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Effective Hamiltonian theory of the geometric evolution of quantum systems
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In this work we present an effective Hamiltonian description of the quantum dynamics of a generalized �

system undergoing adiabatic evolution. We assume the system to be initialized in the dark subspace and show
that its holonomic evolution can be viewed as a conventional Hamiltonian dynamics in an appropriately chosen
extended Hilbert space. In contrast to the existing approaches, our method does not require the calculation of
the non-Abelian Berry connection and can be applied without any parametrization of the dark subspace, which
becomes a challenging problem with increasing system size.
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I. INTRODUCTION

Quantum information science is an active and developing
field of study which has motivated an intense search for
physical systems that can be used as quantum processors.
Whatever system is eventually going to be used, one must
be able to efficiently manipulate the state of the quantum
device with high gate fidelity in order to either perform
sufficiently long quantum computations without error correc-
tion [1] or allow for fault-tolerant quantum operation [2].
Most proposed and implemented quantum processors use
dynamical protocols to manipulate the quantum state of the
device by controlling a nonzero Hamiltonian H (t ) acting on
the quantum register directly to generate the time evolution
U = T exp [−i

∫
H (t )dt]. Alternatively, geometric phases [3]

and their non-Abelian generalizations arising after a cyclic
adiabatic evolution of the system can be used to realize
universal quantum gates [4,5]. In this case the system is
initialized in the dark subspace of its Hamiltonian and due
to the adiabatic theorem remains there as the Hamiltonian is
slowly changed in time. This method can provide an intrinsic
tolerance against certain types of noise [6,7] and was real-
ized experimentally in nuclear magnetic resonance (NMR)
systems [8]. Later, proposals based on tripod systems [9–11]
were experimentally applied to realize single qubit rotations
in trapped ions [12]. There are other proposals to realize
geometric gates in systems of superconducting qubits [13].
Geometric gates can also be constructed using nonadiabatic
evolution [14–16]. Relaxing the adiabaticity condition makes
it simpler to perform gates, and nonadiabatic geometric gates
have indeed been successfully realized with superconduct-
ing qubits [17], NMR systems [18], and the electron spin
of nitrogen-vacancy centers [19–21]. Here, we will restrict
ourselves to the adiabatic case.

In this paper we consider the time evolution of a quantum
system initialized in the instantaneous dark subspace of its
time-dependent Hamiltonian, as required for adiabatic geo-
metric quantum computation. A conventional way to describe
the dynamics of such systems would be to find a basis in
the instantaneous dark subspace, compute the non-Abelian
Berry connection using this basis [22,23], and subsequently

evaluate the path-ordered exponential of the line integral of
the obtained Berry connection along the path in the Hamilto-
nian parameter space. We show that it is possible to describe
the evolution of this system without explicitly calculating
the Berry connection, by introducing an effective Hamilto-
nian and then solving the Schrödinger equation instead. The
Hamiltonian used for this procedure acts in a Hilbert space
large enough to contain the instantaneous dark subspace at any
moment in time. It may coincide with the full Hilbert space
of the system, but can also be smaller if the dark subspace
never involves some of the system’s levels. Our approach
suggests, that instead of computing a basis in the instanta-
neous dark subspace of the time-dependent Hamiltonian, one
can identify its bright states and use them to construct an
effective Hamiltonian that contains all the information about
the adiabatic evolution of the dark subspace. That means that
a complicated procedure of finding the orthonormal basis
in the possibly very large dark space of the system can be
avoided, which makes the numerical description of the system
dynamics much less demanding.

II. SYSTEM DESCRIPTION

We first consider a generalized � system with n + 1 levels,
for which the first n levels, forming a Hilbert space H, are
separated from the remaining level with the energy ω and are
resonantly coupled to it by oscillating fields �ieiωt (Fig. 1).
From here on, we use units in which h̄ = 1. The detailed
description of the adiabatic evolution of this system, obtained
with the formalism of the non-Abelian Berry connection, is
well known in the literature [24]. The Hamiltonian of such a
system in the rotating frame is

Ĥ =
n∑

i=1

(�i |i〉 〈e| + �∗
i |e〉〈i|), (1)

where �i is the complex coupling amplitude (Rabi frequency)
of the ith level |i〉 to the excited state |e〉 (Fig. 1). It should
be noted here that the form of the Hamiltonian (1) does not
require the ground states to be degenerate. It suffices that each
ground state level |i〉 is coupled to |e〉 resonantly. This is the
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FIG. 1. Energy level diagram of the generalized � system. The
lower n states |i〉 (i = 1, . . . , n) are coupled to the excited state |e〉.
The system has an instantaneous (n − 1)-dimensional dark subspace,
in which it remains due to the adiabatic theorem.

reason why the rotating frame Hamiltonian (1) can arise in
many different multilevel systems, the requirement being the
absence of parasitic coupling between the ground states.

We introduce the mean Rabi frequency � =
√∑n

i=1 �2
i

and parametrize the coupling coefficients as �i/� = rieiφi , so
that the Hamiltonian (1) can be rewritten as

Ĥ = �

n∑
i=1

ri(e
iφi |i〉 〈e| + e−iφi |e〉〈i|). (2)

Here ri are positive numbers obeying the property
∑n

i=1 r2
i =1.

By introducing the normalized bright state,

|B〉 =
n∑

i=1

rie
iφi |i〉, (3)

the Hamiltonian of the system can be rewritten as

Ĥ = �(|B〉〈e| + |e〉〈B|). (4)

The values of the n amplitudes and n phases of the excitation
fields determine the bright state, thus defining a Hamiltonian
that acts trivially on the orthogonal complement of the space
spanned by |B〉 in the Hilbert space H. These n − 1 states
form the so-called dark subspace, such that for any state ψ in
this subspace Ĥψ = 0. If the bright state is specified, one can
uniquely define the dark subspace as its orthogonal comple-
ment. The global phase of the bright state is not important for
the identification of the dark subspace; if one also takes into
account the normalization condition for the ri, one concludes
that one has 2n − 2 independent parameters that define the
dark subspace of the Hamiltonian Ĥ . Considering a time-
dependent excitation with ri(t ) and φi(t ), the evolution of the
system is governed by a time-dependent Hamiltonian Ĥ (t ),
whose dark subspace is now time dependent and describes a
path in the (2n − 2)-parametric space. In the adiabatic regime,
where the parameters are changed slowly with respect to 1/�,
it is known that if the system starts in the dark subspace, it
will remain there during the evolution [25]. The initialization
of the system in the dark subspace is by itself an interesting
issue and strongly depends on the particularities of the system.
In the case when the state |e〉 has a short lifetime, a way
to initialize the system would be to use coherent population
trapping (CPT) [26]. If we do not restrict the Hamiltonian
to contain the couplings to the state |e〉 only, but allow

couplings between the ground states as well, we can construct
a Hamiltonian that contains only one dark state, for example
|1〉. Provided that the system does not start in the state |1〉, it
will then be pumped to |e〉, from which it may either decay
to |1〉 or to some other ground state and then the process will
repeat. After many cycles the system will finally be trapped
in the state |1〉. Once the state |1〉 has been reached, one can
switch off the couplings between the ground states and return
to the case of the Hamiltonian (4), assuming the system is
initialized in its dark subspace. The standard way to describe
the adiabatic evolution of this subspace would be to write
down the basis vectors in the dark subspace, that depend on
the 2n − 2 independent parameters, and then calculate the
Berry connection. The path ordered exponential of the line
integral of the Berry connection will then define the evolution
operator of the system. In what follows we will present a
different formalism to analyze the evolution of the system
based on the construction of an effective Hamiltonian in the
whole Hilbert space H and discuss the purposes to which it
could be applied.

III. EFFECTIVE HAMILTONIAN

Let |ψ1(t )〉, |ψ2(t )〉 , . . ., |ψn−1(t )〉 be orthonormal basis
in the dark subspace of the system at time t . We assume
the system to be initialized in an instantaneous dark state of
its Hamiltonian and to subsequently evolve in the adiabatic
regime, so at any time moment t the state of the system is
|ψs〉 = ∑n−1

i=1 ci(t ) |ψi(t )〉. Let us now concentrate on how this
general state evolves due to the Hamiltonian Ĥ (t ) during an
infinitesimal time interval dt . In Appendix A we show that

|ψs〉 → Û |ψs〉, (5)

where the unitary operator Û acts in the whole Hilbert space
H and is given by

Û = 1̂ + [ ˙|B〉〈B| − |B〉〈Ḃ|]dt, (6)

where 1̂ is the projection operator on the Hilbert space H,
acting as identity in this space. Since the operator Û generates
the correct evolution of the states in the dark subspace of
the system, we can view the evolution of the state in the
dark subspace in the adiabatic regime as if a time-dependent
effective Hamiltonian

Ĥeff = i(|Ḃ〉〈B| − |B〉〈Ḃ|) (7)

was acting in the Hilbert space H.
In terms of the laser coupling coefficients ri, φi (i =

1, . . . , n), using Eq. (3), the effective Hamiltonian (7) can be
rewritten in the original basis |i〉 (i = 1, . . . , n) as

Ĥeff =
n∑

i, j=1

rir j

[
−(φ̇i + φ̇ j ) + i

d

dt
ln

(
ri

r j

)]

× ei(φi−φ j ) | i〉〈 j|. (8)

In Appendix C we show that this Hamiltonian can describe
the same universal set of gates as the non-Abelian Berry
connection, demonstrating that the two approaches are indeed
equivalent.
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IV. GENERALIZATIONS

Let us now consider a more general Hamiltonian of the
form

Ĥ =
k∑

i, j=1

(gi j |Bi〉 〈Bj | + g∗
i j |Bj〉 〈Bi|), (9)

acting in some Hilbert space H of dimension n, where |Bi〉
are time dependent states in this Hilbert space, forming an
orthonormal set of vectors at any instant in time. Note that
the Hamiltonian (4) is a special case of (9), with two bright
states, one of them being constant. We point out that the
Hamiltonian (9) can always be brought into a diagonal form
with appropriately chosen bright states, but for our purposes
it is not necessary to assume this.

From now on we will assume that the instantaneous eigen-
values of the Hamiltonian (9) in the subspace spanned by the
vectors |Bi〉 are nonzero and that the adiabatic condition with
respect to these eigenvalues is fulfilled. Thus, if the system
starts in the instantaneous dark subspace of this Hamiltonian,
it never leaves it, in accordance with the adiabatic theorem.

In full analogy to the case of Eq. (6), in Appendix B we
show that one can build the unitary transformation acting in
the Hilbert space H and describing correctly the transfor-
mation of the dark subspace of Hamiltonian (9) during the
infinitesimal time interval dt :

Û = 1̂ +
k∑

i=1

[ ˙|Bi〉 〈Bi| − |Bi〉 〈Ḃi|]dt, (10)

We now conclude that the evolution of the dark subspace of
the Hamiltonian (9) in the adiabatic regime can be described
with the effective Hamiltonian

Ĥeff =
k∑

i=1

i[ ˙|Bi〉 〈Bi| − |Bi〉 〈Ḃi|] =
k∑

i=1

Ĥi, (11)

acting in the Hilbert space H. Here Ĥi (i = 1, . . . , k) is a
Hamiltonian equivalent to (7).

Another approach exists to describe the adiabatic evolution
of quantum systems using a transitionless driving Hamilto-
nian [27,28]. Both the transitionless driving Hamiltonian and
Eqs. (7) and (11) describe the evolution of the states from
the dark subspace as a solution of the Schrödinger equation
with the corresponding Hamiltonian. The main difference
between the two approaches is that the transitionless driving
Hamiltonian requires the eigenbasis in the dark subspace,
while in our approach we construct the effective Hamiltonian
using the bright states only, thus avoiding the procedure of
orthogonalization of the dark subspace. Later we discuss the
cases when our formalism will be simpler to apply than the
Berry connection or the transitionless driving Hamiltonian.

Now we will discuss the systems to which our formalism
can be applied. One of the simplest cases when the systems’
dynamics in the Hilbert space of dimension n is controlled
with Hamiltonian (9), k < n, is depicted in Fig. 2.

Here all the states of r-fold degenerate ground space are
coupled to all the states of the m-fold degenerate excited space
with the same excitation frequency. Performing the Morris-
Shore transformation [29] and assuming r � m, the system

(a)

(b)

FIG. 2. (a) A system having an r-fold degenerate ground state
and an m-fold degenerate excited state. Each arrow denotes the
coupling between the corresponding levels. All ground states are
coupled to all excited states with the same detuning from the reso-
nance. (b) Under the rotating wave approximation the Morris-Shore
transformation [29] brings this system to at most m driven two-level
systems and r − m decoupled dark states (assuming r � m). The
Hamiltonian of this system will then have the form (9).

is brought to at most m coupled pairs. All the other states
turn out to be isolated and thus can be associated with the
dark states. Going to the frame rotating with the frequency of
the excitation and applying the rotating wave approximation,
we can describe the system exactly with the Hamiltonian (9)
with n = r + m and k � 2m. Here the bright states |Bi〉 (1 =
1, . . . , k) as well as the couplings gi between pairs will depend
on the excitations between the ground and excited states.
If one now allows the couplings in the rotating frame to
change slowly, so that the adiabatic condition is fulfilled, the
states from the dark subspace will evolve according to the
effective Hamiltonian (11). The criterion for the adiabaticity
can be formulated as, first, the conservation of the number
of coupled pairs. In other words, the coupling for any of the
pairs never becomes 0. Second, the couplings between the
ground and excited states should change much more slowly
than the inverse of the smallest coupling strength among the
pairs, arising after the Morris-Shore transformation. Let us
assume that the number of bright states is the greatest possible,
k = 2m. As the excited states are always bright and do not
change in time, to construct the effective Hamiltonian one
only needs to find the other m bright states from the ground
space. This will be easier than finding the basis in the dark
subspace if the number of dark states r − m is greater than m.
Thus the effective Hamiltonian approach will be advantageous
over the Berry connection if r > 2m. Apart from the � sys-
tem, for which the Berry connection can be calculated analyt-
ically, the smallest possible system when that will be the case
is when five ground states are coupled to two excited states.

We would like to stress that the Hamiltonian (9) with k < n
need not arise necessarily in the system in Fig. 2. One may
start with the most general case when all n states of the
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Hilbert space H are coupled in the rotating frame. In general
this Hamiltonian will have no dark states, but if additional
conditions are imposed on the couplings, the Hamiltonian
may become reducible to the case of the formula (9) with k <

n. In the case of Fig. 2 this reducibility arises from the absence
of couplings in the excited and ground state manifolds.

V. DESCRIPTION OF QUANTUM GATES USING
THE EFFECTIVE HAMILTONIAN

Let us now go back to the original � system in Fig 1.
We will assume that the system’s logical space coincides
with the first n − 1 levels of the ground state space and the
system is initialized in this space. To encode the states of m
qubits in this logical space we need n − 1 = 2m. Then the
state |k〉 corresponds to the qubit state, which is the binary
representation of k. For example the state |4〉 = |00 · · · 0011〉,
which means that only two last qubits are excited and all other
qubits are in the ground state. We would like to perform a
geometric adiabatic gate on the logical space of the system.
For that we first switch on only the nth coupling �n, so
that the bright state initially coincides with the level |n〉. The
logical space is thus the dark space of the Hamiltonian at the
beginning of the gate. Let us choose the arbitrary state |ψ〉 as a
linear combination of |1〉 , |2〉 , . . . , |n − 1〉 and adiabatically
change the couplings in the way that the bright state follows
a three-piece trajectory from t = 0 to t = t1, from t = t1 to
t = t2, and from t = t2 to t = t3:

(1) |B(t )〉 = sin[θ (t )/2] |ψ〉 + cos[θ (t )/2]|n〉,
θ (0) = 0, θ (t1) = π ;

(2) |B(t )〉 = eiφ(t )|ψ〉,
φ(t1) = 0, φ(t2) = 	;

(3) |B(t )〉 = ei	 sin[θ (t )/2] |ψ〉 + cos[θ (t )/2]|n〉,
θ (t2) = π, θ (t3) = 0.

Note that the second stage just changes the global phase
of the bright state and thus its only meaning is to make the
bright state continuous; it does not affect the system that lies
in the dark subspace. Therefore this stage can be performed
arbitrarily fast without breaking the adiabaticity condition.
The trajectory of the state of the system is shown in the Fig. 3.

We can now use the formula (7) to calculate the effective
Hamiltonian for each stage, together with the corresponding
unitary T̂ exp [−i

∫ end
start Ĥeff(t )dt], and obtain

(1) Ĥeff = i
θ̇

2
(|ψ〉 〈n| − |n〉 〈ψ |),

Û1 = e
π
2 (|ψ〉〈n|−|n〉〈ψ |)

= 1̂ − |ψ〉 〈ψ | − |n〉 〈n| + |ψ〉 〈n| − |n〉 〈ψ |;
(2) Ĥeff = −2φ̇ |ψ〉 〈ψ |,

Û2 = e2i	|ψ〉〈ψ | = 1̂ − |ψ〉 〈ψ | + e2i	 |ψ〉 〈ψ |;
(3) Ĥeff = θ̇

2
(i cos(	)(|ψ〉 〈n| − |n〉 〈ψ |)

− sin(	)(|ψ〉 〈n| + |n〉 〈ψ |),
Û3 = 1̂ − |ψ〉 〈ψ | − |n〉 〈n|

− cos(	)(|ψ〉 〈n| − |n〉 〈ψ |)
− i sin(	)(|ψ〉 〈n| + |n〉 〈ψ |).

FIG. 3. A Bloch sphere that represents a state space spanned with
the states |n〉 and |ψ〉. The system is initialized in the dark state |ψ〉
and the blue line shows the adiabatic evolution of the dark state along
a closed path in a two-dimensional Hilbert space. At the end of the
evolution the system acquires a geometric phase that is equal to 	,
half of the solid angle enclosed by the trajectory.

We note that after the third stage the bright state returns
back to |n〉, which indicates that the dark subspace at the end
of the gate coincides with the logical space. Combining the
action of the three stages we obtain

Û = Û3Û2Û1 = 1̂ − |ψ〉 〈ψ | − |n〉 〈n|
+ e−i	 |ψ〉 〈ψ | + ei	 |n〉 〈n|. (12)

The action on the state |n〉 is irrelevant as the effective
Hamiltonian only describes the evolution of the vectors from
the dark subspace correctly. The state |ψ〉 on the other hand
obtains a phase factor −	. This phase factor is equal to half
of the solid angle the trajectory of the state |ψ〉 traces on
the Bloch sphere in Fig. 3, that coincides with the classical
result [3,22].

If n = 3 the gate above is a single qubit gate on the levels
|1〉 , |2〉. If one displays the state space, spanned with these
two levels, using a Bloch sphere representation, this gate
can be thought of as a rotation by the angle 	 around the
axis connecting the center of the sphere and the point that
corresponds to ψ . If n = 5 the gate above is a two-qubit gate,
as the dimension of the logical space is four. If also |ψ〉 = |4〉,
this is a CPHASE gate, which in combination with the universal
single qubit gates gives a complete set of gates in the space of
two qubits. We also note that if one does not restrict oneself
to closed trajectories, the effective Hamiltonian describes the
stimulated Raman adiabatic passage (STIRAP) process.

VI. DISCUSSION

We have shown that the adiabatic dynamics of a state from
the dark subspace of the Hamiltonian (9) can be described
with an effective Hamiltonian (11). Due to the presence of
derivatives in this Hamiltonian, the equation of motion for the
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wave function turns out to be invariant with respect to the
reparametrization of time τ = f (t ), which reflects the geo-
metric nature of the evolution. We stress that the calculation
of the effective Hamiltonian (11) requires that one brings the
initial dynamical Hamiltonian to the form (9), which involves
the identification of the instantaneous orthonormal bright
states of the system. But for this, it is not necessary to compute
the basis in the dark subspace. For large dimensionalities of
the Hilbert space one often encounters a situation when the
number of dark states is much greater than the number of
bright states. If the Hamiltonian (9) takes the simplified form
of (1) with two bright states and one of them constant, it is
possible to easily parametrize all the dark states using the
coordinates on the sphere [24]. But if the situation is more
complicated, with two or more bright states changing in time,
one can no longer easily parametrize the dark subspace. This
would involve the Gram-Schmidt orthogonalization procedure
which is a recursive process that can take a long time even
with the use of powerful computers. In that case the effective
Hamiltonian will be very useful because it allows one to avoid
this procedure.

In this paper we do not discuss the fidelities of the quantum
gates obtained through the geometric evolution, but instead
give an alternative description of the latter. The effects of noise
on the adiabatic evolution were extensively studied theoreti-
cally [30], and recent experimental results show evidence for
a selectivity of noise, which the system is sensitive to [31]. A
description of noise within our effective Hamiltonian formal-
ism remains an open problem to be studied in future work.
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APPENDIX A: EFFECTIVE HAMILTONIAN
FOR A GENERALIZED � SYSTEM

In this section, we derive Eqs. (6) and (7) of the main
text. We consider a generalized � system with n + 1 levels,
for which the first n levels, forming a Hilbert space H,
are resonantly coupled to the remaining level (Fig. 1). The
Hamiltonian of such a system in the rotating frame is

Ĥ = �

n∑
i=1

ri(e
iφi |i〉 〈e| + e−iφi |e〉〈i|). (A1)

By introducing the bright state |B〉 = ∑n
i=1 rieiφi |i〉, the

Hamiltonian may be rewritten as

Ĥ = �(|B〉 〈e| + |e〉〈B|), (A2)

The n − 1 states spanning the Hilbert space H are eigen-
vectors of this Hamiltonian with zero eigenvalue, thus forming
the dark subspace of this Hamiltonian. We assume that Hamil-
tonian (A2) is time dependent, such that the dark subspace
also depends on time and is defined with a time dependent
orthonormal basis |ψ1(t )〉, |ψ2(t )〉 , . . . , |ψn−1(t )〉. We assume
the system to be initialized in an instantaneous dark state of
its Hamiltonian and to subsequently evolve in the adiabatic

regime, so at any time t the state of the system can be
expressed as |ψs〉 = ∑n−1

i=1 ci(t ) |ψi(t )〉.
The most general state the system may be in is |ψ〉 =∑n−1
i=1 ci(t ) |ψi(t )〉 + p |B〉. According to the Schrödinger

equation,

ih̄
∂

∂t

(
n−1∑
i=1

ci(t ) |ψi(t )〉 + p |B〉
)

= pĤ |B〉, (A3)

because the Hamiltonian acts trivially on the dark states. In
other words, one may write

n−1∑
j=1

(ċ j (t ) |ψ j (t )〉 + c j (t ) |ψ̇ j (t )〉) + ṗ |B〉 + p |Ḃ〉 = pĤ |B〉.

(A4)
Multiplying this equation by 〈ψi| from the left, we obtain

ċi(t ) = −
n−1∑
j=1

c j (t ) 〈ψi(t )|ψ̇ j (t )〉 − p〈ψi|Ḃ〉. (A5)

In the adiabatic limit p → 0, we find

ċi(t ) = −
n−1∑
j=1

c j (t )〈ψi(t )|ψ̇ j (t )〉. (A6)

Let us now concentrate on the evolution of the dark sub-
space during an infinitesimal time interval dt . A general state
of the system in the adiabatic limit |ψs〉 = ∑n−1

i=1 ci(t ) |ψi(t )〉
evolves into

|ψs〉 =
n−1∑
i=1

ci(t ) |ψi(t )〉 →
n−1∑
i=1

ci(t + dt ) |ψi(t + dt )〉

=
n−1∑
i=1

[ci(t ) + ċi(t )dt][|ψi(t )〉 + |ψ̇i(t )〉 dt], (A7)

which, using Eq. (A6) up to the linear terms in dt , becomes

n−1∑
i=1

(ci(t ) |ψi(t )〉 + ci(t ) |ψ̇i(t )〉 dt )

−
n−1∑

i, j=1

c j (t ) 〈ψi(t )|ψ̇ j (t )〉 |ψi(t )〉 dt . (A8)

Introducing the operator

ÔD(dt ) =
n−1∑
i=1

|ψi(t )〉 〈ψi(t )| + dt
n−1∑
i=1

|ψ̇i(t )〉 〈ψi(t )|

− dt
n−1∑

i, j=1

〈ψi(t )|ψ̇ j (t )〉 |ψi(t )〉 〈ψ j (t )|, (A9)

it follows that

|ψs〉 → ÔD(dt )|ψs〉. (A10)

Here the dark states form an (n − 1)-dimensional subspace
of the n-dimensional Hilbert space H. Therefore ÔD(dt ) can
be viewed as an operator acting in the space H. Introducing
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the projector onto the dark space,

P̂D =
∑

i

|ψi(t )〉 〈ψi(t )|, (A11)

we arrive at

ÔD = P̂D + ˙̂PDP̂Ddt . (A12)

The expression for ÔD can be even further simplified, if one
uses the fact that P̂D = 1̂ − P̂B, where 1̂ is the identity operator
acting in the Hilbert space H and P̂B = |B〉 〈B|. We obtain

ÔD = 1̂ − P̂B − ˙̂PB(1̂ − P̂B)dt

= 1̂ − P̂B + [〈Ḃ|B〉 |B〉 〈B| − |B〉 〈Ḃ|]dt . (A13)

This operator transforms the basis vectors of the dark sub-
space and, because it arose from the Schrödinger equation
with the Hamiltonian (A2) in the adiabatic limit, we can
conclude that the orthonormal basis vectors from the dark
subspace, corresponding to time t , are transformed into or-
thonormal vectors from the dark subspace, corresponding to
time t + dt . ÔD is not unitary, as it takes the bright state to 0,
whereas we can make ÔD unitary if we complement it with an
operator performing the following transformation:

eiα(t ) |B(t )〉 → eiα(t+dt )|B(t + dt )〉. (A14)

In analogy with the dark subspace, the operator performing
this transformation is

ÔB = P̂B + [iα̇(t ) |B〉 〈B| + ˙|B〉〈B|]dt, (A15)

Now we can define the unitary transformation Û , acting in the
whole Hilbert space H, such that it yields the correct evolution
of the vectors in the dark subspace,

Û = ÔD + ÔB = 1̂ + [ ˙|B〉 〈B| − |B〉 〈Ḃ|]dt

+ (iα̇(t ) + 〈Ḃ|B〉) |B〉 〈B| dt . (A16)

The operator Û is not uniquely defined as there is still some
freedom left in defining α̇(t ). From the normalization con-
dition 〈B|B〉 = 1 it follows that 〈Ḃ|B〉 is purely imaginary;
furthermore we can define α̇(t ) such that iα̇(t ) + 〈Ḃ|B〉 = 0.
We then obtain the unitary operator

Û = 1̂ + [ ˙|B〉 〈B| − |B〉 〈Ḃ|]dt, (A17)

which acts in the whole space H and generates the cor-
rect evolution in the dark subspace. Using the relation Û =
e−iĤdt = 1̂ − iĤdt , we can view the evolution of the state
in the dark subspace in the adiabatic regime as if a time
dependent effective Hamiltonian

Ĥeff = i[ ˙|B〉 〈B| − |B〉 〈Ḃ|] (A18)

was acting in the Hilbert space H. From here on, we assume
h̄ = 1.

APPENDIX B: EFFECTIVE HAMILTONIAN FOR A MORE
GENERAL QUANTUM SYSTEM WITH A DARK SPACE

In this section, we derive Eqs. (10) and (11) of the main
text. Let us now consider a more general Hamiltonian of the

form

Ĥ =
k∑

i, j=1

gi j |Bi〉 〈Bj | + g∗
i j |Bj〉 〈Bi|, (B1)

acting in some Hilbert space H of dimension n, where |Bi〉
are time-dependent states in H, forming an orthonormal set
of vectors at any instant in time. Note that the Hamilto-
nian (A2) is a special case of (B1), with two bright states,
one of them being time independent. We point out that the
Hamiltonian (B1) could always be brought to diagonal form
with appropriately chosen bright states, but for our purposes
it is not necessary to assume this.

From now on we will assume that the eigenstates of the
Hamiltonian (B1) in the subspace spanned by the vectors |Bi〉
have nonzero instantaneous eigenvalues and that the adiabatic
condition with respect to these eigenvalues is fulfilled. Thus,
if the system starts in the instantaneous dark subspace of
this Hamiltonian, it remains in the dark subspace, in accor-
dance with the adiabatic theorem. Equations (A10), (A11),
and (A12) remain unchanged with the number of bright states
increasing, while equation (A13) is replaced by

ÔD = 1̂ −
k∑

i=1

P̂Bi −
(

k∑
i=1

˙̂PBi

)(
1̂ −

k∑
i=1

P̂Bi

)
dt

= 1̂ −
k∑

i=1

P̂Bi+
⎡
⎣ k∑

i, j=1

〈Ḃi|Bj〉 |Bi〉 〈Bj | −
k∑

i=1

|Bi〉 〈Ḃi|
⎤
⎦dt .

(B2)

This operator is again nonunitary in exactly the same sense
as the operator in equation (A13). To make ÔD unitary we
can complement it with an operator, performing in general the
following transformation:

|Bi(t )〉 →
k∑

j=1

Ũi j (dt )|Bj (t + dt )〉, (B3)

where Ũi j (dt ) is an arbitrary infinitesimal unitary transforma-
tion in the subspace spanned by the vectors |Bj (t + dt )〉. If we
introduce a general Hermitian matrix Ai j , we can write

Ũi j (dt ) = eiAi j dt � δi j + iAi jdt (B4)

and thus Eq. (B3) takes the form

|Bi(t )〉 → |Bi(t )〉 + |Ḃi(t )〉 dt + i
k∑

j=1

Ai j |Bj〉 dt . (B5)

The operator performing this transformation is

ÔB =
k∑

i=1

P̂Bi +
k∑

i=1

|Ḃi(t )〉 〈Bi(t )| dt

+ i
k∑

i, j=1

Ai j |Bj (t )〉 〈Bi(t )| dt . (B6)
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In full analogy to (A16), we can build the unitary transforma-
tion acting in the Hilbert space H by adding OB and OD:

Û = ÔD + ÔB = 1̂ +
k∑

i=1

[ ˙|Bi〉 〈Bi| − |Bi〉 〈Ḃi|]dt

+
k∑

i, j=1

(iA ji(t ) + 〈Ḃi|Bj〉) |Bi〉 〈Bj | dt .

(B7)

The arbitrariness in Ai j (t ) can be removed if we choose
Aji(t ) = i 〈Ḃi|Bj〉. Note that this definition is consistent with
the Hermitian property of A, as

i 〈Ḃi|Bj〉 = −i 〈Bi|Ḃ j〉 = −i 〈Ḃ j |Bi〉∗ = (i 〈Ḃ j |Bi〉)∗. (B8)

For the unitary operator Û we then obtain

Û = 1̂ +
k∑

i=1

[ ˙|Bi〉 〈Bi| − |Bi〉 〈Ḃi|]dt . (B9)

We now conclude that the evolution of the dark subspace
of the Hamiltonian (B1), acting in the Hilbert space H, can be
described with the effective Hamiltonian

Ĥeff =
k∑

i=1

i[ ˙|Bi〉 〈Bi| − |Bi〉 〈Ḃi|] =
k∑

i=1

Ĥi, (B10)

acting in the Hilbert space H. Here Ĥi (i = 1, . . . , k) is a
Hamiltonian equivalent to (A18).

APPENDIX C: COMPARISON OF NON-ABELIAN BERRY
CONNECTION TO THE EFFECTIVE HAMILTONIAN

In this section we will consider the system shown in Fig. 1
with three ground states (n = 3) and show that the universal
set of single-qubit gates on two of them can be equivalently
described either with the language of non-Abelian Berry
connection or with the effective Hamiltonian.

The dark states of the Hamiltonian (2) can be parametrized
with the angles of the sphere θ1, θ2, if one parametrizes
coupling coefficients ri as [24]

r1 = sin(θ1), r2 = cos(θ1) sin(θ2), r3 = cos(θ1) cos(θ2).

(C1)

For the dark states one then obtains [24]

|d1〉 = cos(θ1) |1〉− sin(θ1)(eiφ2 sin(θ2) |2〉+ eiφ3 cos(θ2) |3〉),

|d2〉 = eiφ2 cos(θ2) |2〉 − eiφ3 sin(θ2)|3〉. (C2)

Treating θ1, θ2, φ2, φ3 as parameters (λk , k = {1, 2, 3, 4}) and
calculating the Berry connection Ak = 〈di| ∂

∂λk
|d j〉, one obtains

Aθ1 =
(

0 0
0 0

)
,

Aθ2 =
(

0 sin(θ1)
− sin(θ1) 0

)
,

Aφ2 = i

(
sin2(θ1) sin2(θ2) sin(θ1) sin(θ2) cos(θ2)

sin(θ1) sin(θ2) cos(θ2) cos2(θ2)

)
,

Aφ3 = i

(
sin2(θ1) cos2(θ2) − sin(θ1) sin(θ2) cos(θ2)

− sin(θ1) sin(θ2) cos(θ2) sin2(θ2)

)
.

(C3)

We assume a loop that starts with the parameters θ1 = θ2 =
φ2 = φ3 = 0, such that the dark subspace is spanned by
{|1〉 , |2〉}. If we perform a closed loop in parameter space,
forcing the dark subspace to undergo a closed loop in the
Hilbert space, a unitary on the dark subspace will be induced,
that in the basis {|1〉 , |2〉} takes the form

U = P̂ exp

(
−

∮ 4∑
k=1

Akdλk

)
, (C4)

where P̂ corresponds to the operation of path ordering.
If we only vary the two parameters θ1 and θ2, Eq. (C4) takes

the form

Uy = exp

(
−iσy

∮
sin(θ1)dθ2

)
, (C5)

where σy is the Pauli matrix.
If we only vary θ2 and φ3, Eq. (C4) takes the form

Uz = exp

[
−i

∮ (
0 0
0 sin2(θ2)

)
dφ3

]
. (C6)

These two types of loops generate rotations around Y and
Z axes respectively. Thus, the two operations do not commute
and are sufficient to generate a universal set of gates.

We can alternatively analyze these loops using the effective
Hamiltonian, Eq. (8). Given the loop in the parameter space
(θ1(t ), θ2(t ), t = [0, T ]), using Eqs (8) and (C1) one can
construct the effective Hamiltonian

Ĥeff = i
∑
i, j

(r j ṙi − riṙ j ) |i〉 〈 j|

= i[sin(θ2)θ̇1 − sin(θ1) cos(θ1) cos(θ2)θ̇2]

×(|1〉 〈2| − |2〉 〈1|) + i[cos(θ2)θ̇1

+ sin(θ1) cos(θ1) sin(θ2)θ̇2](|1〉 〈3| − |3〉 〈1|)
+ i cos2(θ1)θ̇2(|2〉 〈3| − |3〉 〈2|). (C7)

We numerically solved the Schrödinger equation to obtain
the final unitary operator

U = T̂ exp

(
−

∫ T

0
Ĥeff(t )dt

)
. (C8)

Restricted to the space of {|1〉 , |2〉}, the result exactly co-
incides with the unitaries obtained with Eqs. (C5) and (C6)
obtained for the Berry connection. We also did the same check
for the Uz gates with the same results.

We note that although in our example the Berry connection
approach did not require integration and thus is easier to
implement, it relies on the explicit parametrization of the dark
states, Eq. (C2). In contrast, the effective Hamiltonian (8)
does not require explicit parametrization of the coupling
parameters and thus could be used without it, given only the
dependence of the couplings on time. This will still hold in
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more general cases, when the number of bright states is larger
than 1 and the dark subspace cannot be parametrized so easily.
Then the effective Hamiltonian would allow one to calculate

the unitary arising from purely geometric evolution with much
lower numerical cost, without the necessity to numerically
orthogonalize the dark subspace.
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