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ABSTRACT: The current-phase relation (CPR) of a Josephson junction (JJ) determines how the supercurrent evolves with the
superconducting phase difference across the junction. Knowledge of the CPR is essential in order to understand the response of a
JJ to various external parameters. Despite the rising interest in ultraclean encapsulated graphene JJs, the CPR of such junctions
remains unknown. Here, we use a fully gate-tunable graphene superconducting quantum intereference device (SQUID) to
determine the CPR of ballistic graphene JJs. Each of the two JJs in the SQUID is made with graphene encapsulated in hexagonal
boron nitride. By independently controlling the critical current of the JJs, we can operate the SQUID either in a symmetric or
asymmetric configuration. The highly asymmetric SQUID allows us to phase-bias one of the JJs and thereby directly obtain its
CPR. The CPR is found to be skewed, deviating significantly from a sinusoidal form. The skewness can be tuned with the gate
voltage and oscillates in antiphase with Fabry-Peŕot resistance oscillations of the ballistic graphene cavity. We compare our
experiments with tight-binding calculations that include realistic graphene−superconductor interfaces and find a good qualitative
agreement.
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The past few years have seen remarkable progress in the
study of graphene-superconductor hybrids. This surge in

interest has primarily been driven by the ability to combine
high-quality graphene with superconductors via clean interfaces
and has led to several experimental advances. These include the
observation of specular Andreev reflection,1 crossed Andreev
reflections,2 and superconducting proximity effects in ballistic
graphene Josephson junctions (JJs).3−7 In a majority of these
studies the device comprises of graphene encapsulated in
hexagonal boron nitride (BN) contacted along the edge by a
superconductor. The encapsulation in BN keeps the graphene
clean, while the edge contacting scheme provides transparent
interfaces. In particular, ballistic JJs fabricated in this manner
have been central to recent studies of novel Andreev bound
states in perpendicular magnetic fields,4 edge-mode super-
conductivity,5 and supercurrents in the quantum Hall regime.6

However, to date there have been no measurements of the
Josephson current phase relation (CPR) in these systems.

The CPR is arguably one of the most basic properties of a JJ
and provides information about the Andreev bound state
(ABS) spectrum in the junction. While typical super-
conductor−insulator−superconductor (SIS) JJs exhibit a sinus-
oidal CPR, deviations from this behavior can be present in
superconductor−normal−superconductor (SNS) junctions.
Examples of this include JJs with high transmission such as
nanowires8,9 and atomic point contacts,10,11 where the CPR
contains significant higher frequency components. Further-
more, the periodicity of the CPR itself can be different from 2π
for more exotic systems such as topological JJs.12 For graphene
JJs, there have been several numerical estimates of the CPR
which take into account its linear dispersion relation.13−17 More
recently, ballistic graphene JJs operated in large magnetic fields
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have been predicted to undergo a topological transition,18

which should be detectable via direct CPR measurements.
However, the experimental determination of the CPR in
graphene has been restricted to junctions that are either in the
diffusive limit19 or in a geometry that does not allow gate
control of the junction properties.20

Here, we use a direct current (dc) superconducting quantum
interference device (SQUID) to directly determine the CPR in
encapsulated graphene JJs. These graphene SQUIDs stand out
from previous studies21,22 in two important ways. First, the
superconducting contacts are made with molybdenum rhenium
(MoRe), which allows us to operate the SQUID up to 4.2 K.
More importantly, our SQUID consists of graphene JJs that are
ballistic and independently tunable, thereby allowing full
electrostatic control over the SQUID response. By applying
appropriate gate voltages we can continuously tune from a
symmetric to an asymmetric SQUID. We show that the
asymmetric configuration allows us to directly extract the CPR
from flux periodic oscillations in the critical current of the
SQUID. The CPR is found to be nonsinusoidal, displaying a
prominent forward skewing. This skewness can be tuned over a
large range with the gate voltage and shows correlations with
Fabry-Peŕot (FP) resistance oscillations in the ballistic cavity.
We complement our experiments with tight-binding simu-
lations that go beyond the short junction limit and explicitly
take into account realistic graphene−superconductor interfaces.
Figure 1a shows a scanning electron micrograph and cross-

sectional schematic of a device. It consists of two encapsulated
graphene JJs contacted with MoRe, incorporated in a SQUID
loop. The fabrication strategy is similar to earlier work3 and

further details are provided in the Supporting Information (SI).
The left (L-JJ)/right (R-JJ) JJs can be tuned independently by
applying voltages (VL/VR) to local top gates. The junctions are
intentionally designed to have a geometrical asymmetry, which
ensures that the critical current of R-JJ (IcR) is larger than that
of L-JJ (IcL) at the same carrier density. We report on two
devices (Dev1 and Dev2) both of which have the same
lithographic dimensions (L × W) for L-JJ (400 nm × 2 μm).
The dimensions of R-JJ for Dev1 and Dev2 are 400 nm × 4 μm
and 400 nm × 8 μm, respectively. All measurements were
performed using a dc current bias applied across the SQUID in
a dilution refrigerator with a base temperature of 40 mK.
Figure 1b shows the variation in the normal state resistance

(R) of the SQUID with VL and VR at T = 4.2 K. The device was
biased with a relatively large current of 500 nA, which is larger
than the critical current of the SQUID for most of the gate
range. Figure 1c shows a single trace taken along the white
dashed line of Figure 1b, where R-JJ is held at the charge
neutrality point (CNP). We see clear FP oscillations on the
hole (p) doped region due to the formation of n−p junctions at
the superconductor−graphene interfaces.3,4 Furthermore, the
criss-cross pattern seen in the lower left quadrant of Figure 1b
indicates that both graphene junctions are in the ballistic limit
and that there is no cross-talk between the individual gates. We
note that when VR > 3 V the critical current of the SQUID (Ic)
is larger than the applied current bias, and a zero-resistance
state is thus visible even at 4.2 K. Having established the fact
that our JJs are in the ballistic regime, we now look in more
detail at the behavior of the SQUID. At T = 4.2 K, we first tune
the gate voltages (VL = +10 V, VR = +2.5 V) such that the

Figure 1. (a) Scanning electron micrograph of the graphene dc-SQUID (Dev1) along with a cross-sectional schematic. Gate voltages VL and VR
independently control the carrier density of the left and right junction, respectively. (b) Resistance R across the SQUID versus VL and VR,
demonstrating independent control of carrier type and density in the JJs. The bias current (I) for these measurements was fixed at 500 nA. (c) Line
trace taken along the dashed white line in (b) showing Fabry-Peŕot oscillations in the hole-doped regime. (d) Differential resistance dV/dI as a
function of dc current bias I and magnetic field B with the SQUID operated in a symmetric configuration (VL = +10 V and VR = +2.5 V). Flux-
periodic oscillations are clearly visible with a slowly decaying envelope arising from the interference pattern of a single JJ. (e) V−I plots [extracted
from (d)] for different values of magnetic flux Φ showing a nearly 100% modulation of the critical current. All measurements shown here are
performed at T = 4.2 K.
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SQUID is in a symmetric configuration and IcR = IcL. Figure 1d
shows the variation in differential resistance dV/dI with current
bias I and magnetic field B, where we observe clear oscillations
in Ic with magnetic flux. In this configuration, the modulation in
Ic is nearly 100%, as seen by the individual V−I traces in Figure
1e. The slow decay in the maximum value of Ic arises due to the
(Fraunhofer) magnetic field response of a single junction. The
devices were designed such that this background was negligible
around B = 0 (that is, the SQUID loop area was kept much
larger than the JJ area). Minimizing this background is
important for a reliable determination of the CPR, as we will
see below.

We now turn our attention to the flux-dependent response of
a highly asymmetric SQUID (IcR ≫ IcL), a condition that can
be readily achieved by tuning the gate voltages appropriately.
To outline the working principle of the device, we start with the
assumption that both JJs have a sinusoidal CPR (a more general
treatment can be found in the SI). So, the critical current of the
SQUID can be written as Ic = IcL sin θ + IcR sin δ, where θ (δ) is
the phase drop across L-JJ (R-JJ). When an external magnetic
flux (Φ) threads through the SQUID loop, the flux and phase
are related by δ − θ = 2πΦ/Φ0, assuming the loop inductance
is negligible. Now, when IcR ≫ IcL the phase difference across
R-JJ is very close to π/2. Thus, Ic(Φ) ≈ IcR + IcL sin(2πΦ/Φ0 +
π/2) and the flux-dependence of Ic directly represents the CPR
of L-JJ, that is, Ic(Φ) ≈ IcR + Is(ϕ), where Is is the supercurrent
through L-JJ and ϕ is the phase drop across it. This principle of
using an asymmetric SQUID to probe the CPR has been
employed in the past for systems such as point contacts10,11 and
vertical graphene JJs,20 where an SIS junction (with a well-
known sinusoidal CPR) was used as the reference junction. In
our case, the reference junction is also a graphene JJ, where the
CPR is not known a priori. We show (see SI) that this does not

affect our ability to probe the CPR, provided time reversal
symmetry is not broken, meaning that the CPR satisfies the
condition Is(ϕ) = −Is(−ϕ).23 Throughout the remainder of the
text we use R-JJ as the reference junction (larger critical
current), and L-JJ is the junction under study (smaller critical
current).
Figure 2a shows the typical magnetic response of the

asymmetric SQUID at T = 40 mK with VL = −4 V (fixed) and
different values of VR. For the most asymmetric configuration
(VR = +10 V) Ic oscillates around a fixed value of roughly 6 μA
(IcR) with an amplitude of about 500 nA (IcL). Using the
arguments described above, this Ic(Φ) curve can be converted
to Is(ϕ), as shown in Figure 2b. Here Is is the normalized
supercurrent defined as (Ic − IcR)/IcL. We note that there is an
uncertainty (less than one period) in the exact position of zero
B. This, combined with the unknown CPR of the reference
graphene JJ, makes it important to do this conversion carefully,
and we describe the details in the SI. The CPR shows a clear
deviation from a sinusoidal form, showing a prominent forward
skewing (that is, Is peaks at ϕ > π/2). We define the skewness
of the CPR as S = (2ϕmax/π) − 1,19 where ϕmax is the phase for
which the supercurrent is maximum.
To be certain that we are indeed measuring the CPR of L-JJ,

we perform some important checks. We keep IcL fixed and
reduce IcR (by reducing VR). Figure 2a shows that reducing IcR
merely shifts the Ic(Φ) downward and therefore does not affect
the extracted CPR, as one would expect. Furthermore, we use
the experimentally determined CPR (from Figure 2b), the
junction asymmetry, and loop inductance as inputs for the
resistively and capacitively shunted junction (RCSJ) model to

Figure 2. (a) Variation of Ic with Φ for VL = −4 V and VR = +10, +5,
and +3 V at 40 mK. Solid black lines are results from RCSJ simulations
of the SQUID. (b) Variation of supercurrent Is = (Ic − IcR)/IcL with
phase ϕ extracted from the top curve in (a). ϕmax indicates the phase at
which Is reaches a maximum and is noticeably different from π/2,
indicating a forward skewed CPR.

Figure 3. (a) Variation of skewness S as a function of carrier density n
for Dev1 and Dev2. The larger geometric asymmetry of Dev2 (see
text) allows one to reliably probe the CPR up to higher n-doping. Inset
shows the variation of IcL with density. (b) A finer scan for Dev2 shows
that S oscillates with carrier density in the p-doped regime in antiphase
with Fabry−Peŕot oscillations in the resistance.
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compute the expected SQUID response (see SI for details of
the simulations). These plots (solid lines) show an excellent
agreement between simulations and experiment, thus confirm-
ing that the asymmetry of our SQUID is sufficient to reliably
estimate the CPR of L-JJ. Furthermore, it shows that there are
no significant effects of inductance in our measurements, which
could potentially complicate the extraction of the CPR from
Ic(Φ) in an asymmetric SQUID.24

To study the gate dependence of the CPR we fix VR at +10 V
(to maximize IcR) and study the change in S with VL (Figure
3a) for Dev1 and Dev2. The SI shows the Is(ϕ) curves used to
extract S. For both devices we find that S is larger on the n-side
as compared to the p-side, showing a dip close to the CNP. We
note that Dev2 allows us to probe the CPR up to a larger range
on the n-side due to its larger geometric asymmetry (see SI for
other measurements on Dev2). We expect the skewness to
depend strongly on the total transmission through the
graphene JJ, which should depend on (a) the number of
conducting channels in the graphene, as well as (b) the
transparency of the graphene-superconductor interface. The
gate voltage VL obviously changes the Fermi wave vector but it
also changes the contact resistance,25 which plays a significant
role in determining S. This can be seen most clearly for Dev2
for high n-doping, where S saturates, despite the fact that IcL
continues to increase up to the largest measured density (see

inset). At large p-doping, S also seems to saturate but a closer
look (Figure 3b) shows that S oscillates in antiphase with the
FP oscillations in resistance. This clearly indicates that in this
regime the CPR is modulated by phase coherent interference
effects similar to the FP oscillations that affect the total
transmission.
We complement our measurements with a minimal

theoretical model by solving the corresponding Bogoliubov−
de Gennes (BdG) equations to calculate the CPR in graphene
JJs. To set the stage, we note that SNS junctions can be
characterized by the quasiparticle mean free path lf in the
normal (N) region and the coherence length ξ0 = ℏvF/Δ, where
vF is the Fermi velocity in N. In our devices L ≪ lf, that is, they
are in the ballistic regime, and therefore we neglect impurity
scattering in our calculations. Taking vF ≈ 106 m/s for graphene
and Δ ≈ 1.2 meV for MoRe, one finds ξ0 = 548 nm, which
means that in our junctions L ≲ ξ0, that is, they are not in the
strict short junction limit L ≪ ξ0. Consequently, the Josephson
current is carried not only by discrete Andreev bound states
(ABSs) but also by states in the continuum (CONT).26−28 For
this reason, we numerically solve the BdG equations using a
tight-binding (TB) model (see Figure 4a) and a recently
developed numerical approach17,29 which handles the ABSs and
states in the continuum on equal footing. The description of
both the normal region and the superconducting terminals is

Figure 4. (a) The geometry of the system used in the calculations. The superconducting leads are attached in a top-contact geometry to the normal
graphene sheet and overlap with the normal graphene sheet over NL unit cells. γ denotes the nearest-neighbor intralayer hopping in the leads and in
the graphene sheet, while γ1 is the nearest-neighbor interlayer hopping. A periodic boundary condition is applied in the y-direction. (Inset) Top view
of the system. Because of doping from the S contacts, the normal graphene region is assumed to be n-doped up to a distance x1 (x2) from the left
(right) contact. The distance L* = x2 − x1 is the effective cavity length which depends on the gate voltage applied to the junction. (b) The
contribution of the ABSs (red) and continuum CONT (blue) to the total supercurrent (black) as a function of the phase difference for an n-doped
junction (n = 0.9 × 1011 cm−2 and L/ξ0 = 0.73). (c) The skewness S as a function of doping of the junction. The regimes i−iii indicated by the
rectangles are further discussed in the text. Dashed lines show the average S in the p- and n-doped regime. (d) The skewness (red circles, left axis)
and normal state resistance (blue, right axis) versus doping for strong p-doping of the junction.
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based on the nearest-neighbor TB model of graphene.30 The
on-site complex pair-potential Δ is finite only in the
superconducting terminals and changes as a step-function at
the N−S interface. The results presented here are calculated
using the top-contact geometry (Figure 4a), a model with
perfect edge contacts is discussed in the SI. As observed
experimentally, we take into account n-doping from the
superconducting contacts (see Figure 4a inset). If the junction
is gated into hole-doping, a FP cavity is formed by the two n−p
junctions in the vicinity of the left and right superconducting
terminals. The length L* of this FP cavity depends on the gate
voltage,4 for stronger hole-doping the n−p junctions shift closer
to the contacts. For further details of the model see SI.
Turning now to the CPR calculations, Figure 4b shows

separately the contribution of the ABS and the continuum to
the supercurrent. Because L ≲ ξ0, the latter contribution is not
negligible and affects both the value of the critical current and
the skewness of the CPR. We note that our calculations can
qualitatively reproduce the doping dependence of Ic (see SI),
however the obtained values of Ic are about 2.5 times larger
than the measurements (Figure 3a inset). The exact reason for
this discrepancy is not known, but a similar disagreement
between theory and experiment was also found in ref 4.
Focusing now on the skewness, in Figure 4c we show the
calculated skewness S as a function of the doping of the
junction at zero temperature. We consider three regimes: (i)
strongly p-doped junction; (ii) large n-doping, (iii) the region
around the CNP. We start with the discussion of (i). It is well
established that in this case the p−n junctions lead to FP
oscillations in the normal resistance as well as in the critical
current3,4 of graphene JJs. Our calculations, shown in Figure 4d,
indicate that due to FP interference the skewness also displays
oscillations as a function of doping around an average value of S
≈ 0.23. As already mentioned, similar oscillations are present in
the normal state resistance R, however, we find that R oscillates
in antiphase with the skewness. Compared to the measure-
ments (Figure 3b), our calculations therefore reproduce the
phase relation between the oscillations of the skewness and R
and give a qualitatively good agreement with the measured
values of the skewness. In the strong n-doped regime (case (ii)
the calculated average skewness of S = 0.27 is larger than for p-
doped junctions, and very close to the measured values. Small
oscillations of S are still present in our results and they are due
to the n−n′ interfaces, that is, the difference in the doping close
to the contacts (for x < x1 and x > x2, see Figure 4a inset) and
the junction region (x1 < x < x2), which enhances back-
scattering. Our calculations therefore predict smaller skewness
for p-doped than for n-doped junctions. The enhancement of S
in the n-doped regime can be clearly seen in the measurements
of Figure 3a. We note that previous theoretical work,16 which
calculated the spatial dependence of the pairing amplitude self-
consistently, predicted a skewness of S ≈ 0.15 for n-doped
samples with L < ξ0, while a nonself-consistent calculation
which took into account only the contribution of the ABS
yielded S ≈ 0.42.16 The comparison of these results to ours and
to the measurements suggest that the skewness may depend
quite sensitively on the S−N interface as well as on the L/ξ0
ratio and that our approach captures the most important effects
in these junctions. Finally, we briefly discuss the case (iii),
where the measurements show a suppression of the skewness as
the CNP is approached. The measured values of S ∼ 0.1 are
similar to those found in diffusive junctions19 but are
significantly lower than the theoretical prediction of S = 0.26

in the short junction limit13 at the CNP. This suppression of S
is not reproduced in our calculations, instead, we find rapid
oscillations as the CNP is approached from the p-doped
regime. This discrepancy is likely to be due to effects that are
not included in our ballistic model, such as charged scatterers
that are poorly screened in this regime, or scattering at the
edges, which is more relevant at low densities when only a few
open channels are present.
Finally, we study the effect of temperature on the CPR of

these JJs. In Figure 5a, we compare the CPR in the n-doped

regime (VL = +1 V; n = 0.9 × 1011 cm−2) at 40 mK and 4.2 K.
One clearly sees that at 4.2 K the CPR is sinusoidal. This is
consistent with our observation that the critical current
modulation of the SQUID is nearly 100% at 4.2 K (Figure
1d), a condition which can only be achieved if the CPR is
sinusoidal. Figure 5b shows the full temperature dependence of
S for two representative values of electron and hole doping (see
SI for the corresponding temperature dependence of the critical
currents). The reduction in skewness with temperature is
consistent with the thermal population of excited Andreev
bound states and continuum states.14,16,17,19 We compare our
results with numerical estimates which take into account this
effect, along with the temperature dependence of the pair
potential (black curves in Figure 5b). While the qualitative
behavior of both (experimental and numerical) curves are

Figure 5. (a) CPR for VL = +1 V (n = 0.9 × 1011 cm−2) at 40 mK
(upper curve) and 4.2 K (lower curve). Solid line shows the calculated
CPR. A forward skewness is clearly seen in the curve at 40 mK but is
absent at 4.2 K. (b) Variation of S with temperature for electron and
hole doping. Increasing the temperature suppresses higher harmonics
in the CPR, thereby reducing S until it vanishes near 4.2 K and the
curves become sinusoidal. Black lines show the results of tight binding
simulations.
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similar, the experimentally determined skewness reaches zero
(sinusoidal CPR) faster than the numerics. At this point, it is
difficult to ascertain the exact reason for this discrepancy but
one possible explanation for this is that the induced
superconducting gap in the graphene is somewhat smaller
than the bulk MoRe gap, resulting in a faster decay.
In conclusion, we have used a fully gate-tunable graphene

based SQUID to provide measurements of the current-phase
relation in ballistic Josephson junctions made with encapsulated
graphene. We show that the CPR is nonsinusoidal and can be
controlled by a gate voltage. We complement our experiments
with tight binding simulations to show that the junction length
and nature of the superconductor−graphene interface play an
important role in determining the CPR. We believe that the
simplicity of our device architecture and measurement scheme
should make it possible to use such devices for studies of the
CPR in topologically nontrivial graphene Josephson junctions.
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(21) Girit, Ç.; Bouchiat, V.; Naaman, O.; Zhang, Y.; Crommie, M. F.;
Zettl, A.; Siddiqi, I. Nano Lett. 2009, 9, 198.
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1. Device Fabrication

Graphene flakes are exfoliated onto silicon chips with 90 nm SiO2. Next, h-BN is exfoliated

separately on a glass slide covered by a 1-cm2 piece of PDMS coated with an MMA/MAA

copolymer layer. This glass slide is baked for 20 minutes on a hot plate at 120○C, prior to

h-BN exfoliation. The glass slide is mounted on a micromanipulatior in a home-built set-up

(similar to Ref1) equipped with a heating stage. Next, a h-BN flake on the slide is aligned

with the target graphene and the substrate is heated to 90○C. The flakes are brought into

contact, after which the glass slide is released smoothly such that the graphene flake is picked

up by the h-BN flake on the glass slide. Finally, the graphene/h-BN stack is transferred onto

another h-BN flake (exfoliated onto a silicon chip with 285 nm SiO2), at a temperature of

80○C.

The fabrication flow is outlined in Figure S1. First MoRe contacts are made to the stack

via an etch fill technique2 using standard e-beam lithography. The sample is plasma-etched

for 1 min in a flow of 40/4 sccm CHF3/O2 with 60 W power, and 80µbar pressure. After

etching, we immediately sputter ∼70 nm MoRe using a DC plasma with a power of 100 W in

an Argon atmosphere. Next, the MoRe lift-off is completed in hot (54○C) acetone for about

3-4 hours. The two JJs are shaped using another e-beam lithography in which the intended

graphene geometry is defined via a PMMA/hydrogen-silsesquioxane (HSQ) mask, followed

by CHF3/O2 etching. In order to isolate the contacts from the top gate, we use ∼170 nm of

a b c d

HSQ Dielectric Cr/Au Top Gate

Figure S1: Optical images of device after (a) MoRe deposition, (b) shaping of the graphene,
(c) dielectric (HSQ) deposition, and (d) deposition of top gates. The scale bar for all images
is 5 µm.
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HSQ as a dielectric. Finally, top gates are fabricated by e-beam evaporation of 5nm Cr +

120 nm Au, and subsequent lift off in hot acetone.

2. Ballistic transport in Dev2
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Figure S2: (a) Scanning electron micrograph of Dev2 from main text. The left junction (LJJ)
is 0.4 µm long (L) and 8 µm wide (W), while the right junction (RJJ) is 0.4 µm long and 2 µm
wide. (b) Resistance map as a function of VL and VR at 4.2 K, demonstrating independent
control of carrier type and density in left and right JJ, respectively. (c) Resistance vs VL
(while keeping VR fixed at CNP of R-JJ) showing Fabry-Pérot oscillations in resistance.

3. Temperature dependence of critical current
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Figure S3: Temperature dependence of the (a) left and (b) right JJs assosciated with the
data shown in Figure 5b of the main text.
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4. Magnetic field to phase conversion

In the main text we pointed out that one must take care in converting the flux-periodic

oscillations of the critical current of the SQUID Ic(Φ) to the CPR of L-JJ Is(φ). Figure S4

shows how this is done. We start with the upper plot in Figure 2a of the main text, which

is shown here again for convenience (Figure S4a). We then subtract a constant background

(IcR) about which the curve oscillates and normalize it with respect to the oscillation ampli-

tude (IcL). Also, the flux is converted to phase by φ∗ → 2Φ/Φ0. This is not the true phase

φ for two important reasons. Firstly, the zero of the magnetic field is not known precisely.

Secondly, the flux to phase conversion is only possible up to a constant offset, which is deter-

mined by the CPR of R-JJ (which is a-priori unknown). In order obtain the CPR we then

offset the curve in Figure S4b along the φ∗ axis such that the supercurrent at zero phase

difference is zero, which finally gives us the CPR. We note that this procedure is only valid
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Figure S4: (a) The variation of Ic as a function of magnetic field B for VL = −4 V and
VR = +10 V. (b) The curve in (a) replotted after converting flux Φ to phase φ∗, and rescaling
Ic to Is = (Ic − IcR)/IcL. (c) Curve in (b) offset along the φ∗-axis to ensure that Is(0) = 0,
thus giving the true phase φ axis.
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for systems where Is(φ) = −Is(−φ) and Is(0) = 0, both of which are reasonable assumptions

for our graphene JJs.
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Figure S5: All measured CPR (Is vs. φ) plots for (a) Dev1 and (b) Dev2 used to extract
the skewness in Figure 3a of the main text. The plots have been offset by 1, with the lowest
(highest) plots corresponding to large p (n) doping. The plot corresponding to the CNP has
also been indicated.
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5. Eliminating inductance effects

In an asymmetric SQUID inductance effects can give rise to skewed Ic(Φ) curves. It is

therefore important to establish that such effects do not dominate the response of the SQUIDs

described in this study. To do so, we first provide some qualitative arguments which make it

evident that the skewness arises only from a non-sinusoidal CPR. Furthermore, we extract

the loop inductance of our SQUID, use it as an input for the RCSJ model and confirm

that (within our experimental resolution) the inductance does not play an important role in

determining the shape of the Ic(Φ) curves, and hence does not affect our ability to measure

the CPR.

Large asymmetry

We have shown that for large asymmetry (i.e., IcR >> IcL), we probe the CPR of L-JJ. We

define the asymmetry parameter ai = (IcR − IcL)/(IcR + IcL). Figure S6a shows three traces

at T = 40 mK, where IcL ≈ 0.5 µA is kept fixed and IcR is varied from 6 µA (black trace,

ai ≈ 0.83) to 2.8 µA (red trace, ai ≈ 0.78). Figure S6b shows that all three curves collapse

despite the fact that the maximum critical current (Imax = IcR + IcL) changes by a factor of

two. If the skewness was dominated by inductance effects, we would have not expected this

collapse, since the screening parameter βL = ImaxL/Φ0 increase by a factor of two (going from

the red trace to the blue trace). In other words, the combined effect of large asymmetry and

inductance should have resulted in a larger skewing of the black trace (maximum βL and ai)

as compared to the red one.

Intermediate asymmetry

We have shown in the main text (Figure 5) that the skewness of the CPR decreases with

increasing temperature, resulting in a sinusoidal CPR at 4.2 K. One might argue that this is

consistent with inductance effects, whereby an increase in temperature reduces the critical
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Figure S6: (a) Ic(Φ) plots with fixed IcL, but varying IcR, as shown earlier in Figure 2a of
the main text. (b) The curves in (a), now plotted as (Ic − IcR) vs. Φ. Collapse of the curves
shows that the skewness does not depend on Ic, and hence represents the CPR of L-JJ.

currents and hence βL. To eliminate this possibility, we compare Ic(Φ) at 40 mK and

4.2 K. Figure S7a,b show two such data sets. In each case the gate voltages were tuned

such that both Imax and ai were roughly the same for both temperatures. We see that at

40 mK the curves are noticeably skewed as compared to 4.2 K. The asymmetry here is not

sufficient to directly extract the CPR, but it clearly demonstrates that the non-sinusoidal

CPR also manifests itself in skewed Ic(Φ) curves at intermediate asymmetry. We note

that this argument is made stronger by the fact that the inductance at 4.2 K should in

fact be larger than that at 40 mK, since the inductance of the MoRe loop is dominated

by kinetic inductance, which increases at higher temperatures. In other words, one would

expect inductance related effects to be enhanced at higher temperatures, rather than become

suppressed.
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of ai = 0.45, ai = 0.33 respectively. The curves at 40 mK are skewed (indicated by position
of dashed line), while those at 4.2 K are not.

Estimating the loop inductance

Figure S8a shows Ic(Φ) measurements of an asymmetric SQUID at 4.2 K, where we have

established that the CPR is sinusoidal. The position of maximum Ic for positive and negative

current bias are offset along the flux axis due to self-flux effects.3 This shift is given by:

∆Φ = 2L(IcR − IcL), where IcR and IcL are the critical current of right and left junction

respectively. Figure S8b shows the variation of ∆Φ with Imax. These values are obtained
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Figure S8: (a) Ic(Φ) curves for an asymmetric SQUID. (b) Variation of ∆Φ with Imax. Here
IcL is kept fixed, while IcR is varied. Blue circles are the experimentally obtained values of
∆Φ and the red line is a linear fit to the data.
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by keeping IcL ≈ 0.2 µA fixed and varying IcR from 0.2 µA (symmetric configuration) to

0.9 µA (highly asymmetric). Since ∂∆Φ/∂IcR = L, a linear fit (red line) allow us to extract

L ≈ 152 pH. Since MoRe is a highly disordered superconductor, its inductance is dominated

by the kinetic inductance and the low temperature inductance L(0) = L(T )[1 − (T /Tc)2],

giving L ≈ 110 pH at T = 40 mK. We use this inductance to compare our experiments with

the RCSJ simulations described below.

6. RCSJ Model

To model the asymmetric SQUID we consider the circuit shown in Figure S9. The Josephson

junctions are described by the resistively and capacitively shunted junction (RCSJ) model4,5

by Josephson currents with phases δL and δR and amplitudes IcL = Ic(1 − ai) and IcR =

Ic(1 + ai), resistors RL and RR , and capacitors CL and CR. The Josephson currents are

given by IL = Ic(1 − ai) ⋅ fL(δL) and IR = Ic(1 + ai) ⋅ fL(δL), where fi(δi) are the normalized

current-phase relations of the left and right JJ, respectively. The Nyquist noise arising

from the two resistors is described by two independent current noise sources INL and INR

having white spectral power densities 4kBT /RL and 4kBT /RR, respectively. The two arms

I

LL

CL

INL I0L

INR
I0R

LR

RL RR CR

Figure S9: Circuit diagram of the asymmetric SQUID.
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of the SQUID loop have inductances LL and LR . The total inductance L is the sum of the

geometric (Lg) and the kinetic (Lk) inductance. The loop is biased with a current I, and a

flux Φ is applied to the loop.

In the following we are interested only in static solutions and normalize currents by Ic.

The currents iL and iR through the left (right) arm of the SQUID are then given by:

iR = (1 + ai) ⋅ fR(δR). (1)

iL = (1 − ai) ⋅ fL(δL). (2)

Assuming for simplicity that LL = LR (a reasonable assumption based on our device

geometry) the normalized circulating current j is given by:

j = iR − iL
2

= 1

βL
(δL − δR

π
− 2Φ/Φ0). (3)

and the maximum current across the SQUID is icR + icL. From Equation 3 we obtain

δL = 2πΦ/Φ0 + δR + πβL
iR − iL

2
. (4)

Let us consider the case ai >> 0, i.e., the right junction has a much larger critical current

than the left one. As we will see, in this case the modulation of the SQUID critical current

reflects the CPR of the left junction, provided that βL << 1.

i = iR + iL = (1 + aI) ⋅ fR(δR) + (1 − ai) ⋅ fL(δL). (5)

From Equation 4, for βL << 1, we obtain δL ≈ 2πΦ/Φ0 + δR. Thus

i = iR + iL = (1 + aI) ⋅ fR(δR) + (1 − ai) ⋅ fL(2πΦ/Φ0 + δR). (6)

10



Let us assume that i > 0. Then the task is to maximize i with respect to δR, to obtain

ic,SQUID vs Φ/Φ0. If the critical current of the right JJ is much bigger than the critical

current of the left JJ, the value of δR will be close to the value δ0R where the CPR of the

right JJ has its maximum. We thus Taylor expand:

fR(δR) ≈ fR(δ0R) +
1

2

d2fR
dδ2R

∣
δ0R

(δR − δ0R)2 + .... (7)

Note that in Equation 7 the first derivative of fR is zero, because we look for the maximum

of this CPR. If the second derivative (< 0) is reasonably peaked, δR will be very close to δ0R

and we obtain:

ic,SQUID ≈ (1+ai) ⋅ fR(δ0R)+ (1−ai) ⋅ fL(2πΦ/Φ0 + δ0R) = const+ (1−ai)fL(2πΦ/Φ0 + δ0R). (8)

That means that ic,SQUID vs. Φ/Φ0 probes the CPR of the left JJ up to a phase shift

δ0R . fL can be evaluated further if one assumes that fL = 0 at δL = 0 and that min(fL) = -

max(fL).

In Figure 2a of the main text we have compared our experiments with a full RCSJ

simulation, as described above. These simulations involve no free parameters since we use

the experimentally determined inductance, asymmetry (ai), and CPR of L-JJ fL(δL) as

input parameters. For simplicity, the numerical plots were generated assuming a sinusoidal

CPR for the reference junction R-JJ, shown as the blue curve in the Figure S10a. The

red curve shows how Ic(Φ) changes when R-JJ is assumed to have a non-sinusoidal CPR

(with a functional form similar to that extracted for L-JJ). The only effect this has is to

offset the simulated curves along the flux axis. This is a consequence of the fact that δ0R (as

described above) is different for the two cases. However, we see in Figure S10b that these

two cases perfectly overlap with an appropriate offset along the flux axis. This confirms

the fact that an incomplete knowledge of the CPR of R-JJ is (in practice) equivalent to
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an unknown offset in magnetic field, and therefore does not affect our ability to accurately

determine the functional form of the CPR of L-JJ. The green curve in Figure S10a is a

simulation with βL = 0.01 (i.e., in the limit where the loop inductance is negligible). Looking

carefully at Figure S10b shows that this Ic(Φ) has a slightly different shape as compared to

the blue/red curves. However, this difference is well within the error bars for our estimation

of the skewness, and we can conclude that the functional form of the Ic(Φ) curves is not

dominated by the inductance effects, but by the non-sinusoidal CPR of L-JJ. This is in

agreement with the conclusions drawn from more qualitative arguments presented in the

previous section.
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Figure S10: (a) Experimental Ic(Φ) (black) along with RCSJ simulations for a SQUID with
ai = 0.83. The blue (red) curve corresponds to a sinusoidal (non-sinusoidal) CPR fR for the
reference junction R-JJ, with the experimentally determined βL = 0.34. The green curve
shows the result for βL = 0.01. The data has been offset along the flux axis to match the
blue curve. (b) Same as (a), but with the red and green curves shifted along the flux axis.

12



7. Tight Binding-Bogoliubov-de Gennes Calculations

Details of the theoretical model

In this Section we provide further details of the theoretical model that we used in our

numerical calculations. As it will be clear from the following discussion, we found that in

order to obtain a good qualitative agreement with the measurements, a realistic and detailed

model of the Josephson junction, especially the interface between the superconductor and

the normal regions, is needed.

We assume that the graphene flake which serves as a weak link is perfectly ballistic and

scattering processes only occur at the interfaces between regions of different doping in the

normal part of the junction or between the superconductor and the normal region. The

normal (N) and superconducting (S) regions are of the same width in our calculations. This

allows us to use periodic boundary conditions perpendicular to the transport direction. The

transverse momentum qn is a good quantum number and the DC Josephson current can be

calculated as a sum over all qn:

IJ(∆φ) =∑
n

IJ(qn,∆φ) , (9)

where IJ(qn,∆φ) is the momentum resolved Josephson current calculated for a specific trans-

verse momentum qn via the contour integral method developed recently in Reference.6 For

wide junctions and high dopings, when there are many transverse momenta, the exact form

of the boundary conditions is not important and therefore we used the infinite mass bound-

ary condition to obtain qn: qn = (n + 1
2
) π
W , where n = 0,1,2, . . . and W is the width of the

junction.

The description of both the N region and the S terminals is based on the nearest-neighbour
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a b

Figure S11: (a) The geometry of the top contacted superconductor-graphene-superconductor
junction. NL is the number of unit cells under the superconducting contacts in the x direc-
tion, (b) The side-contacted geometry. The interface resistance between the S and regions
is modelled by a hopping γsc < γ. In both geometries the lattice is translational invariant in
the y direction

tight-binding model of graphene7

Ĥ =∑
i

Uic
�
ici −∑

⟨ij⟩
γc�icj + h.c. (10)

where Ui is the on-site energy on the atomic site i, γ = 2.97 eV is the hopping amplitude

between the nearest-neighbor atomic sites ⟨ij⟩ in the graphene lattice, and c�i (ci ) is a creation

(annihilation) operator for electrons at site i. We considered two junction geometries. Most

of our results were obtained using the top-contact geometry, which is shown in Figure 4(a)

of the main text and for convenience repeated here in Figure S11(a). The S terminals are

described by vertically stacked graphene layers (AA stacking) where the inter-layer hopping

is given by γ1 = 0.6 eV. The same inter-layer hopping γ1 was also used between the S terminals

and the N region. The S leads are coupled to the normal graphene sheet over NL unit cells.

The result do not depend strongly on the exact value of NL, therefore we used NL = 10 in

our calculations.

To mimic metallic leads with many open channels, the S terminals are highly n-doped.

This is described by an on-site potential Un and we used Un = 350 meV in our calculations.

For high n-doping of the N region we calculated an average transparency of Tr = 0.82 for the

junction, see the Supplementary of Reference8 for the precise definition of Tr. We find that

the calculated Tr does not depend very sensitively on the precise value Un and γ1 because
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most of the backscattering taking place at the interface of the S leads and the N region is due

to a “geometric” effect: the electron trajectories have to turn at right angle to arrive from the

lead into the N region. Moreover, we find that for Tr = 0.82 the calculated dependence of the

normal state resistance Rn on the doping of the N region agrees qualitatively well with the

measurements where the right JJ was kept at the charge neutrality point [c.f. Figure 1(c) in

the main text and Figure S15(a) below]. (We did not try to achieve quantitative agreement

for Rn because in the experiments the resistance of the two junctions are always measured

in parallel, whereas we used single junctions in the calculations.)

As shown in Figure S11(b) and discussed further later on, we have also made calculations

using the side-contact geometry. For both geometries we used open boundary conditions for

the leads in the transport direction (which is the z direction in top-contacted geometry and

the x direction in the side-contacted one, see Figure S11).

In contrast to the S leads, which are always n-doped in our calculations, the normal

region of the JJ can be either n or p doped depending on the gate voltage. This is modeled

by a doping potential Up. Experimentally, it was shown that the superconducting terminals

n-dope the normal region of the JJ.2,8 This n-doped region extends to a distance x1 (L0−x2)

from the left (right) terminal, where L0 is the distance between the two S leads. The potential

profile in the junction can be therefore either npn or nn′n. The exact value of the x1 and x2,

and hence the cavity length L∗ = x2 − x1, however, depends on the gating of the JJ. In the

npn regime, where clear FP oscillations can be measured in the normal state resistance Rn in

our devices, we extracted the experimental cavity length using the relation L∗exp ≈ 2
√
πn/δn,

where δn is the density difference between consecutive peaks in Rn.9

The results of this analysis are summarized in Figure S12. We find that L∗exp ≈ 310 nm

is roughly constant for n < −1.8 × 1011cm−2, but it decreases for densities approaching the

CNP. In order to extract the theoretical cavity length L∗ for n > −1.8 × 1011cm−2, we fitted
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Figure S12: The experimental cavity length L∗exp vs doping (symbols) and the fitting function
used to obtain the L∗ in our calculations (solid line).

the experimental results by the function

L∗(Up) =
L∗exp −Lnn′n

1 + exp [β(n − n0)]
+Lnn′n. (11)

Here Lnn′n is the cavity length for strongly n doped junctions which could not be determined

from the Rn measurements, therefore we used Lnn′n = 170 nm. As mentioned above, a good

qualitative agreement between the calulated and measured normal state resistance is achieved

using this value of Lnn′n. We have also checked that for Lnn′n ≳ 160 nm the calculation results

do not depend strongly on the exact value of Lnn′n. The two fitting parameters in Eq. (11)

are β and n0 and we found β = 4.0 and n0 = −0.3, see Figure S12. Once L∗ is determined,

the parameters x1 and x2 are given by x1 = L0−L∗(Up)
2 and x2 = L0 − x1. The total potential

profile along the junction, which describes the smooth transition between the highly doped

regions (x < x1 and x > x2) and the central part of the junction (x1 ≤ x ≤ x2) is modeled by

U(x) = Un +
Up −Un

2
(tanh(x − x1

ltr
) − tanh(x − x2

ltr
)) . (12)

where the parameter ltr controls the smoothness of the transition. We used ltr = 2
5x1 in
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our calculations corresponding to a relatively sharp transition. Larger values of ltr would

effectively mean that the leads n dope the N region of the junction and the doping there

would therefore not be determined by Up.

Finally, superconductivity in the S terminals is modelled by a on-site, complex pair-

potential ∆ which goes to zero as a step-function at the S-N interface. We made sure that

the Fermi-wavelengths λN and λS in the N and S regions, respectively, satisfy λS ≪ λN .

This ensures that the exact spatial dependence of the superconducting pair potential at the

N-S interface is not very important in the calculations.10

Density dependence of the critical current

Our numerical calculation for Ic as a function of doping, assuming a backgate dependent

charge density profile (as described above), is shown in Figure S13. Comparing our calcu-

lations to the measurement results shown in the inset of Figure 3(a) of the main text, one

can see that the Ic vs doping dependence is qualitatively very similar. In particular, the the

asymmetry between the n and p doped regimes is clearly present in the calculations.

Regarding the absolute values of Ic, for n = 2 × 1011/cm2 we find Ic = 7.4µA. The

difference with respect to the prediction of Reference10 is mainly due to the fact that in our

case L ≲ ξ0. This has twofold effect: First, the contribution of the continuum states cannot

be neglected. Second, the contribution of the ABSs to the supercurrent itself depends on

the L/ξ0 ratio and in our case it is smaller than what one would obtain in the strict short

junction limit. Looking now at the experimental results (inset of Fig. 3a in main text),

for n = 2 × 1011/cm2 we have measured Ic,exp ≈ 3µA, which is less than half of what our

calculations give. The reason for this discrepancy is not clear at the moment. As mentioned

below, assuming a soft superconducting gap can noticeably affect the value of the calculated

critical current Ic, especially for high n doping. However, for reasonable values of η we still

obtain twice as large Ic as in the measurements. We note that a similar discrepancy was

noted in Ref.8 as well. They used the formula Ic = α∆/eRn, where theoretical calculations
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Figure S13: Theoretical calculation of the critical current Ic vs doping. The width of the
junction is W = 2µm and L/ξ0 = 0.73.

give a value α ≈ 2.1− 2.44.10 The measurement of Ref.8 found α ≈ 0.4, i.e., a factor of ≈ 5− 6

difference. This is roughly the same, as the difference between the prediction of Ref.10 and

our measurements.

Soft vs hard superconducting gap

Following Reference,11 we also considered the effect of quasiparticle broadening in the su-

perconducting terminals by introducing a complex energy shift E → E + iη in the self-energy

calculations. Such a broadening, described by the parameter η, can arise due to scattering

with phonons or other electrons or due to other effects leading to quasiparticle poisoning.

We find that a finite η can considerably affect the value of the calculated critical current

Ic. Since Ic is not the main focus of this work, we do not discuss the details here. Instead,

we present results to illustrate the effect of η on the skewness. We repeated the calculations

using η = 0.17∆ and the results are shown in Figure S14. Comparing Figure 4(c) in the main

text and Figure S14, one can notice that the results are qualitatively very similar, but for

η = 0 the average skewness is larger for both npn and nn′n doping than for η ≠ 0. We note

that in the nn′n regime the calculated average skewness S̄ = 0.27 for η = 0 is closer to the

measured one Sexp ≈ 0.28 than the result S̄ = 0.22 for η = 0.17∆. The opposite is true in
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Figure S14: The calculated skewness vs doping for soft superconducting gap, i.e., η = 0.17∆.

the npn regime, where the calculations with η = 0.17∆ (η = 0) yielding S̄ = 0.19 (S̄ = 0.22)

give better agreement with the measurements (Sexp ≈ 0.2). We were not able to achieve an

equally good agreement in both the npn and nn′n regimes using a single value of η. This

may indicate that η depends on the doping of the junction, but one would need a more

microscopic understanding of the processes that contribute to η.

We emphasize, however, that η is not the only parameter which can affect the value

of the skewness. Generally, the value of the skewness depends on the interface between

the S and N regions. Calculations not shown here indicated that the presence/absence

of a smooth transition between the highly doped leads and the normal graphene region

(the parameter ltr in Eq.12) and the value of the hopping amplitude γsc in Figure S11(b)

between the S and N regions can also affect the results. However, we fixed the value of the

parameters describing the junction such that we obtain a qualitatively good agreement for Rn

(as discussed previously) and did not changed these parameters in the skewness calculations.

Calculations using the side contact geometry

We also performed calculations using the side-contact geometry, which is shown in Fig-

ure S11(b). This contact geometry has recently been employed, e.g., in Reference12 to

model diffusive graphene JJs both in the short and in the long junction regime. The most
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Figure S15: (a) Comparison of the calculated normal state resistance vs doping for top- and
side-contacted junctions, (b) Skewness vs doping calculated in the side-contact geometry.
Dashed lines indicate the average skewness in the n and p doped regime.

important results of our calculations are shown in Figure S15. We have used the same dop-

ing profile U(x) along the junction as in the top-contact geometry. As it can be seen in

Figure S15(a), by choosing γsc = 0.67γ, the doping dependence of the normal state resistance

is qualitatively very similar for both models. One can notice, however, that the amplitude of

the Rn oscillations for nn′n doping is larger in the side-contact geometry. In the npn regime

the amplitude of the FP oscillations is somewhat different, but the oscillations are in the

same phase, except for large p doping.

The skewness calculation for the side contact geometry is shown in Figure S15(b). We

used the same ∆ and η = 0.17∆ as for the corresponding calculation in the top-contact

geometry. The result are qualitatively similar to those shown in Figure S14 and Figure 4(c)

of the main text. In particular, the average skewness is different in the npn and nn′n doping

regime, but the obtained S̄ values are larger than the ones calculated in the top-contact

geometry for η = 0.17∆. However, the amplitude of the skewness oscillations is larger in the

side-contact geometry, especially for nn′n doping, where they are three times larger than

in Figure 4(c) of the main text. Such large oscillations are not present in the experimental

data and for this reason we find a better overall agreement between the experiments and

calculations using the top-contact geometry. Finally, we briefly note in the vicinity of the
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CNP one can see large oscillations in the skewness and therefore both models fail to reproduce

the experimental results in this regime.
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(6) Rakyta, P.; Kormányos, A.; Cserti, J. Phys. Rev. B 2016, 93, 224510.

(7) Wakabayashi, K.; Fujita, M.; Ajiki, H.; Sigrist, M. Phys. Rev. B 1999, 59, 8271–8282.

(8) Shalom, M. B.; Zhu, M. J.; Fal’ko, V. I.; Mishchenko, A.; Kretinin, A. V.;

Novoselov, K. S.; Woods, C. R.; Watanabe, K.; Taniguchi, T.; Geim, A. K.;

Prance, J. R. Nature Physics 2016, 12, 318.

(9) Rickhaus, P.; R. Maurand, M. H. L.; Weiss, M.; Richter, K.; Schönenberger, C. Nature

Communications 2013, 4, 2342.

(10) Titov, M.; Beenakker, C. W. J. Phys. Rev. B 2006, 74, 041401.

21



(11) Takei, S.; Fregoso, B. M.; Hui, H. Y.; Sarma, A. M. L. S. D. Phys. Rev. Lett. 2013,

110, 186803.
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