oscillations at a
given frequency with less power consumption than for finite
detuning; see Appendix D.

The direct phonon-induced spin relaxation rate for small bx

reads

γ1,s = γ1,c(2tc/�)2
[
2tcgμBbx/

(
�2 − E2

z

)]2 + O
(
b4

x

)
. (9)

In this detuned situation, the second excited state can also
decay to the first excited state via phonon emission, which
opens another spin relaxation channel for the case Ez > �

(see Appendix A). However, the corresponding decay rate is
lower than γ1,c due to the smaller energy gap between these
two states and it can be neglected for the relevant parameters.
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Moreover the low-frequency charge fluctuations (with magni-
tude γφ) induce pure dephasing with rates proportional to the
first derivative of the transition frequencies with respect to ε,

γ
(1)
φ,τ (σ ) = γφ cos θ

2
{tan θ (cos φ+ ± cos φ−)

+ sin (sin φ+ ∓ sin φ−)} (10)

(see Appendix A), which yields

γ
(1)
φ,s = γφ|ε|

Ez

[
2tcgμBbx/

(
�2 − E2

z

)]2 + O
(
b4

x

)
. (11)

The second-order contribution to spin dephasing is propor-
tional to the second derivatives of the transition frequencies,
as calculated from second-order perturbation theory [47–49].
The full expression for this spin contribution is given in
Appendix A. Including terms to lowest order in bx, we find

γ
(2)
φ,s = γ 2

φ

Ez

[
2tcgμBbx(
�2 − E2

z

)
]2[

1 − 4ε2

�2 − E2
z

]
+ O

(
b4

x

)
. (12)

Finally, the dephasing rates corresponding to quasistatic mag-
netic noise are given in Appendix B and accounting for terms
to lowest order in bx, we find

γM,s = γM

√
2ε2 + 4t2

c

�

[
1 − (gμBbxε)2

2E2
z �2

− (gμBbx )2t2
c

(
�2 + E2

z

)
(2t2

c + ε2)
(
�2 − E2

z

)2

]
+ O

(
b4

x

)
. (13)

In Fig. 2(b), we show the single-qubit average gate fidelity
as a function of ε and tc, calculated by averaging the Xπ aver-
age gate fidelity in the presence of Gaussian distributed noise
with standard deviation given by the total magnitude of the

low-frequency noise, Var(δ) = 2(γ (1)
φ,s

2 + γ
(2)
φ,s

2 + γ 2
M,s). First,

we can observe the optimal values of tc mentioned in Sec. II
and a reduction in the fidelity when � = Ez (indicated by the
dashed line) due to large spin-charge mixing. Moreover, we
can see the detrimental effect of working slightly away from
the sweet spot (ε = 0). The qubit not only suffers from a lower
Rabi frequency but the first-order charge noise contribution
dominates, abruptly decreasing the average gate fidelity.

As an estimate of the number of Rabi oscillations that can
be observed with high visibility in an EDSR experiment we
can use the quality factor Q, defined as the ratio of spin Rabi
frequency and decay rates

Q = 2�s

γ1,s/2 +
√

γ
(1)
φ,s

2 + γ
(2)
φ,s

2 + γ 2
M,s

. (14)

This expression should be viewed as an approximate interpo-
lation between the limiting cases where relaxation rate γ1,s or
the low-frequency noise is dominating [50].

Increasing the detuning localizes the electron more in a sin-
gle QD and the flopping-mode EDSR mechanism described
above may compete with other EDSR mechanisms that take
place in a SQD, via excited orbital or valley states [23,27,51–
56]. Also in a DQD structure, if the intervalley interdot tunnel
coupling [57–59] is strong compared to the valley splittings

[59], the effective spin Rabi frequency will be modified. In this
work we focus on the micromagnet-induced flopping-mode
EDSR mechanism, which dominates if the excited orbital
and valley energy splittings are large enough. For a dis-
cussion of the interplay between micromagnet-induced SQD
and flopping-mode EDSR mechanisms we refer the reader to
Appendix D.

In more realistic setups, where the micromagnet stray
field is not perfectly aligned with the DQD, there can be
magnetic field gradients in the z direction (longitudinal) and
a finite average field in the x direction (transverse). Given
the importance of the protection against charge fluctuations,
we investigate the sweet spot behavior using a more general
model in the following section.

IV. FLOPPING-MODE CHARGE NOISE SWEET SPOTS

In this section, we examine the optimal working points
for flopping-mode spin qubit EDSR operation. For the model
used in Sec. III, the zero detuning point constitutes a first-
order sweet spot with respect to fluctuations in the detun-
ing, since the qubit energy is insensitive to ε variations
to first order. In this case, it is important to account for
the second order contribution to qubit dephasing which, as
mentioned above, is related to the second derivative of the
qubit energy with respect to the detuning. The micromagnet
could be designed to induce a longitudinal magnetic field
gradient between the left and the right QDs with the aim
of obtaining a different spin resonance frequency depending
on the electron position. Fabrication misalignments can also
give rise to both longitudinal gradients and overall transverse
magnetic fields [16,50,60]; i.e., the magnetic field components
in the right and left QD positions may be B(L,R)

z = Bz ± bz

and B(L,R)
x = Bx ± bx, where Bz 	 Bx, bx, bz. Via a rotation

of the spin quantization axis, given by the small angle ζ =
arctan (Bx/Bz ), it is always possible to rewrite the latter as
B(L,R)

z′ = √
B2

z + B2
x ± bz′ and B(L,R)

x′ = ±bx′ , with

bz′ = bz cos ζ + bx sin ζ , (15)

bx′ = bx cos ζ − bz sin ζ ; (16)

therefore a model containing a homogeneous field and two
gradients is sufficient. In the following we work in a rotated
coordinate system and rename the variables as

√
B2

z + B2
x →

Bz, bx′ → bx and bz′ → bz. This allows us to use the
model Hamiltonian in Eq. (7), with a homogeneous field Bz

and a transverse inhomogeneous component bx, and add a
term accounting for the longitudinal gradient (±bz in the
left/right QD),

H = H0 − gμBbzσ̃z

2
(cos θ τ̃x − sin θ τ̃z ). (17)

Note that the relative values of bx and bz can be controlled via
the direction of the external magnetic field [60].

For simplicity we analyze first this model in the limit of
small inhomogeneous fields, gμBbx,z � |� − Ez|. While the
transverse gradient corrects the spin qubit energy splitting Es

(from the value Es = Ez for bx,z = 0) to second order, the
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FIG. 3. Spin qubit energy splitting Es as a function of the detun-
ing ε, for various values of the longitudinal gradient field (gμBbz), as
indicated, increasing from top to bottom. The interdot tunnel splitting
amounts to (a) 2tc = 18 μeV and (b) 2tc = 30 μeV, while the ho-
mogeneous field Zeeman energy is Ez = 24 μeV and the transverse
inhomogeneous component is gμBbx = 2 μeV. The thin shaded areas
indicate first-order sweet spots for the corresponding color line and
the wide blue shaded area in (b) indicates the region around the
second-order sweet spot for gμBbz = 0.3 μeV. The discontinuity in
(a) occurs at � = Ez due to a level crossing of the upper qubit state.

longitudinal gradient has an effect to first order, leading to

Es  Ez − E2
z − ε2

2Ez
(
�2 − E2

z

) (gμBbx )2 − ε

�
gμBbz. (18)

From this simplified expression, we can explore the existence
of first-order sweet spots. Unless bz = 0, the spin qubit does
not have a first-order sweet spot at zero detuning. For an
arbitrary value of tc, if bz < b2

x/Bz the spin qubit should be
operated at a first-order sweet spot slightly shifted from zero
detuning (see below). For a larger longitudinal gradient, bz >

b2
x/Bz, there are two first-order sweet spots for a given value

of tunnel splitting below the Zeeman energy, i.e., 2tc < Ez.
For larger tunnel splitting, 2Ez > 2tc > Ez, there are also two
first-order sweet spots if

b2
x

Bz
< bz < b0

z = 3
√

3t4
c

Ez
(
4t2

c − E2
z

)3/2

b2
x

Bz
(19)

and none otherwise.
In Fig. 3, the exact spin qubit energy splitting Es, calculated

from the eigenenergies of the Hamiltonian (17), is shown
as a function of the DQD detuning ε for different values
of bz. For negative values of bz the sweet spots will occur
at negative values of ε. The panels (a) and (b) represent a
generic case with tunnel splitting below and above the Zeeman
energy, respectively. The black (solid) lines are for bz = 0
and the red (dashed) lines correspond to bz < b2

x/Bz, showing
therefore one first-order sweet spot in both panels (a) and (b).
In Fig. 3(a), since 2tc < Ez, we expect two first-order sweet
spots for large enough values of longitudinal gradient, which
can be seen in the green (dash-dotted) line. In Fig. 3(b), we
analyze a case with 2Ez > 2tc > Ez. The green (dash-dotted)
line corresponds to the intermediate region of two first-order
sweet spots, b2

x/Bz < bz < b0
z . Finally, the blue (dotted) line

is obtained for bz ∼ b0
z . At this point, Es becomes very flat,

FIG. 4. Second derivative ∂2
ε Es of the spin qubit energy split-

ting with respect to the detuning ε as a function of tc and ε for
(a) gμBbz = 0.16 μeV and (b) gμBbz = 0.5 μeV. The black dashed
lines indicate the first-order sweet spot positions and the circle in
panel (b) indicates the position of the second-order sweet spot.
The homogeneous field Zeeman energy is Ez = 24 μeV and the
transverse inhomogeneous component is gμBbx = 2 μeV.

which would protect the qubit even to higher order from
fluctuations in the detuning.

To confirm this, we show in Fig. 4 the second derivative
of the spin qubit energy splitting with respect to detuning.
In panel (a) bz < b2

x/Bz, while in panel (b) bz > b2
x/Bz. The

superimposed black dashed line indicates the position of the
first-order sweet spots. In Fig. 4(a), the value of the second
derivative along the expected first-order sweet spot (black
dashed line) does not change significantly. Increasing the
value of bz can give rise to a situation as shown in Fig. 4(b),
where the line indicating the position of the first-order sweet
spot (black dashed line) crosses the line of zero second
derivative, allowing for a second-order sweet spot and a qubit
protected against charge noise up to second order.

The longitudinal magnetic field gradient may also influ-
ence the electric dipole moment operator and therefore the
Rabi frequencies of the different transitions. In Appendix E
we treat the transverse component bx perturbatively and cal-
culate the correction of the spin Rabi frequency due to the
longitudinal magnetic field gradient,

�s  �′
c

2tcgμBbx∣∣�2 − E2
z

∣∣
[

1 + εbz

�Bz

]
; (20)

i.e., bz � Bz incorporates a small correction. This means
that bz does not have a noticeable effect on the spin Rabi
frequency and the phonon-induced spin dephasing rate, but
it strongly affects the pure spin dephasing rate due to charge
fluctuations via a drastic modification of the qubit energy
detuning dependence, as shown in Figs. 3 and 4.

To examine the overall performance of the qubit in differ-
ent regimes, we show in Fig. 5 the single-qubit average gate
fidelity as a function of ε and tc. The charge-noise-induced
spin dephasing rate has been calculated numerically from the
derivatives of the spin qubit energy splitting Es with respect to
detuning ε. The effect of the small longitudinal gradient on the
spin Rabi frequency, the phonon-induced spin relaxation rate,
and the magnetic-noise-induced rate is very small; therefore
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FIG. 5. Single-qubit average gate infidelity 1 − F̄ as a function
of detuning ε and interdot tunnel coupling tc for (a) gμBbz =
0.16 μeV and (b) gμBbz = 0.5 μeV. The homogeneous field Zee-
man energy is Ez = 24 μeV and the transverse inhomogeneous
component is gμBbx = 2 μeV. The other parameters are chosen to
be �c/2π = 500 MHz, γ1,c/2π = 18 MHz, γφ/2π = 600 MHz, and
γM/2π = 2 MHz. The black dashed lines indicate the first-order
sweet spot positions. In panel (b) the squares mark the position of
the first-order sweet spots for tc = 13 μeV and the circle indicates
the position of the second-order sweet spot.

we have neglected it here. Since we have assumed that the
pure dephasing rate induced by charge noise fluctuations is
the dominant source of decoherence, the condition for the
best quality qubit coincides with the position of the first-order
sweet spots, which, as opposed to the case with bz = 0 shown
in Fig. 2, does not occur at ε = 0. Although for a fixed tunnel
coupling tc the two first-order sweet spots exhibit high single-
qubit average gate fidelity, their properties are very different.
For example, for tc = 13 μeV the spin Rabi frequency at the
sweet spot at ε = 3.1 μeV is four times larger than at the
one at ε = 18.6 μeV [these two first-order sweet spots are
indicated by squares in Fig. 5(b)], but the phonon-induced
relaxation rate and the charge noise dephasing rates are also
16 and 9 times higher, respectively. The first-order sweet spot
situated at larger detuning could therefore serve as idle point,
while the one at lower detuning is used as operating point.
Finally, as shown in Fig. 5(b), an even larger average gate
fidelity can be achieved by operating close to the second-order
sweet spot. Note that the best fidelity does not correspond ex-
actly to the second-order sweet spot, since phonon relaxation
and nuclear-spin-induced dephasing are also present.

V. CONCLUSIONS

The flopping-mode configuration is shown to be useful not
only for achieving a strong coupling between cavity photons
and single spins [15,16,20], but also for coherent electrical
spin manipulation. We have analyzed the variation of the
performance of the flopping-mode EDSR method from the
symmetric (ε = 0) DQD to the highly biased (|ε| 	 2tc) SQD
regime. Importantly, the applied power of the electric field
necessary to obtain a given Rabi frequency will be reduced
by orders of magnitude by working in the DQD regime. This
efficient single-spin manipulation implemented in silicon QDs
would constitute a fundamental step toward a fully electrically

controllable quantum processing architecture for spin qubits, a
platform which already benefits from mature silicon process-
ing technology.

Given the presence of environmental charge noise in typ-
ical QD devices, it is important to know the position of the
exact first-order sweet spot, which can be shifted a few μeV
away from zero detuning in the presence of a longitudinal
magnetic field gradient. Interestingly, it is also possible to
find two first-order sweet spots for the same value of tun-
nel coupling, with different Rabi frequency and decoherence
rate, which could be potentially exploited for different steps
of qubit manipulation. Finally, we predict the existence of
second-order sweet spots, where the qubit is insensitive to
electrical fluctuations up to second order.
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APPENDIX A: ELECTRIC DIPOLE MOMENT
AND DEPHASING

In this Appendix we calculate the Rabi frequencies for
the different transitions in the flopping-mode spin qubit, the
phonon-induced spin relaxation rates, and the pure dephasing
rates due to low-frequency electrical fluctuations in the DQD
detuning. In Eq. (2) we have expressed the electric dipole
moment operator in the eigenbasis of Eq. (1), which is the
model Hamiltonian for ε = 0 and bz = 0. For detuned QDs
(ε �= 0), we can write the electric dipole moment in the
eigenbasis of the Hamiltonian in Eq. (7) and find that the
electric field couples to all possible electronic transitions, as
shown in Fig. 1(b), since the electric dipole moment operator
has the form p = ed cos θ (T + Z/2), with the off-diagonal
component

T = − cos  cos φ̄τx + cos  sin φ̄σxτz (A1)

+ (sin  cos φ− + tan θ sin φ−)(σ+τ− + H.c.)

− (sin  cos φ+ − tan θ sin φ+)(σ+τ+ + H.c.),

and the diagonal component

Z = {tan θ (cos φ+ + cos φ−) + sin (sin φ+ − sin φ−)}τz

+{tan θ (cos φ+ − cos φ−) + sin (sin φ+ + sin φ−)}σz.

(A2)

The first terms in the off-diagonal component determine the
Rabi frequencies �τ (σ ) and the direct phonon relaxation rates
γ1,τ (σ ) given in Sec. III. The term in the second line of
Eq. (A1) corresponds to transitions between the first and
second excited states, and it opens a new channel for spin
relaxation in the case Ez > �. We have neglected this channel
here because the corresponding phonon emission rate is sup-
pressed by the small energy gap between these two states for
the relevant parameter regimes.

The electrical fluctuations also couple to the system via
the electric dipole moment. If the amplitude δε and frequency
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of these fluctuations are small, we can calculate the spin qubit
dephasing rate by treating them within time-independent
perturbation theory [47–49], obtaining the dephasing
Hamiltonian

Hδε
=

∑
η=τ,σ

(
∂Eη

∂ε
δε + 1

2

∂2Eη

∂ε2
δ2
ε

)
ηz

2
, (A3)

where the first-order contribution relates directly to the diag-
onal components in Eq. (A2), since

∂Eτ (σ )

∂ε
= cos θ

2
{tan θ (cos φ+ ± cos φ−)

+ sin (sin φ+ ∓ sin φ−)}, (A4)

and all the terms of the off-diagonal component Eq. (A1)
contribute to second order [49]. More precisely, the second
derivatives read

∂2Eτ (σ )

∂ε2
= cos2 θ

{
cos2  cos2 φ̄

Eτ (σ )

+ (sin  cos φ+ − tan θ sin φ+)2

2(Eτ + Eσ )

± (sin  cos φ− + tan θ sin φ−)2

2(Eτ − Eσ )

}
. (A5)

Assuming Gaussian-distributed low-frequency noise leads
to a Gaussian decay of coherence ∝e−�2

φ t2
with the total

pure spin dephasing rate related to the variance of the noise
function

�φ =
[

Var

(
∂Es

∂ε
δε + 1

2

∂2Es

∂ε2
δ2
ε

)
/2

]1/2

=
[
γ

(1)
φ,s

2 + γ
(2)
φ,s

2
]1/2

, (A6)

where γ
(1)
φ,s = γφ

∂Es
∂ε

and γ
(2)
φ,s = γ 2

φ
∂2Es
∂ε2 , and γφ = σε/

√
2,

where σε is the standard deviation of the fluctuations δε.

APPENDIX B: QUASISTATIC MAGNETIC NOISE

In this Appendix we calculate the dephasing rate of the
flopping-mode spin qubit due to hyperfine interaction with the
nuclear spins. For this we use the quasistatic approximation
[45], which assumes that the fluctuations in the Overhauser
field occur in a timescale much longer than the system dy-
namics. Then we treat the noise Hamiltonian term

Ṽ = ξL(t )σ̃z(1 + τ̃z )/2 + ξR(t )σ̃z(1 − τ̃z )/2, (B1)

with two random variables for the noise in the left and right
QDs, to first order in time-independent perturbation theory.
First we transform Eq. (B1) into the eigenbasis of Eq. (7),
obtaining the diagonal component

Z = ξ+ cos 

4
{(cos φ+ − cos φ−)τz + (cos φ+ + cos φ−)σz}

+ ξ− cos  sin θ

2
σzτz, (B2)

where ξ± = ξL(t ) ± ξR(t ).

If we assume now Gaussian distributions with zero mean
value and σ 2

M = Var[ξR(t )] = Var[ξL(t )], the coherences de-
cay as ∝ e−(γM,σ (τ )t )2

, with the dephasing rates due to nuclear
spins

γM,σ (τ ) = γM cos 

2

√
(cos φ+ ± cos φ−)2 + 4 sin2 θ, (B3)

where γM = σM , whose expansion to lowest order in bx yields
Eq. (13).

APPENDIX C: SINGLE-QUBIT AVERAGE GATE FIDELITY

We determine the quality of the quantum gate, represented
by the operator E , via the average fidelity F̄ = 〈ψ |E[|ψi〉]|ψ〉,
which compares the targeted pure state |ψ〉 and the obtained
mixed state density matrix E[|ψi〉], averaged over all possible
pure input states |ψi〉.

In this case the real quantum gate is determined by the
simple two-level system master equation

ρ̇ = −i

[
δ

2
σz, ρ

]
+ γ1,s

2

[
2σ−ρσ+ − {σ+σ−, ρ}] (C1)

for the qubit density matrix ρ, where δ is the noise magnitude.
We now calculate the entanglement fidelity Fe for the gate

applied to only one qubit of a two-qubit state prepared in a
maximally entangled state, since this relates to the average
fidelity as F̄ = (2Fe + 1)/3 [61]. This yields

F̄ (δ) = 1
3

{
2 + e−2tgγ1,s (C2)

+ e−tgγ1,s
[

cosh (tgγ1,s) − cosh
(
tg
√

γ 2
1,s − δ2

)]}
.

Finally, since we consider only low-frequency noise, the mea-
surable and interesting quantity is the average of this fidelity
over the randomly distributed noise variable δ.

APPENDIX D: LOW-POWER EDSR

In this Appendix, we analyze the power necessary to drive
Rabi oscillations at a given frequency by taking into account
both SQD and flopping-mode EDSR induced by the micro-
magnet. Following Refs. [26,27], we can complete Eq. (8) by
including the SQD contribution to the Rabi frequency,

�s ≈ edEac

h̄
gμBbx

(
4t2

c

�|�2 − E2
z | + h̄2

m∗
e d2E2

orb

)
, (D1)

where Eorb is the orbital energy, Eorb ≈ 1–3 meV, and m∗
e is

the electron effective mass. Since the drive power is propor-
tional to the square of the electric field, P ∝ E2

ac, the power
necessary to drive the spin qubit at a given Rabi frequency
follows [50]

P ∝ �2
s

[
ed

h̄
gμBbx

(
4t2

c

�
∣∣�2 − E2

z

∣∣ + h̄2

m∗
e d2E2

orb

)]−2

. (D2)
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APPENDIX E: EFFECT OF bz ON THE SPIN
RABI FREQUENCY

In this Appendix we investigate the effect of a longitudinal
magnetic field gradient on the flopping-mode Rabi frequen-
cies. Since bz is the difference in longitudinal magnetic field
between the left and the right QDs, it can be seen as a detuning
parameter (similar to ε) that depends on the spin; therefore its
effect can be included in the form of a spin-dependent orbital
basis transformation,

|+′, σ 〉 = cos (θσ /2)|+, σ 〉 − sin (θσ /2)|−, σ 〉,
|−′, σ 〉 = sin (θσ /2)|+, σ 〉 + cos (θσ /2)|−, σ 〉, (E1)

with orbital angles θ↑(↓) = arctan [(ε ± gμBbz )/2tc] and or-
bital energies �↑(↓) = √

(ε ± gμBbz )2 + 4t2
c , instead of the θ

and � used in Sec. III. With this, we can treat bx perturbatively
and find the spin Rabi frequency

�s  2tcgμBbx�c cos θ̄
Ez/

[
Ez − (�↑ − �↓)/2

]
(�↑ + �↓)2/4 − E2

z

, (E2)

which generalizes the result in Eq. (8). Here, θ̄ = (θ↑ + θ↓)/2.
Finally, expanding to lowest order in bz, this simplifies to
Eq. (20).
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