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Critical dynamics at the Anderson localization mobility edge
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We study the critical dynamics of matter waves at the three-dimensional Anderson mobility edge in cold-atom
disorder quench experiments. General scaling arguments are supported by precision numerics for the spectral
function, diffusion coefficient, and localization length in isotropic blue-detuned speckle potentials. We discuss
signatures of critical slowdown in the time-dependent central column density of a spreading wave packet, and
evaluate the prospects of observing anomalous diffusion right at criticality.
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I. INTRODUCTION

Anderson localization refers to the remarkable phenomenon
that configurational disorder can keep a phase-coherent system
out of global equilibrium, with the eventual consequence that
diffusive transport is entirely suppressed and thus resulting
in an insulator [1,2]. Quantum systems show in dimensions
d > 2 an Anderson transition [3,4], a critical change of
transport properties from insulating to conducting that is
rooted in the existence of a mobility edge Ec, a critical point
on the single-particle energy axis that separates localized
from extended states. Since disordered electrons invariably
interact [5,6], making the unambiguous observation of the
single-particle scenario very difficult, other physical carriers
with much weaker interaction have been used to track the
three-dimensional (3D) Anderson transition: acoustic waves
[7], light waves [8,9] (but see [10]), and cold atoms [11–
13]. Notably, the universality and critical properties of the
3D Anderson transition have been thoroughly investigated
with the quantum kicked rotor, a driven chaotic system,
where localization operates in momentum space [14,15]. Also
cold-atom real-space experiments [16–18] have attempted to
measure the mobility edge in spatially correlated laser speckle
potentials. The basic idea of these wave-packet expansion
experiments is that mobile atoms with energies E > Ec
above the mobility edge escape, whereas localized atoms with
energies E < Ec remain behind. From the measured localized
fraction and initial energy distribution, one can then deduce
the mobility edge.

Concretely, let us assume that matter waves are prepared at
time t = 0 with an uncorrelated phase-space density W (k,r) =
w(k)n0(r) [17,19] and resulting energy distribution A(E) =∫

dkA(k,E)w(k); the conditional probability A(k,E) of a
plane wave k to have energy E in the disorder potential is
the spectral function. The ensemble-averaged atom density at
position r and time t > 0 is

n(r,t) =
∫

dE A(E)
∫

dr0P (E,r − r0,t)n0(r0), (1)

where P (E,r − r0,t) is the density (particle-hole) quantum
propagator at energy E from r0 to r in time t [4,20,21]. The
fraction of localized atoms, among all N =

∫
dr0n(r0) atoms

initially present, then formally evaluates to

floc = 1
N

∫
dr lim

t→∞
n(r,t) =

∫ Ec

−∞
dE A(E), (2)

where the last equality uses the long-time projection∫
dr limt→∞ P (E,r,t) = !(Ec − E) onto energies below the

mobility edge. If the energy distribution A(E) is known and
covers the mobility edge, one can infer the position of Ec from
the measured value floc.

In an actual experiment, it is crucial to know how long one
has to wait for Eq. (2) to be valid, i.e., until the density of mobile
atoms has dropped to zero in a given observation volume.
Likewise, one has to ascertain carefully whether density
profiles observed at finite times represent localized states, or
rather comprise atoms that still diffuse, if only very slowly
[22–25]. Strictly speaking, the disappearance of the mobile
fraction takes an infinite time since the diffusion coefficient
becomes critically small near Ec. A density measurement at
a finite observation time then runs the danger of counting
a certain, potentially sizable, fraction of mobile atoms as
localized, resulting via Eq. (2) in an estimate for the mobility
edge that is systematically too high. This effect may be one
of the reasons why the experimental estimates for localized
fractions and mobility edges of Refs. [16–18] are consistently
above recent, accurate numerical estimates [26]. Even if there
existed a general awareness that critical dynamics come with
diverging time and length scales, appropriate quantitative
conclusions seem not to have been drawn. Finally, similar
considerations should apply to the experimental characteriza-
tion of the many-body localization transition [27–31], where
subdiffusive transport is also expected to occur [32–37].

With this article, we wish to emphasize the principal as
well as practical relevance of critical dynamics around the
3D Anderson mobility edge in disorder-quench, matter-wave
expansion experiments. This analysis significantly extends
previous theories [21,22,38–40] that used various versions
of the self-consistent theory of localization, with largely
uncontrolled approximations regarding the spectral function,
critical exponents, and position of the mobility edge. Indeed,
in Sec. II we illustrate our general arguments with precise
numerical results for the spectral function, average density
of states, diffusion coefficient, and localization length in 3D
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blue-detuned speckle disorder, as appropriate for present-day
experiments. We do not attempt a quantitative comparison
to one of the existing experiments [16–18] since each of them
uses its own particular preparation, measurement protocol, and
disorder configuration. Rather, our analysis relies on generic
assumptions that represent the smallest common denominator
for the existing cases, and it may thus serve as a conceptual
guide rail for a more accurate analysis of experiments yet to
come. Section III discusses the relevant time and length scales
for the critical dynamics of a spreading wave packet. We focus
our discussion on the central column density, arguably a more
trustworthy observable than small wing densities, and finally
evaluate the prospects of observing anomalous diffusion right
at criticality. Section IV concludes.

II. CRITICAL ENERGY AND TIME SCALES

A. Anderson localization in 3D speckle disorder

Let V (r) denote a realization of a random, blue-detuned
optical speckle potential [12,21]. We assume that the disorder
is statistically isotropic and homogeneous, leaving aside
aspects such as anisotropy and finite size that may be relevant
to particular experimental configurations. The mean V (r)
or “sea level” can be put to 0 without loss of generality,
counting energies now from this level. The disorder strength
is then defined by the variance V (r)2 = V 2

0 . Higher-order
moments of the single-point potential values V = V (r) are
fully characterized by the statistical distribution function
P (V ). The blue-speckle distribution is strictly bounded from
below and has the negative-exponential distribution P (V ) =
!(V + V0)V −1

0 exp[−(V + V0)/V0].
Spatial correlations are captured by the covariance

V (r)V (r′) = V 2
0 C(r − r′). For concreteness, we consider the

Gaussian correlation C(r) = exp[−r2/2ζ 2]. Such a correla-
tion is generic, defined by the property

∫
drC(r) = C̃(k =

0) < ∞, such that a white-noise description is applicable
in the limit kζ ≪ 1. Experimentally, Gaussian correlation is
relevant in the plane perpendicular to a focused laser beam
with Gaussian intensity waist, and approximately isotropic
3D speckle potentials are created superposing several such
patterns [17,18] [41]. The correlation length defines the
quantum correlation energy scale Eζ = !2/mζ 2.

In the (semi-)classical limit V0 ≫ Eζ localization occurs
very close to the classical percolation threshold where kζ ≫ 1,
such that quantum interference effects are very small [12]. We
believe that expansion experiments in this regime [16,23] have
mainly probed diffusive dynamics [24,25]. Here, we consider
the opposite regime

η = V0

Eζ

≪ 1. (3)

As a consequence, the potential cannot produce locally bound
states, and localization of matter waves becomes a quantum-
mechanical, multiple-scattering effect, known as Anderson
localization (AL).

It is by now established that the mobility edge Ec for
blue-detuned speckle is located slightly below the sea level
V = 0. This has been predicted by approximate but suffi-
ciently accurate treatments like the self-consistent theory of

localization [39,42] [43] and confirmed by exact numerical
calculations [26]. It also follows by a qualitative reasoning
from the celebrated Ioffe-Regel criterion, which states that
the Boltzmann description of classical transport has to be
abandoned, and quantum effects may be expected to take over,
once the wavelength becomes of the order of the mean-free
path, kclc ∼ 1. For the generic class of disorder and high
energies well above sea level, the perturbation-theory mean-
free path l ∼ ζ/η2 is independent of energy. Extrapolated to
l ∼ lc, the Ioffe-Regel criterion then yields a characteristic
energy scale !2k2

c /2m ∼ W such that [44]

W ∼ η4Eζ = η3V0. (4)

The mobility edge Ec itself then can be expected to lie near
the energy that solves the disorder-shifted dispersion relation
for this momentum kc ∼ l−1

c . Since the disorder shifts the bulk
dispersion downward by the real part of the self-energy, $E ∼
−η2Eζ , which is larger in magnitude than W for η ≪ 1, the
mobility edge finally ends up below sea level. We recall that
the same scale W is identified by a Lifshitz-tail argument
coming from low energies [12]. It is thus plausible to assume
that W is the single characteristic energy scale around Ec,
where quantum interference effects play a crucial role, and
thus yields an order of magnitude for the width of the critical
interval. Although W is rather small on both scales of Eζ and
V0 in the regime of interest η ≪ 1, it can have a considerable
impact on matter wave expansion dynamics, as shown in the
following.

B. Critical interval

We proceed by presenting numerical data that prove the
relevance of the critical interval around the 3D mobility
edge. Our calculations use the single-particle Hamiltonian
H = p2/2m + V (r) of matter waves in blue-detuned speckle
disorder with η = V0/Eζ = 0.5. Figure 1 shows the spectral
function A(0,E) at zero momentum. The numerical rou-
tine propagates the initial state |k = 0⟩ in time with the
Hamiltonian H for each realization, followed by a Fourier
transformation to energy and an ensemble average. The system
size is chosen much larger than the scattering mean free path,
the spatial discretization much smaller than the correlation
length ζ , and the results are averaged over many disorder
realizations, so that all results shown in Fig. 1 have error bars
smaller than 1% of their maximal value; further details can be
found in the appendix of Ref. [45].

The spectral function thus obtained approximates the
energy distribution A(E) relevant for Eqs. (1) and (2) if the
initial momentum distribution w(k) is centered on k = 0 and
narrow enough. Indeed, the width of the spectral function
A(k,E) around E = Ec is of the order of l−1

c ∼ η2/ζ . If the
width $k0 of the initial distribution w(k0) obeys $k0lc ≪ 1,
then A(E) =

∫
dkw(k)A(k,E) ≈ A(0,E). Initial momentum

distributions that are centered on finite |k0| > l−1
c or that are

much broader would provide a less optimal coverage of the
mobility edge and will not be considered in the following.

The upper inset of Fig. 1 shows the average density of
states per volume ρ(E), which starts with an exponentially
small Lifshitz tail [12,46,47] from the exact lower bound of
the spectrum at −V0 = −0.5Eζ (the combined lower bound of
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FIG. 1. Main plot: Spectral function A(0,E) of a matter wave
with k = 0 inside a blue-detuned laser speckle potential of zero mean
and rms strength V0 = 0.5Eζ ; the unit of energy Eζ = !2/mζ 2 is set
by a generic spatial Gaussian correlation length ζ . The 3D Anderson
mobility edge at Ec ≈ −0.1652Eζ (red vertical line) lies below the
“sea level” or potential mean at E = 0. The critical interval with half
width W = 0.05Eζ (dashed vertical lines) contains initially more than
two thirds of atoms; less than half of all atoms, with energy E < Ec,
will eventually be localized. Insets: Zoom in the critical interval with
plots of the smooth average density of states ρ(E), critical inverse
localization length ξ−1

E , and critical diffusion coefficient DE , in units
of lc and Dc = !/3m.

kinetic energy and centered blue-speckle potential) and crosses
over to the high-energy asymptotics ∝ E1/2 of the Galilean
dispersion E(p) = p2/2m in 3D. An extrapolation of this bulk
density of states to 0 gives an apparent lower band edge near
$E ≈ −0.20Eζ .

The spectral function and the average density of states are
smooth functions of energy around the mobility edge Ec that
separates localized states with E < Ec from extended states
with E > Ec [26,48]. But transport coefficients show critical
power-law behavior on both sides of Ec, found here at Ec ≈
−0.1652Eζ , as shown in the lower inset of Fig. 1. The half
width of the critical interval appears to be W ≈ 0.05Eζ , in
agreement with the estimate (4). As the energy approaches the
mobility edge Ec from below, the localization length diverges
like

ξE ∼ lc

(
W

Ec − E

)ν

, − W < E − Ec < 0, (5)

with critical exponent ν ≈ 1.58 known only from numerical
and laboratory experiments [15,49–52]. The length lc is of the
order of the elastic scattering length, a smooth function of
energy at the transition. For our parameters, we find lc ≈ 4ζ ,
which complies with the Ioffe-Regel criterion kclc ∼ 1, with
!kc =

√
2mW the typical momentum at Ec.

As the energy approaches Ec from above, the diffusion
coefficient vanishes as

DE ∼ Dc

(
E − Ec

W

)s

, 0 < E − Ec < W. (6)

The critical exponents in Eqs. (5) and (6) are related by
Wegner’s law [53] s = (d − 2)ν, and thus s = ν in the present
context. The diffusion coefficient reaches the “quantum unit

of diffusion” Dc = !/3m around the energy Ec + W above
the transition. We write Dc = l2

c /τc with τc of the order of
the elastic scattering time, also a smooth function of energy
around Ec.

Numerically, we compute the critical quantities by a
transfer-matrix calculation of the quasi-1D localization length
ξE(M) in a slab of transverse size M , extrapolated by finite-size
scaling to the large-M limit [54,55]. Below Ec, the 3D
bulk localization length ξE = limM→∞ ξE(M) is finite. Above
Ec, it is the localization length per cross section, ξ ′

E
−1 =

limM→∞ ξE(M)/M2, that is finite and plotted as the green
dashed curve in the lower inset of Fig. 1. This length scale then
gives the bulk diffusion coefficient as DE = [π!ρ(E)ξ ′

E]−1

[56]. One-parameter scaling actually constrains the critical
exponents of ξE and ξ ′

E to be equal, but since in our case
ρ(E) is not strictly constant over the full critical interval, DE

does not obey the simple power law (6) everywhere with the
same s = ν. Rather, Fig. 1 displays a crossover for DE from a
linear behavior with s ≈ 1 at higher energies toward the true
s = ν close enough to Ec, which is relevant for the long-time
dynamics.

For our showcase data of Fig. 1, the initial energy
distribution A(E) is composed of the regular localized fraction
f

reg
loc = AEc−W

−∞ ≈ 0.004 [we note Ab
a =

∫ b

a
dE A(E)], a critical

localized fraction f crit
loc = AEc

Ec−W ≈ 0.453, a critical diffusive
fraction f crit

diff = AEc+W
Ec

≈ 0.233, and a regular diffusive frac-
tion f

reg
diff = A∞

Ec+W ≈ 0.310. Clearly, for disorder strengths
and energy distributions comparable to the above, we may
expect the critical region to play an important role since
it contains a total critical fraction of f crit = f crit

loc + f crit
diff ≈

0.686, i.e., more than two thirds of all atoms.

C. Anomalous dynamics at finite times

As the wave packet expands, the dynamics progressively
distinguishes between the total localized fraction floc = f

reg
loc +

f crit
loc ≈ 0.457 and the total diffusive fraction fdiff = f

reg
diff +

f crit
diff ≈ 0.543. Yet, in any experiment that probes dynamics of

a wave packet during a finite time t , it is impossible to sharply
distinguish between localized and diffuse contributions near
Ec, since the resolution in energy is necessarily limited.
Instead, energy components near criticality show a crossover
behavior of anomalous diffusion [57,58], characterized by the
subdiffusive law ⟨|x|⟩ ∼ lc(t/τc)1/3 that interpolates between
the truly diffusive and strongly localized regimes, where
⟨|x|⟩ ∼ l(t/τ )1/2 and ⟨|x|⟩ ∼ ξ t0, respectively.

One can estimate the half width δE(t) of the anomalous
energy interval by requiring that the critical localization length
at energy Ec − δE be reached at time t by anomalous diffusion,
ξEc−δE = lc(t/τc)1/3. Solving for δE with Eq. (5), one finds

δE(t)
W

=
(τc

t

) 1
3ν =: $(t). (7)

Alternatively, this scale emerges by requiring that localization
and diffusion cannot be distinguished, i.e., by equating ξEc−δE

with the critical diffusive radius at energy Ec + δE and time
t . Solving DEc+δEt = ξ 2

Ec−δE for δE with the help of Eqs. (5)
and (6) then yields Eq. (7) as well.
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FIG. 2. Energy interval around the mobility edge Ec and different
dynamical regimes. Numerical figures for the respective fractions
are indicated for the showcase data of Fig. 1. The half width of
the anomalous interval shrinks as δE(t) = W (τc/t)1/3ν , Eq. (7). A
spatial cutoff scale σ0 (width of the initial wave packet if the central
column density is monitored) introduces two crossover times: (1) The
upper critical Thouless time t1 = σ 2

0 /Dc, Eq. (8), separates regular
from critical diffusion. (2) The localization time t2 = t1σ0/lc, Eq. (9),
separates critical from anomalous dynamics.

The anomalous energy interval shrinks as a function of
time, as shown schematically in Fig. 2, so that more and more
particles are resolved as either localized or diffusive. But the
anomalous energy interval shrinks very slowly, and only at
infinitely long times does the separation between localized
and mobile components become infinitely sharp.

D. Finite spatial resolution and crossover times

In real-life expansion experiments, the dynamics are lim-
ited not only temporally, but also spatially. For example,
measurements of the total remaining numbers of particles
[16,18] can only cover a finite observation range. Similarly,
measurements of central densities [17] start from clouds
with finite initial extension. Let us call σ0 the corresponding
spatial scale, and assume σ0 ≫ lc, which proves compatible
with the assumption $k0lc ≪ 1 made for the momentum
distribution in Sec. II B above. The length σ0 then introduces
two characteristic crossover times that separate three different
dynamical regimes, as schematically indicated in Fig. 2.

First, there is the upper critical Thouless time

t1 = σ 2
0

Dc
= τc

σ 2
0

l2
c

, (8)

namely, the time required for the fastest critical, or slowest
regular, diffusive atoms with diffusion coefficient Dc to explore
the scale σ0. Starting with a broad enough energy distribution,
the early-time dynamics will be dominated by rapid, regular
diffusion for t ≪ t1, and cross over to slower, critical diffusion
for t ≫ t1. As an order of magnitude, a value as large as 40 s can
be realistic, taking the Palaiseau experiment [17] as reference
where Dc ≈ 0.25 µm2/ms and σ0 ≈ 100 µm is the initial
wave-packet size.

Second, there is the time t2 required for the slowest critical,
or fastest anomalous, atoms with energy Ec + δE(t2) to reach
σ0. Using Eqs. (6) and (7), this translates to the condition

σ 2
0 = t2Dc$(t2)ν . Equivalently, t2 is the time where the

localization length at Ec − δE(t2) reaches σ0. Both conditions
agree on the “localization time” [22]

t2 = τc
σ 3

0

l3
c

= t1
σ0

lc
, (9)

or “watershed time” when the difference between localized
and mobile components on the spatial scale σ0 is resolved.
From t2 onward, the localized components with ξE < σ0 are
essentially frozen, the diffusive components with DE > σ 2

0 /t
have essentially left, and the only remaining dynamics is due
to the anomalous diffusion of a small fraction of particles with
even larger critical localization lengths and smaller critically
diffusive radii.

In summary, one expects a double dynamical crossover
[22]: first from fast, regular diffusion at times t ≪ t1 to slow,
critical diffusion at times t1 ≪ t ≪ t2 and then to anomalous
behavior for very long times t ≫ t2.

III. CENTRAL COLUMN DENSITY

As a consequence of the previous considerations and asso-
ciated long time scales, it becomes plausible that experiments
tend to overestimate the localized fraction and thus yield values
for Ec that are systematically too high. Clearly, one needs
to extrapolate finite-time, finite-size data quite carefully in
order to arrive at accurate estimates of the localized fraction.
To facilitate this, we follow the general lines of Skipetrov
et al. [22], but instead of analyzing the sparse tails of expanding
density distributions, we propose to monitor the decrease of
the central column density at x = y = 0,

n⊥(t) :=
∫

dz n(0,0,z,t), (10)

from its initial value n⊥
0 = n⊥(0) as function of time. The

central column density, with its higher signal-to-noise ratio
than the wing density, has been used with success in dynamical
localization experiments [14,58], and promises to be useful in
real space as well [17].

Whereas the localized component n⊥
loc = flocn

⊥
0 remains

essentially immobile from the start (to good approximation if
lc ≪ σ0 and thus ξE ! σ0 for the majority of localized atoms),
the mobile component will escape, and thus its contribution to
the central column density will decrease in time.

We consider a wave packet prepared in a system so large
that ballistic modes are not populated. Let us also, in a first
step, be deliberately oblivious of the anomalous dynamics and
assume diffusion above Ec at all times by taking δE(t) = 0;
the signatures of anomalous dynamics will be discussed in
Sec. III B below. In the diffusive interval E > Ec, the density
propagator then is the Gaussian diffusion kernel

P (E,r,t) = (4πDEt)−
3
2 exp(−r2/4DEt). (11)

Assuming an initial isotropic Gaussian distribution

n0(r) = N
(
2πσ 2

0

)3/2 exp
(
− r2/2σ 2

0

)
, (12)
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for which n⊥
0 = N/2πσ 2

0 , one finds from Eqs. (1) and (10) by
Gaussian integration

n⊥(t) = n⊥
loc + N

∫ ∞

Ec

dE

2π

A(E)
σ 2

0 + 2DEt
. (13)

If there were a finite time scale t∗ = maxE σ 2
0 /DE for all

energies contained in the distribution A(E) above Ec, one
would find for t ≫ t∗ an asymptotic algebraic decrease like

n⊥(t) ≈ flocn
⊥
0 +

N
〈
D−1

E

〉

4π t
+ O(t−2), (14)

where ⟨D−1
E ⟩ =

∫ ∞
Ec

dEA(E)D−1
E . A 1/t power-law fit could

then reveal the constant offset and thus permit one to extract
floc, as in Ref. [17]. However, this approach neglects the
critical behavior at the mobility edge. Indeed, whenever A(E)
is finite around Ec, the average of the inverse critical diffusion
coefficient is ill defined since

⟨D−1
E ⟩ ∝

∫

Ec

dE A(E)
(E − Ec)ν

∼ (E − Ec)1−ν |Ec → ∞. (15)

It is actually impossible to enter the supposed long-time
regime t ≫ t∗ because σ 2

0 /DE → ∞ as E → Ec, and the
time required for the escape of all mobile atoms diverges as
their energy approaches Ec from above.

Of course, the argument leading to Eq. (14) can be applied
to the contribution of the regular diffusive atoms with energies
E > Ec + W and diffusion coefficients DE > Dc. For these
atoms, t∗ = σ 2

0 /Dc = t1 is the upper critical Thouless time
defined in Eq. (8), and thus their contribution to Eq. (13)
vanishes like t1/t for t ≫ t1.

The regular diffusive atoms thus give way to the critically
diffusive atoms with energies Ec < E < Ec + W that take
longer to disappear. In the following, we discuss more
quantitatively the contribution of critical dynamics to the
central column density, dominant at times t ≫ t1, all the way
to the anomalous diffusion at criticality that dominates at even
longer times t ≫ t2.

A. Critical diffusion

For the qualitative analysis of the expected critical dynam-
ics, let us take the energy distribution A(E) ≈ A(Ec) =: Ac to
be constant in the narrow critical interval above Ec. There,
the diffusion coefficient is DE = Dc$

ν , where $ = (E −
Ec)/W ∈ [0,1] measures the distance to the critical point. The
critically diffusive atoms with energies E ∈ [Ec,Ec + W ] then
contribute to the central column density [Eq. (13)] with

n⊥
diff(t) ≈ n⊥

0 WAc

∫ 1

0

d$

1 + 2(t/t1)$ν
. (16)

We only need to estimate the integral for times t ≫ t1 =
σ 2

0 /Dc, when the regularly diffusive atoms have already
disappeared. The integral is dominated by the behavior of
the integrand near the lower bound and results in the algebraic
decay

n⊥
diff(t) ∼ n⊥

0

(
t1

t

) 1
ν

, t1 ≪ t ≪ t2, (17)
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n⊥ (t)
 / 

n 0⊥

FIG. 3. Central column density, Eq. (13), evaluated for the data
of Fig. 1, as function of time. Around the upper critical Thouless time
t1 = σ 2

0 /Dc, the fraction of regular diffusive atoms (here f
reg

diff ≈ 0.31)
has almost disappeared, and the slow critical diffusion of Eq. (17)
starts to dominate. Anomalous diffusion becomes only relevant at
much longer times t ≫ t2 = σ0t1/lc. Especially with noise on the
data, one could be tempted to extrapolate the curve to a localized
fraction of 0.52 or more; in reality, it is only floc = 0.457, indicated
by the shaded baseline.

where constants of order unity, WAc among them, are omitted.
This power-law decay involving the critical exponent ν is much
slower than the faster t−1 decay of the regular diffusion, and
consequently is quite easily mistaken for a saturation due to
Anderson localization.

To underscore this point, Fig. 3 plots the central column
density, Eq. (13), as function of time for the parameters of
Fig. 1. Around t1, the fraction of regular diffusive atoms
(here f

reg
diff ≈ 0.31) has almost disappeared, and slow critical

diffusion starts to dominate. It must be noted that the argument
leading to the power-law prediction (17) slightly oversimplifies
the actual situation. Since the spectral function A(0,E) varies
notably over the upper critical interval (see Fig. 1), the
approximation (16) is not very accurate at early times of order
t1. Also, the caveat of [41] applies such that the pure power
law of Eq. (17) is only reached rather slowly. Still, even if
Fig. 3 does not admit a global fit to the simple analytical
estimate of Eq. (17), the overall critical slowdown is clearly
visible. Especially if the data were noisy for longer times, a
naive fit to a t−1 power law would yield a measured localized
fraction of 0.52 or more, significantly larger than its true value
floc = 0.457.

How long does this critical decay last? Until here, we have
neglected anomalous diffusion. Reinserting the true lower
bound of the critical diffusion interval at Ec + W$(t), the
integral to be evaluated in Eq. (16) is really only

∫ 1

$(t)

d$

1 + 2(t/t1)$ν
. (18)

The value of the integral for t ≫ t1 depends on the larger of
the two cutoffs, either 1 or (t/t1)$(t)ν . A crossover time t2
between these two cases is defined by the condition $(t2)ν =
t1/t2, which yields Eq. (9). At intermediate times t1 ≪ t ≪ t2
such that t1/t is always greater than $(t)ν , the lower integral
bound can be set to zero; here the contribution of anomalous
atoms is negligible, and the dynamics is indeed dominated by
the critical diffusion of Eq. (17).
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At even longer times t ≫ t2, the integral in Eq. (16)
is exhausted by values close to its lower bound where
(t/t1)$(t)ν ≫ 1. With its upper bound sent to infinity, the
integral then evaluates to $(t)1−ν/(ν − 1), and one obtains
the long-time algebraic behavior

n⊥
diff(t) ∼ n⊥

0 $(t2)
(

t2

t

) 1+2ν
3ν

, t2 ≪ t. (19)

Actually, this is the regime where anomalous diffusion
becomes relevant, to be discussed next.

B. Anomalous diffusion

Allowing for a frequency-dependent diffusion coeffi-
cient DE(ω) in the Fourier-transformed diffusion kernel
P (E,q,ω) ∝ [DE(ω)q2 − iω]−1 [20], one can write the dif-
fusion propagator

P (E,r,t) =
∫

dω

2π

exp{−iωt − |r|
√

−iω/DE(ω)}
4πDE(ω)|r|

. (20)

Scaling theory and microscopic calculations [59] have es-
tablished that the frequency-dependent diffusion coefficient
DE(ω) at the mobility edge is

DEc (ω) = Dc(−iωτc)1/3, (21)

whence Eq. (20) turns into the critical diffusion propagator

Pc(r,t) = 1
4πDc|r|

∫
dω

2π

exp{−iωt − (−iωτc)1/3|r|/lc}
(−iωτc)1/3

.

(22)

This expression, formally independent of energy, holds in
the range ±δE(t) = ±W$(t) around the mobility edge. Its
contribution to the central column density then is

n⊥
c (t) = 2WAc$(t)

∫
dz

∫
dr0n0(r0)Pc(|ẑ − r0|,t), (23)

where ẑ = (0,0,z). Using translation invariance∫
dr0n0(r0)P (|r − r0|) =

∫
dr0n0(r0 + r)P (|r0|) and the

initial distribution (12), we can perform the Gaussian integral
over z and thus face the task to evaluate

n⊥
c (t) = 2n⊥

0 WAc$(t)
∫

dr0 exp
{
−

x2
0 + y2

0

2σ 2
0

}
Pc(|r0|,t),

(24)
where the Gaussian restricts x0 and y0 to a few σ0, but does
not limit the range of z0 anymore.

We only need to consider long times t ≫ t2 = τcσ
3
0 /l3.

Then the initial wave packet is much narrower than the kernel,
and for all values z0 not much larger than σ0, we find that the
integral (22) is dominated by the contribution from the pole
ω−1/3,

∫
dω

2π

exp{−iωt}
(−iωτc)1/3

= 1
-(1/3)(t2τc)1/3

, (25)

with the well-known t−2/3 behavior [57,58,60]. What about
large excursions in z0 ≫ σ0? These are cut off by the anoma-
lous propagator (22), via a saddle point of the integral, Pc(z0 ≫
σ0,t) ∼ exp{−a(σ 3

0 t2/z
3
0t)

1/2} (with a of order unity). The

resulting large-z0 cutoff at σ0(t/t2)1/3 of the remaining integral
∫ σ0(t/t2)1/3

σ0

dz0

z0
= 1

3
ln(t/t2), (26)

then provides a logarithmic correction, which leads to

n⊥
c (t) ∼ n⊥

0 $(t2)
(

t2

t

) 1+2ν
3ν

ln
t

t2
. (27)

This result differs from the analogous estimate for the wings of
density distributions [22], where the anomalous contribution is
predicted to decay for t ≫ t2 as the pure power law t−(1+2ν)/3ν ,
i.e., algebraically more slowly than the critical contribution,
which disappears as t−(1+3ν)/3ν . In the present setting of the
central column density, with its additional integral over z,
the signature of anomalous dynamics is only the logarithmic
correction (27) to the critical power-law decay (19) with
exponent (1 + 2ν)/3ν ≈ 0.875.

IV. SUMMARY, OUTLOOK

In summary, we have discussed the specific challenges,
and particular interest, of critical dynamics close to the 3D
Anderson mobility edge in the expansion of noninteracting
matter waves in strongly disordered laser speckle potentials.
Given a certain spatial resolution σ0, the critical Thouless time
t1 = σ 2

0 /Dc separates fast diffusion from a critical slowdown
for dynamical observables. In particular, we find a crossover
from a t−1 decay of the central column density to a t−1/ν

decay. The signature of anomalous dynamics emerges after the
watershed time t2 = t1σ0/lc, where all localized components
on scales smaller than σ0 are frozen and all faster diffusive
components have left, as a logarithmic correction on top of an
accelerated critical background decaying as t−(1+2ν)/3ν .

In our discussion, we have disregarded how exactly the
localized components with ξE < σ0 contribute to the transient
dynamics of the central column density at times t ≪ t2, since
the diffusive components are expected to dominate. However,
it is certainly interesting to study the dynamics of atoms that
will eventually localize in the wake of a quantum quench.
From momentum-space coherence signatures of Anderson
localization in lower dimensions d ! 2 [61–65], we already
know that the Heisenberg time of the localization volume
appears as a relevant time scale. An exhaustive description
of critical localization dynamics close to the 3D mobility edge
is an interesting challenge for future theoretical work.

Also, we have neglected the possible impact of residual in-
teractions. On a mean-field level, one expects that the localized
fraction is replaced by a subdiffusive fraction, as discussed
by Cherroret et al. in Ref. [66], including the possibility of
different critical exponents. However, quantitative conclusions
for the real-space measurement scenarios discussed presently
have not yet been drawn, to our knowledge, and thus remain
to be investigated.
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