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1.  Introduction

Monolayers of transition metal dichalcogenides 
(TMDCs) are a class of 2D materials with very 
interesting electronic and optical properties [1, 2]. They 
are atomically thin semiconductors with a direct band 
gap and two-fold degenerate valleys in the Brillouin 
zone [3, 4]. Early studies discovered that their intrinsic 
spin–orbit interaction splits the spin states in the valence 
band and that it is possible to optically manipulate the 
spin and valley degrees of freedom (DOF) [5, 6]. Further 
theoretical works suggested that the conduction band 
should be split as well due to the spin–orbit coupling [7, 
8]. The conduction band spin–orbit splitting was also 
supported by recent experiments [9].

The possibility to construct purely two-dimen-
sional, electrostatically defined quantum dots (QDs) is 
one of the reasons that makes monolayer TMDCs so 
attractive, at least from a fundamental point of view. 
Compared to III–V semiconductors, such as GaAs 
[10–12], TMDCs have several isotopes with vanish-
ing nuclear spin, thus lacking hyperfine interactions 
with the electronic spin. Moreover, TMDCs comprise 
an additional valley pseudospin. Although these two 
features are common to several other systems used 
for QDs, such as Si/SiGe quantum wells [13–16], gra-
phene [17–22] and carbon nanotubes (CNTs) [23–26], 
TMDCs are special because they exhibit very strong 
spin–orbit coupling (SOC). Theoretical investigation 
of QDs in TMDCs started with QDs in gated nanor-

ibbons [27] and the magnetic field dependence of the 
single-electron spectrum [7] and it now includes stud-
ies of valley hybridisation [28], flake QDs of triangular 
and hexagonal shape and nanoribbons [29, 30], the 
valley Zeeman effect [31], optical control of a spin-val-
ley qubit [32], spin-degenerate regimes for small QDs 
in a magnetic field [33], spin relaxation [34], electric 
control of a spin-valley qubit [35] and a model of val-
ley qubit [36]. On the experimental side, gating mono
layer TMDCs is not straightforward [38, 40] and low 
material quality has hindered the experimental study 
of the intrinsic properties of these materials for a long 
time. However, recently there has been a significant 
progress in the fabrication process of nanostructures 
in TMDCs. This has enabled the creation of single QDs 
on monolayer [37, 41] or trilayer TMDCs [40], dou-
ble QD experiments with tunable coupling strength 
between the dots [39, 41] and the observation of gate-
controlled Coulomb blockade effect [37–41].

In this paper we study double quantum dots 
(DQDs) taking into account the spin–orbit coupling 
and both spin and valley DOF. We note that, although 
single [25] and double [42–44] quantum dots in CNTs 
have been studied, where the low energy theory shares 
some similarities with TMDCs, little is known about 
TMDC DQDs and the role of the exchange interaction. 
For simplicity we restrict each dot to the lowest orbital 
and we consider the system filled with two electrons. 
Starting from the model introduced in [45], we add the 
spin–orbit interaction and we find a low energy effec-
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Abstract
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in which cases it is possible to reduce the low energy subspace to the lowest Kramers pairs. We find 
that in this case the low energy model is formally identical to the Heisenberg exchange Hamiltonian, 
indicating that such Kramers pairs may serve as qubit implementations.
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tive Hamiltonian for the case where each dot is occu-
pied by one electron. We also investigate the situations 
where the spin–orbit splitting is different for each dot 
and where we include the effects of a magnetic field. 
Furthermore, for large spin–orbit splittings it is con-
venient to focus on a smaller subset of states formed 
by the two lowest Kramers pairs of the system. In this 
smaller subspace we find that in most cases the interac-
tion is formally identical to the Heisenberg exchange 
interaction, which was suggested to perform a CNOT 
gate between spin qubits [46]. This supports the idea 
that the lowest Kramers pair can serve as a qubit for 
TMDC, as was proposed in [7].

This paper is organised as follows. In section 2 we 
introduce the system Hamiltonian, we present a nam-
ing conventions for certain useful projection operators 
and we briefly evoke the results for the zero spin–orbit 
splitting case. Then, in section 3 we present the effective 
Hamiltonians for the case where each QD is occupied 
by one electron, for three different situations: when the 
spin–orbit splitting is equal in both dots, when the spin–
orbit splitting is different and when the TMDC is depos-
ited on an insulating ferromagnetic substrate or placed 
in an external magnetic field. Afterwards, we explore in 
section 4 under which conditions it is possible to focus 
on smaller effective Hamiltonians for these three situ-
ations. Finally, in section 5 we present our conclusions.

2.  Model

2.1.  Basic definitions
We give here the definitions for the different terms of 
the Hamiltonians that describe the various scenarios 

studied in this work. The operators c(†)jτσ annihilate 

(create) an electron in QD j with valley τ and spin σ. 
Here j  =  L (R) refers to the left (right) QD, τ = K  (K ) 
indicates the positive (negative) valley and σ =↑ (↓) 
specifies spin up (spin down).

The on-site Coulomb repulsion between electrons 
in the same QD is captured by the Hubbard Hamilto-
nian,

HU =
U

2

∑
j=L,R

nj(nj − 1),� (1)

where U  >  0 is the positive charging energy of the dot 
and the number operator is defined as

nj =
∑

τ=K,K

∑
σ=↑,↓

c†jτσcjτσ .
� (2)

A detuning term specifies the energy difference ε 
between the dots,

Hε =
ε

2
(nL − nR).� (3)

Electron-hopping from one dot to the other is 
accounted for by a tunneling term that preserves spin 
and valley,

Ht =
∑
τ ,σ

(
t c†Rστ cLστ + h.c.

)
,� (4)

where the tunneling coefficient t is generally a complex 
number.

The intrinsic spin–orbit coupling is modeled by 
a simple time-reversal symmetric (T -symmetric)  
spin-splitting: ∆τzσz [7]. Here, τi  (σi) is the ith 
Pauli matrix acting on the valley (spin) DOF 
(i = x, y, z), while Δ is a real, positive or negative, 
coupling constant. This implies that the Kramers pair 

states in the set P =
{
|K ↑〉, |K ↓〉

}
 are shifted by the 

energy +∆, while the Kramers pair states in the set 

N =
{
|K ↓〉, |K ↑〉

}
 are shifted by the energy −∆. 

We call P  the positive Kramers pair and N  the negative 
Kramers pair. For the double dot system,

H∆ = ∆
∑
j,τ ,σ

c†jτσ(τz)ττ (σz)σσcjτσ .
� (5)

Equation (5) assumes that the spin–orbit splitting 
is the same for every dot, which is usually the case 
for dots created on the same material. In case the 
spin–orbit splitting is different we use the following 
generalisation,

H∆L,∆R =
∑

j

∆j

∑
τ ,σ

c†jτσ(τz)ττ (σz)σσcjτσ ,
� (6)

where ∆L and ∆R are the spin–orbit splittings in the 
left and right QD respectively.

We also consider the coupling of spin and valley 
to an external magnetic field. The corresponding spin 
Zeeman term is given by

HS =
∑

j

hSj ·
∑

τ ,σ1,σ2

c†jτσ1
(σ)σ1σ2 cjτσ2

,
� (7)

where hSL and hSR are two vectors of coupling constants 
for left and right QD respectively and σ is the vector of 
Pauli matrices acting on spin.

The valley Zeeman term is the valley counterpart 
of the spin Zeeman but considering only the z-Pauli 
matrix acting on the valley. This is motivated by [7] 
and recent experiments [47, 48],

HV =
∑

j

hVjz

∑
τ ,σ

c†jτσ(τz)ττ cjτσ� (8)

where hVLz  and hVRz describe the valley splittings in the 
left and right dot. A concise outline of the interactions 
and the DOF of our DQD model is shown in figure 1.

We consider the case where there are two elec-
trons in the system. The possible charge configurations 
are (2, 0), (1, 1) and (0, 2), where (nL, nR) means that 
there are nL electrons in the left QD and nR electrons 
in the right QD. Because of the spin and valley degrees 
of freedom and due to the Pauli exclusion principle, 
there are 28 linearly independent states: 6 (2, 0)-states, 
16 (1, 1)-states and 6 (0, 2)-states. Throughout this 
paper, we always assume a small detuning and weak 
tunneling, i.e.

2D Mater. 5 (2018) 035031
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|t| � |U ± ε|.� (9)

2.2.  Naming basis states and projection operators
It is natural to refer to certain operators that will 
appear as projectors on specific states. We present a 
convention to name all 28 states of the total Hilbert 
space and we give the projection operators that will be 
useful later.

Because of the Pauli exclusion principle, not all 
the states in the (1, 1)-subspace are allowed to tun-
nel to (0, 2) or (2, 0)-states, but only those which are 
antisymmetric in spin and valley [44, 49]. Following 
the antisymmetric nature of the tunneling states, we 
begin by introducing a basis consisting of states that 
are symmetric or antisymmetric in both spin and val-
ley: |sV sS〉(nL,nR), where (nL, nR) is the charge configu-
ration and sV  (sS) indicates the exchange symmetry 
of valley (spin) DOF. The exchange symmetry can 
be either that of a singlet (S) or that of a triplet (T−, 
T0, T+ ); see table 1 for the definitions of these states. 
When (nL, nR) = (1, 1) we omit the indication of the 
charge configuration in the subscript. The equal spin–
orbit coupling term H∆ (equation (5)) is not diagonal 
in this basis. In order to work with a basis that makes 
H∆ diagonal, in the (1, 1)-subspace we substitute 
|ST0〉, |T0S〉, |SS〉 and |T0T0〉 with the following states 

(see appendix A),

|n±〉 = (|ST0〉 ± |T0S〉)/
√

2,� (10a)

|n±〉 = (|T0T0〉 ± |SS〉)/
√

2.� (10b)

Here |n±〉 (|n±〉) are antisymmetric (symmetric) spin-
valley states which are superpositions of only positive 
(subscript  +) or negative (subscript  −) Kramers 
pairs, see also appendix B. Note that |n±〉 (|n±〉) are 
odd (even) under the time-reversal operator T . For 
these states there is no defined exchange symmetry 
for spin or valley alone. States analogous to |n±〉 are 

defined in the (2, 0) and (0, 2)-subspaces. In table 2, 
we list all these states grouped by charge configuration 

and by symmetry under exchange.
Projection operators on each one of the antisym-

metric (1, 1)-states are easy to obtain (see appendix B),

P|T±S〉 =
1

16
(1 ± τLz) (1 ± τRz) (1 − σL · σR) ,

� (11a)

P|ST±〉 =
1

16
(1 ± σLz) (1 ± σRz) (1 − τ L · τ R) ,

� (11b)

P|n±〉 =
1

16
(1 − τLzτRz) (1 − σLzσRz)

× (1 ± τLzσLz) (1 − τLxσLxτRxσRx) ,
�

(11c)

where τji (σji) is the ith Pauli matrix acting on valley 
(spin) in QD j = L, R and σj , τ j are vectors of Pauli 
matrices acting on spin or valley respectively. We 
note that the projection operator over the whole 
antisymmetric subspace of the (1, 1)-sector can be 
written as [45] (see appendix B),

Pas = (3 − σL · σR − τ L · τ R − (σL · σR)(τ L · τ R))/8.
� (12)

2.3.  Zero spin–orbit splitting (∆ = 0)
We finish this section by briefly considering the case 
where there is no spin–orbit splitting (∆L = ∆R = 0). 
The total Hamiltonian is, then,

Htot = HU + Hε + Ht ,� (13)

where HU , Hε and Ht are defined in equations  (1), 
(3) and (4) respectively. This model describes DQD 

Figure 1.  Diagram of the energy E as a function of the position x along the axis of the DQD. V(x) (dark red line) represents the 
double-well potential that defines the left (L) and right (R) QDs. The energy levels of the valley and spin states inside the dots are 
shown here with a positive detuning ε. Spin states with valley K  (K ) are coloured in red (blue). The energy levels are shifted by a 
symmetric spin–orbit splitting (Δ) and by inhomogeneous spin and valley Zeeman terms along the z-direction, with coupling 
constants hSLz/hSRz and hVLz /hVRz respectively. Electrons are allowed to tunnel from one dot to the other with tunneling coefficient t.

Table 1.  Definitions of singlet and triplet states for the spin and 
valley DOF.

|S〉 |T−〉 |T0〉 |T+〉

Spin |↑↓〉−|↓↑〉√
2

| ↓↓〉 |↑↓〉+|↓↑〉√
2

| ↑↑〉

Valley |KK〉−|KK〉√
2

|KK〉 |KK〉+|KK〉√
2

|KK〉

2D Mater. 5 (2018) 035031
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systems with fourfold degenerate spin and valley states 
in each dot (and no spin–orbit interaction). This case has 
been extensively treated in [45]. For later reference and 
readability we report the resulting effective Hamiltonian,

Hef f = −JPas,� (14)

where the exchange energy J in this case has the usual 
form,

J =
4|t|2U

U2 − ε2
,� (15)

and the definition of Pas is given in equation (12). This 
Hamiltonian shifts down the energy of all the (1,1) 
states in the antisymmetric subspace by  −J. It means 
that the ground state is any state in this 6-dimensional 
subspace and it has energy  −J. The first excited states 
are those in the orthogonal 10-dimensional symmetric 
subspace, with energy 0. This is represented in 
figure 2(a).

3.  Results for (1,1)-subspace

3.1.  Symmetric spin–orbit splitting 
(∆L = ∆R = ∆)
We first consider the case where the spin–orbit 
coupling is equal for both QDs: ∆L = ∆R = ∆. We 

call this symmetric spin–orbit splitting. The total 
Hamiltonian is

Htot = HU + Hε + Ht + H∆,� (16)

where H∆ is defined in equation  (5). This 
Hamiltonian describes DQDs created in TMDCs [3–
7, 9], but it may also be used to study DQDs in CNTs 
[25, 42–44, 50, 51].

Symmetric spin–orbit coupling H∆ shifts those 
states formed by two elements of the negative (posi-
tive) Kramers pair by −2∆ (+2∆), while it leaves 
unchanged those states formed by one element of the 
negative Kramers pair and one element of the posi-
tive Kramers pair (see table 2). In order to identify the 
(1, 1)-sector as our low energy subspace (LES) we have 
to guarantee first of all that no (2, 0) or (0, 2)-state is 
lower in energy than any (1, 1)-state. Looking at table 2 
we see that this condition is met when

4|∆| < U − |ε|.� (17)

When both (9) and (17) are satisfied, it follows that 
(2, 0) and (0, 2)-states are energetically unfavored 
and tunneling out from the (1, 1)-sector is strongly 
suppressed. However, virtual tunneling processes 
must be taken into account. It is important to notice 
that antisymmetric (1, 1)-states can tunnel only to 
their (0, 2) and (2, 0) counterpart states that have the 
same spin and valley configuration. This is due to the 
spin- and valley-preserving nature of the tunneling 
term of equation  (4): there is no transition from a 
negative Kramers pair to a positive Kramers pair and 
viceversa. Therefore, all the energy differences between 
initial and final states in a virtual tunneling process 
do not depend on Δ and the exchange interaction 
that emerges does not change from the case of zero 
spin–orbit splitting reported in section 2.3. Exchange 
interaction and symmetric spin–orbit coupling act 
independently of each other. We obtain the effective 
Hamiltonian:

Hef f = −JPas +∆Σ,� (18)

where J is the same constant defined in (15), Pas is given 

in (12), ∆Σ = H∆|(1,1) = ∆(τLzσLz + τRzσRz) and 
H∆|(1,1) is the restriction of H∆ to the (1, 1)-subspace.

It is simple to evaluate the consequences of equa-
tion (18) since it is diagonal in the states of table 2. 
Assuming now that ∆ > 0, the ground state is |n−〉 
because it is the only state that is shifted down by 
both  −J and −2∆, thus the ground state space is one 
dimensional, see figures 2(b) and (c). The dimension-
ality of the ground state space changes from one to six 
only when Δ is exactly equal to zero (see figure 2(a)) 
and this degeneracy is lifted linearly in Δ. As shown 
in figures 2(b) and (c), there are five groups of excited 
states with various degrees of degeneracy and whose 
relative distances in energy depend on the sizes of Δ 
and J. For later comparison, we observe that in this case 

Table 2.  The first column on the left hand side reports the value 
of Coulomb repulsion (equation (1)) and detuning (equation 
(3)) for the different charge configurations. The three columns 
on the right hand side show which states are shifted by −2∆, 0 
and +2∆ by the action of the symmetric spin–orbit coupling H∆ 
defined in equation (5). The states are grouped as (1, 1)-states 
(antisymmetric and symmetric), (2, 0)-states and (0, 2)-states 
(only antisymmetric).

HU + Hε −2∆ 0 +2∆

(1, 1)-subspace, antisymmetric

0 |n−〉 |T+S〉 |n+〉

|T−S〉
|ST+〉
|ST−〉

(1, 1)-subspace, symmetric

0 |n−〉 |T+T0〉 |n+〉

|T+T−〉 |T−T0〉 |T+T+〉
|T−T+〉 |T0T+〉 |T−T−〉

|T0T−〉

(2, 0)-subspace

U + ε |n−〉(2,0) |T+S〉(2,0) |n+〉(2,0)

|T−S〉(2,0)

|ST+〉(2,0)

|ST−〉(2,0)

(0, 2)-subspace

U − ε |n−〉(0,2) |T+S〉(0,2) |n+〉(0,2)

|T−S〉(0,2)

|ST+〉(0,2)

|ST−〉(0,2)

2D Mater. 5 (2018) 035031
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each antisymmetric state is separated from its sym-
metric counterpart by the same energy J. In the case 
∆ < 0, the results are analogous, but the ground state 
is |n+〉.

Regarding the experimental situation, the few 
available experiments indicate U ≈ 2 meV for QDs 
created in WSe2 [37] and MoS2 [39–41] with QD radii 
around 100 nm. On the other hand, the theory predicts 
2∆ to be about 3 meV for MoS2 and larger for other 
compounds [7, 52]. Therefore, at the moment, con-
dition (17) seems not to be satisfied for TMDCs, but 
further experiments with smaller QD sizes may lead 
to higher charging energies. However, when equa-
tion (17) is not satisfied, a consistent effective theory 
can be derived in a subspace of the (1, 1)-sector, as 
explained in section 4.

3.2.  Asymmetric spin–orbit splitting (∆L �= ∆R)
Suppose now that the spin–orbit strength is different 
in the two dots, ∆L �= ∆R, this is the case of asymmetric 
spin–orbit splitting. The total Hamiltonian is

Htot = HU + Hε + Ht + H∆L,∆R ,� (19)

where H∆ has been substituted by H∆L,∆R defined in 
equation (6).

There is theoretical evidence that for (rather 
small) QDs on TMDCs the spin–orbit strength Δ 
depends on the radius of the QD [33]. Therefore, the 
Hamiltonian in equation (19) can reflect a situation 
where the two dots have different sizes. Changing the 
size of the QD would allow for a smooth and tunable 

adjustment of Δ. Another situation where ∆L �= ∆R  
can be relevant is when the dots would be created 
in lateral heterojunctions such that each dot is cre-
ated in different types of TMDC, which intrinsically 
possess different spin–orbit splittings [52]. Lateral 
heterojunctions of different TMDCs have already 
been demonstrated by several groups [53–55]. To 
our knowledge no experiment has been reported yet 
involving such a DQD. We notice that for heterojunc-
tions the situation might be further complicated by 
mismatch in the energy band gap, acting as a detuning 
away from the interface, and by likely non-negligible 
differences in the Coulomb charging energy U of the 
two compounds.

We point out that H∆L,∆R is not diagonal in the 
basis of the states listed in table 2. Each of the antisym-
metric states |T+S〉, |T−S〉, |ST+〉, |ST−〉 is mixed with 
its symmetric counterpart and the off-diagonal ele-
ments are ±(∆L −∆R). This is relevant to determine 
the ground state, but not for the form of the effective 
Hamiltonian, because the mixing happens inside the 
(1, 1)-subspace. Another difference is that, in contrast 
to table 2, the ±2∆ on the diagonal of the Hamiltonian 
are replaced by ±(∆L +∆R) in the (1, 1)-subspace, by 
±2∆L in (2, 0) and by ±2∆R in (0, 2). When condi-
tion (9) is also valid, we can ensure that (1, 1)-states are 
lower in energy than (2, 0) and (0, 2) states by requir-
ing that

max{|∆L +∆R|, |∆L −∆R|}
+ 2max{|∆L|, |∆R|} < U − |ε|.�

(20)

Figure 2.  Level structure of (1, 1)-states for the symmetric spin–orbit splitting case at fixed (small) detuning. We show three relevant 
cases with increasing spin–orbit splitting (Δ) from left to right. Thick horizontal lines illustrate the energy levels. Degenerate levels 
are shown as a group of thick lines close together with a number indicating the degree of degeneracy. The coloured energy levels 
display states inside the N ×N -sector. The red energy levels indicate the antisymmetric state |n−〉, while the blue energy levels are 
the symmetric states |n−〉, |T+T−〉, |T−T+〉. In (a) the spin–orbit splitting is zero and there are only two degenerate energy levels, 
separated by the exchange energy J. The higher (lower) energy corresponding to the symmetric (asymmetric) states. In (b) both 
symmetric and antisymmetric energy levels are separated in three groups, |n−〉 becomes the ground state and the first excited states 
are antisymmetric. In (c), when 2∆ is greater than the exchange energy J, the N ×N -sector becomes the LES and the first excited 
states are symmetric.

2D Mater. 5 (2018) 035031
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In this case we can use the Schrieffer–Wolff 
transformation [56–58] to obtain the effective 
Hamiltonian. The term H∆L,∆R has three significant 
consequences. Firstly, the following matrix element 
differences now depend on ±(∆L −∆R),

E|n±〉 − E|n±〉(0,2)
= ±(∆L −∆R)− U + ε,� (21a)

E|n±〉 − E|n±〉(2,0)
= ∓(∆L −∆R)− U − ε,� (21b)

where E|ψ〉 = 〈ψ|Htot|ψ〉. Secondly, in order to 
apply perturbation theory to the (1, 1)-subspace, 
the coupling constants must satisfy the conditions 
|t| � |U ± ε|, |t| � |U ± (ε+∆L −∆R)| and 
|t| � |U ± (ε−∆L +∆R)| simultaneously. In turn, 
these imply that |∆L −∆R| � U . Lastly, the exchange 
energies relative to |n±〉 acquire a dependence on the 
asymmetry of the spin–orbit splittings,

J|n±〉 =
4|t|2U

(U + ε±∆L ∓∆R)(U − ε∓∆L ±∆R)
,

� (22)
see equation  (15). The exchange energies for states 
|T+S〉, |T−S〉, |ST+〉 and |ST−〉 are not affected.

An effective Hamiltonian can be written in a com-
pact form in the following way,

Hef f = − JPas +∆LΣL +∆RΣR − (J|n−〉 − J)P|n−〉

− (J|n+〉 − J)P|n+〉,
�

(23)

where P|n−〉 and P|n+〉 are the projectors on |n−〉 and 
|n+〉 defined in equation  (11c) and in this case we 

write the restriction H∆L,∆R |(1,1) = ∆LΣL +∆RΣR, 
with Σj = τjzσjz. By diagonalizing the Hamiltonian 
(23), we obtain the energy levels shown in figure  3. 
Interestingly, the two levels that appear at energy 0 and 
energy  −J for the symmetric spin–orbit splitting case 
move to the energies,

− J

2
± 1

2

√
J2 + 4(∆L −∆R)2 = − J

2
± Φ

2
.� (24)

This is a consequence of the level repulsion due to the 
off-diagonal ±(∆L −∆R) matrix elements coming 
from H∆L,∆R. However, the degrees of degeneracy 
remain the same. Looking at equation  (24) and at 
figure  3, we realise that, for positive ∆L +∆R , the 
ground state is |n−〉, unless |∆L −∆R| is larger than 
∆L +∆R , in which case the states |T+S〉, |T−S〉, |ST+〉, 
|ST−〉 (or their symmetric counterparts) span a 4-fold 
degenerate ground state space.

We want to briefly mention here that a generali-
sation of the asymmetric spin–orbit coupling which 
preserves the T -symmetry, including couplings to the 
in-plane components of the spins, does not affect the 
exchange interaction. Consider

H∆L,∆R,xyz =
∑

j

∆j ·
∑

τ ,σ1,σ2

c†jτσ1
(τz)ττ (σ)σ1σ2 cjτσ2

� (25)

where ∆j is the vector of the three coupling constants 
∆jx, ∆jy , ∆jz  for QD j, multiplied by the vector of spin 
Pauli matrices σ. Equation  (25) resembles the spin 

Zeeman term (see equation (7)), but it also preserves 
T -symmetry because of the τz  that multiplies the 
spin Pauli matrices. Qualitatively, a term like this 
should appear in the Hamiltonian of TMDC DQD 
systems for which it is possible to define an average 
local tilt and an average local curvature of the TMDC 
sheet for each dot [59]. However, tilt and curvature 
add couplings between conduction and valence band 
as well and one would need to check whether these 
couplings are small enough to be neglected. This is not 
the focus of this work and we only want to stress that 
substituting H∆L,∆R with H∆L,∆R,xyz in equation (19) 
does not modify the exchange interaction given in 
equation (23).

3.3.  Spin and valley Zeeman and symmetric 
spin–orbit coupling
In this section we investigate the influence of spin and 
valley Zeeman terms on the symmetric spin–orbit 
splitting case. The total Hamiltonian for this scenario 
reads

Htot = HU + Hε + Ht + H∆ + HS + HV ,� (26)

where HS and HV  are defined by equations (7) and (8) 
respectively. This is the case depicted in figure 1.

This model approximates at least two similar but 
distinct situations. First, when a monolayer TMDC 
is placed in a non-uniform and weak magnetic field, 
the spin of the electron in each dot couples to the local 
field in all three spacial directions through the spin 
Zeeman interaction HS. On the other hand, here we 
assume that the valley DOF couples only to perpend
icular magnetic field. Indeed, in [7] it was shown that 
such coupling exists due to orbital effects. Since in-
plane magnetic field does not lead to orbital effects 
in the strict two-dimensional limit, we assume that it 
does not couple to the valley. In contrast to [7] here we 
only consider the lowest orbital state in each of the dots 
but we also take into account the Coulomb charging 
energy U. The other possible situation that came to our 
attention is that of monolayer TMDC deposited on a 
ferromagnetic insulator, e.g. europium oxide (EuO). 
Such a situation was considered in [60], where equa-
tion (7) was used to model the giant and tunable val-
ley splitting. A Rashba term is also included, mixing 
conduction and valence band, that we do not consider 
here. Although [60] does not consider the valley Zee-
man term, we note that it is allowed in the effective 
Hamiltonian of the TMDC because the ferromagnetic 
substrate breaks time-reversal symmetry. The pres-
ence of such magnetic exchange field in TMDC and 
ferromagnetic semiconductor heterostructures has 
been recently demonstrated [47, 48].

Now both HS and HV  are non-diagonal in the basis 
of states presented in table 2 and they mix a large num-
ber of states. We do not list all the newly introduced 
matrix elements but we observe that they are confined 
inside the charge sectors (0, 2), (1, 1) and (2, 0), as HS 

and HV  do not contain terms of the form c†LτσcRτ ′σ′ 
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(or h.c.). The only coupling between (1, 1)-states and 
(2, 0) or (0, 2)-states remains tunneling. Nevertheless, 
we have to ensure that (1, 1)-states are lower in energy 
than other states. In appendix C we report the discus-
sion of which conditions must be fulfilled in order for 
this to be the case. In addition, to apply the Schrieffer–
Wolff transformation, equation (9) and the conditions

|t| � U ± (ε+ (h�Lz − h�Rz)),� (27a)

|t| � U ± (ε− (h�Lz − h�Rz)),� (27b)

where � = V , S, must also be satisfied. The matrix 
element differences of states |T−S〉, |T+S〉, |ST−〉, 
|ST+〉 with their (2, 0) and (0, 2) counterparts acquire 
a dependence on hVLz − hVRz or hSLz − hSRz . Defining 
the exchange energies

J|T±S〉 =
4|t|2U

(U + ε± hVLz ∓ hVRz)(U − ε∓ hVLz ± hVRz)
,

�
(28a)

J|ST±〉 =
4|t|2U

(U + ε± hSLz ∓ hSRz)(U − ε∓ hSLz ± hSRz)
,

� (28b)
the effective Hamiltonian can be written as

Hef f = −J(P|n−〉 + P|n+〉)− J|T−S〉P|T−S〉 − J|T+S〉P|T+S〉

− J|ST−〉P|ST−〉 − J|ST+〉P|ST+〉 +∆Σ

+ hSL · σL + hSR · σR + hVLzτLz + hVRzτRz,
�

(29)

where J is the standard exchange energy defined in 

equation  (15) and hSL · σL + hSR · σR ≡ HS|(1,1) 
while hVLzτLz + hVRzτRz ≡ HV |(1,1).

4.  Results for negative Kramers pairs 
subspace

In this section we explain in which cases it is possible 
to restrict the LES to the tensor product of the two 

Kramers pairs lowest in energy and we present the 
effective Hamiltonians in this smaller subspace. In 
general, this happens when the spin–orbit strength is 
quite large, thus the results of this section are relevant 
for TMDCs. From now on we assume ∆L,R > 0, so that 
for each dot the lowest Kramers pair is N , the negative 
one (see section 2.1). Similar results can be obtained 
in case the spin–orbit splittings are negative and the 
lowest Kramers pair is P , the positive one.

4.1.  Symmetric spin–orbit splitting 
(∆L = ∆R = ∆)
In the case of symmetric spin–orbit splitting 
(∆L = ∆R = ∆, see Htot in equation (16)) there is no 
matrix element that allows a transition between N  
and P . Assuming equation  (9) and 2∆ > J  (which 
is usually the case for TMDCs at low detuning) we 
see from figure 2(c) that the subspace spanned by the 
states of N ×N  (also called N ×N -sector) is the 
LES, where,

N ×N =
{
|K ↓; K ↓〉, |K ↓; K ↑〉,
|K ↑; K ↓〉, |K ↑; K ↑〉

}
,

�
(30)

with |τ1σ1; τ2σ2〉 = c†Lτ1σ1
c†Rτ2σ2

|0〉. Now we present the 
effective Hamiltonian when the system is restricted to 
this LES.

We can easily identify the negative Kramers pair N  
as a spin-1/2 DOF with

|↑̃〉 ≡ |K ↑〉, |↓̃〉 ≡ |K ↓〉,� (31)

so that the effective basis N ×N  can be seen as the 
basis of all the states of two spins,

N ×N =
{
|↑̃; ↑̃〉, |↑̃; ↓̃〉, |↓̃; ↑̃〉, |↓̃; ↓̃〉

}
.� (32)

In this basis, the spin–orbit coupling always assumes 
the value of −2∆, which we ignore in the following 

Figure 3.  Comparison of the energy levels for symmetric (left) and asymmetric (right) spin–orbit splitting cases. The energy levels 
from left to right are aligned in a way to preserve the sum ∆L +∆R  between the two cases (equal to 2∆ for the symmetric spin–orbit 
splitting case). The left hand side is equivalent to the case of 2∆ > J  depicted in figure 2(c). The exchange energies J and J|n±〉 are 

defined in equations (15) and (22), while Φ =
√

J2 + 4(∆L −∆R)2 , see equation (24).
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since it is just an energy shift. It is well known that 
the effective Hamiltonian for two electrons with 
only the spin DOF in two QDs with only tunneling, 
detuning and Hubbard potential is given by [12] 
Hef f = JSL · SR, with the usual exchange energy J 
multiplied by the projector on the singlet state |S〉, the 
only antisymmetric state for two spins (Sj is the vector 
of spin operators acting on QD j). Analogously, using 
the following operators,

σ̃z = σz, σ̃x = τxσx, σ̃y = τxσy,� (33)

the Hamiltonian of the system restricted to basis 
N ×N  is

Hef f,N×N = JS̃L · S̃R,� (34)

where S̃ji =
1
2 σ̃ji  is the spin operator proportional to 

the new Pauli operator σ̃i, i = x, y, z , acting on QD 
j = L, R. The ground state space is one-dimensional as 
for the full (1, 1)-subspace. Indeed, the ground state is 
the same,

|S̃〉 =
(
|↑̃; ↓̃〉 − |↓̃; ↑̃〉

)
/
√

2

=
(
|K ↓; K ↑〉 − |K ↑; K ↓〉

)
/
√

2 = |n−〉.
� (35)

Since (∆L −∆R)/(U ± ε) � 1, we can write

J|n−〉 � J

(
1 − 2ε

∆L −∆R

U2 − ε2

)
.� (39)

The effect of an almost symmetric spin–orbit coupling 
on the exchange energy is that of fine tuning around 
the value of J by a small positive or negative quantity, 
depending on the sign of ε and ∆L −∆R . Moreover, as 
ε → 0, J|n−〉 → J . The above results remain valid for 
the generalisation to H∆L,∆R,xyz (equation (25)).

4.3.  Spin and valley Zeeman and symmetric 
spin–orbit coupling
We now consider the total Hamiltonian of 
equation  (26) restricted to the N ×N -sector. The 
results in this section are valid when the spin and valley 
Zeeman coupling constants are weak compared to 
the spin–orbit strength: |hSji|, |hVjz| � 2∆, j = L, R, 
i = x, y, z . We show directly and discuss the effective 
Hamiltonian for the subspace spanned by N ×N  as 
a 4 × 4 matrix. The columns are associated, from left 
to right, to the rotated basis states |n−〉, |n−〉, |T+T−〉 
and |T−T+〉,

4.2.  Almost symmetric spin–orbit splitting 
(|∆L − ∆R| � ∆L + ∆R)
Very similar considerations are valid when we relax 
the constraint of equal spin–orbit splittings in the dots 
(∆L �= ∆R, see Htot in (19)). To reduce the LES to the 
subspace spanned by N ×N  we need

∆L +∆R > (J +
√

J2 + 4(∆L −∆R)2)/2,� (36)

see figure  3 and equation  (24). Of course, to  
apply perturbation theory, the conditions 
|t| � |U ± (ε+∆L −∆R)| and |t| � |U ± (ε−
∆L +∆R)| must be valid here too.

Following the same steps that led to equation (34), 
we arrive to the effective Hamiltonian,

Hef f,N×N = J|n−〉S̃L · S̃R� (37)

where J|n−〉 is given in equation  (22). Indeed, 
from figure  3 we see that the energy levels for the 
N ×N -sector are similar between symmetric and 
asymmetric spin–orbit splitting, only the exchange 
energy J is altered.

To better understand what is the effect of ∆L −∆R  
in J|n−〉 with respect to J, we may write

J|n−〉 =
J(

1 + ∆R−∆L
U+ε

)(
1 + ∆L−∆R

U−ε

) .� (38)

Hef f,N×N =




−J − A δhz
S − δhz

V 0 0

δhz
S − δhz

V −A 0 0

0 0 −Hz
S + Hz

V − A+ 0

0 0 0 Hz
S − Hz

V − A−


 ,

�

(40)

where J is the standard exchange energy as in 
equation (15). We use the notation

Hz
� = h�Lz + h�Rz,� (41a)

δhz
� = h�Lz − h�Rz,� (41b)

h±
Sj = hSjx ± ihSjy,� (41c)

with � = S, V , j = L, R and A± and A are given by

A± =
h+

SLh−
SL + h+

SRh−
SR

2∆± Hz
S

,� (42a)

A =
A− + A+

2
= 2∆

h+
SLh−

SL + h+
SRh−

SR

4∆2 − (Hz
S)

2 .� (42b)

Since |hSjz| � 2∆, we can use the approximation 
A+ ≈ A− ≈ A, thus the contribution of A to 
equation (40) is an energy shift that can be ignored. 
Therefore, in this case we can also write

Hef f,N×N = JS̃L · S̃R + HS|N×N + HV |N×N ,� (43)

where HS|N×N  and HV |N×N  are the restrictions of 
HS and HV  to the N ×N -sector.

Given the generality of H∆L,∆R,xyz (equation (25)) 
as a T -symmetric term and the fact that H∆L,∆R,xyz and 
HS only differ in the presence of τz  that multiplies the 
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spin Pauli matrices, we can assert that the new matrix 
elements (Hz

S, Hz
V , δhz

S , δhz
V , A± and A) that appear 

in equation  (40) as compared to equation  (34), are 
allowed only by breaking the time-reversal symmetry.

5.  Conclusions

Motivated by recent experimental works [37–41], 
we have studied and presented the influence of 
spin–orbit coupling on the low energy properties 
of a DQD system with spin and valley DOF in the 
(1, 1) charge configuration. In our analysis we have 
also explored the possibility of a different spin–
orbit splitting in each dot and we have included a 
T -symmetry breaking magnetic field. In addition, 
we have discussed under which conditions the LES 
corresponding to the (1, 1) charge configuration, 
which is 16-dimensional, can be further restricted to 
a 4-dimensional subspace (the N ×N -sector). We 
found that an equal spin–orbit splitting in each dot 
has no effects on the induced exchange interaction 
with respect to the case without spin–orbit coupling. 
On the other hand, asymmetric spin–orbit splitting, 
spin Zeeman and valley Zeeman modify the exchange 
coupling constants of three different pairs of 
antisymmetric states respectively. The modification 
of the exchange energies is similar for all these three 
pairs of states.

We also found that TMDCs satisfy the con-
ditions to restrict the LES to the N ×N -sector, 
where the effective Hamiltonian for the symmet-
ric spin–orbit splitting case is formally identical to 
the Heisenberg exchange interaction between two 
spin-only qubits in valley non-degenerate materials. 
This renders the Kramers pair an ideal implementa-
tion of a qubit in TMDC, as was suggested in [7]. 
A recipe for a CNOT gate with these states is read-
ily available from the original Loss and DiVincenzo 
proposal for spin-only qubits [46]. If, in addition, 
the τx operation could be effectively implemented 
(theoretical proposals to achieve this include the use 
of impurities [35, 61] or the use of oscillating con-
finement potentials [36]), then we would also have 
a full set for single qubit operations. Moving to the 
asymmetric spin–orbit splitting we found that only 
the exchange energy is affected, while the form of 
the exchange Hamiltonian remains unchanged. The 
spin–orbit coupling asymmetry offers a way to tune 
the exchange energy other than the detuning of the 
dots. Moreover, for the spin and valley Zeeman case, 
new couplings appeared in the reduced effective 
Hamiltonian, which originate from the breaking of 
the time-reversal symmetry.

It is interesting to note that the calculations of [30] 
suggest the existence of QD states in finite flakes that 
are localised to the edges of the flakes and whose ener-
gies are in the bulk band gap. To our knowledge it is not 
known if states similar to those of [30] can exist for the 

gate defined QDs examined here. The consideration of 
this question is beyond the scope of the present work.

Finally, we expect the results of this work to be 
useful to understand transport properties of TMDC 
DQDs. In particular, the existence of a spin-valley 
blockade might be investigated similarly to earlier 
studies for CNT DQDs [44, 62–64].
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Appendix A.  Eigenstates of spin–orbit 
coupling

In section 2.2 we introduced the basis states |sV sS〉(nL,nR), 
where spin and valley DOF have either singlet or triplet 
configurations. Not all these states are eigenstates of 
the spin–orbit coupling defined in equation (5). We 
show this for the (1, 1)-states |SS〉, |ST0〉, |T0S〉 and 
|T0T0〉. As explained for equation (18), the restriction 
of equation  (5) to the (1, 1)-subspace is given by 

H∆|(1,1) = ∆(τLzσLz + τRzσRz). Before applying this 
operator to the investigated states, we illustrate the 
action of τjz  and σjz , j = L, R, on a singlet state using 
the definition given in table 1,

τLz|S〉V =τLz(|KK〉 − |KK〉)/
√

2

=(|KK〉+ |KK〉)/
√

2 = |T0〉V .
�

(A.1)

It is easy to prove the related identities, τRz|S〉V =  
−|T0〉V , σLz|S〉S = |T0〉S , σRz|S〉S = −|T0〉S. Then 
it follows that |SS〉 cannot be an eigenstate of H∆, 
because

H∆|SS〉 =∆(τLzσLz + τRzσRz) |SS〉
=∆(|T0T0〉+ |T0T0〉) = 2∆|T0T0〉.

�
(A.2)

Similarly, we also obtain H∆|T0T0〉 = 2∆|SS〉,  
H∆|ST0〉 = 2∆|T0S〉, H∆|T0S〉 = 2∆|ST0〉. To 
conclude, we see that the state |n+〉, given by the linear 
combination |ST0〉+ |T0S〉 (up to a normalisation 
factor), is an eigenstate of H∆ and likewise for the 
other states in equation (10). The eigenvalues are given 
by H∆|n±〉 = ±2∆|n±〉 and H∆|n±〉 = ±2∆|n±〉, 
as illustrated in table 2.

Appendix B.  Projectors

Here we explain how to find a compact form for 
projection operators on spin-valley states which have 
a particular structure, such as the (1, 1) antisymmetric 
states described in this paper. For the sake of clarity we 
list them here explicitly:
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|T+S〉 = (|K ↑; K ↓〉 − |K ↓; K ↑〉)/
√

2,� (B.1a)

|T−S〉 = (|K ↑; K ↓〉 − |K ↓; K ↑〉)/
√

2,� (B.1b)

|ST+〉 = (|K ↑; K ↑〉 − |K ↑; K ↑〉)/
√

2,� (B.1c)

|ST−〉 = (|K ↓; K ↓〉 − |K ↓; K ↓〉)/
√

2,� (B.1d)

|n+〉 = (|K ↑; K ↓〉 − |K ↓; K ↑〉)/
√

2,� (B.1e)

|n−〉 = (|K ↓; K ↑〉 − |K ↑; K ↓〉)/
√

2,� (B.1f)

with |τ1σ1; τ2σ2〉 = c†Lτ1σ1
c†Rτ2σ2

|0〉. The operators that 
project on these states are shown in equation  (11). 
We can follow two approaches to obtain them, one is 
more intuitive and gives compact results, assembling 
projectors on larger parts of the Hilbert space, but 
in practice it works only when the states we are 
considering have a structure for which we already 
know the correct basic projectors. The other one is 
rather formal but general, however it does not give the 
projectors in a compact form.

In order to show that equations  (11) are really 
the projectors we are looking for, we will present here 
the intuitive way to derive them, using symmetries 
in the structure of states (B.1). Take τz , this operator 
has eigenvalue  +1 when the state is in valley |K〉 and 
eigenvalue  −1 when the state is in valley |K〉. Thus, 
(1 + τjz)/2 is the projector on all those states which 
have an electron in the jth QD in valley |K〉 and 
(1 − τjz)/2 projects on states where the electron in QD 
j has valley |K〉. Analogous considerations hold for the 
spin operator σz and the spin states | ↑〉, | ↓〉. In other 
words, we wrote down projectors on states which have 
a certain valley or possess a certain spin in a specific 
dot. Now focus on τLzτRz, this string of operators has 
eigenvalue  +1 when both electrons are in the same 
valley (|KK〉 or |KK〉) and eigenvalue  −1 when the 
valleys are different (|KK〉 or |KK〉). Then, operators 
(1 ± τLzτRz)/2 project on states whose valleys are the 
same (+) or are opposite (−). Similar considerations 
are valid for their spin counterparts.

The states with the simpler structure are |T+S〉, 
|T−S〉, |ST+〉 and |ST−〉. They all have one of the prop-
erties fixed for both dots (either positive valley, nega-
tive valley, spin up or spin down, respectively). Con-
sider |T+S〉 (equation (B.1a)), for both dots the valley 
is |K〉, but the spins are in a singlet state. The combina-
tion

1

4
(1 + τLz)(1 + τRz)� (B.2)

projects on all the states with positive valley in both 
dots. To complete the expression we multiply by the 
projector on the spin singlet, given by (1 − σL · σR)/4. 
Finally, the complete projector is

P|T+S〉 =
1

16
(1 + τLz) (1 + τRz) (1 − σL · σR) ,

� (B.3)

as in (11a). The other very similar expressions in 
(11a) and (11b) follow the same derivation with the 
appropriate changes of signs and spin/valley operators.

States |n±〉 of equations (B.1e) and (B.1f) have a 
more complicated structure. First of all, they are both 
composed of states with opposite valley and opposite 
spin in the dots. The operator

1

4
(1 − τLzτRz)(1 − σLzσRz)� (B.4)

projects on the subspace spanned by {|K ↑; K ↓〉,  
|K ↓; K ↑〉, |K ↓; K ↑〉, |K ↑; K ↓〉}. To distinguish 
between |n+〉 and |n−〉, we note that for |n+〉 the 
product of the eigenvalues of spin and valley inside 
each dot is positive, while for |n−〉 it is negative (this is 
why they get an energy shift of ±2∆ by the spin–orbit 
coupling H∆). We use τLzσLz to distinguish them and 
the projectors become

1

8
(1 − τLzτRz)(1 − σLzσRz)(1 ± τLzσLz),� (B.5)

positive sign for the subspace spanned by 
{|K ↑; K ↓〉, |K ↓; K ↑〉} and negative sign for the 
subspace spanned by {|K ↓; K ↑〉, |K ↑; K ↓〉}. Finally, 
the operator that identifies the correct superposition 
is τLxσLxτRxσRx, the same for both states. The total 
projectors for |n±〉 are

P|n±〉 =
1

16
(1 − τLzτRz) (1 − σLzσRz)

× (1 ± τLzσLz) (1 − τLxσLxτRxσRx) ,
� (B.6)

as in equation (11c).
Formally, the above results can also be obtained by 

noticing that the projectors we are looking for are spin-
and-valley operators (i.e. acting on the (1, 1)-sub-
space) and every spin-and-valley operator P can be 
expanded in a linear combination of Pauli operator 
strings,

P =
∑

i,j,k,l=0,x,y,z

Pijkl τLiσLjτRkσRl,� (B.7)

where Pijkl are complex coefficients. If |ψ〉 is the state 
we want to project on, the projector is P = |ψ〉〈ψ| and 
we can use the inner product provided by the trace 
operation to obtain the expansion coefficients,

Pijkl = Tr
[
|ψ〉〈ψ|τLiσLjτRkσRl

]
.� (B.8)

Again, recollecting a compact expression from this set 
of coefficients requires some work (even when most of 
them are zeros) and does not give any physical insight.

For completeness, we briefly discuss Pas, the 
projector on the whole antisymmetric subspace of 
(1, 1)-states of equation  (12). Although this opera-
tor could be obtained as the sum of the 6 projectors 
of equation (11) on the single, linearly independent 
antisymmetric states, we can write it down following 
another procedure, derived in [45]. It can be expressed 
as a combination of projectors on the singlet (S, 
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antisymmetric) and on the triplet (T, symmetric) sub-
spaces for spin and valley,

Pas = PS
spinPT

valley + PT
spinPS

valley.� (B.9)

Here we defined the spin projectors as

PS
spin =

1 − σL · σR

4
, PT

spin =
3 + σL · σR

4
.

� (B.10)

The valley projectors have the same form, only 
substituting τ ’s for σ’s. Equation (B.9) yields, then,

Pas = (3 − σL · σR − τ L · τ R − (σL · σR)(τ L · τ R))/8.
� (B.11)

Appendix C.  Conditions on spin and  
valley Zeeman coupling constants  
for (1,1)-subspace

In section 3.3 we discussed the effects of the spin and 
valley Zeeman term on the exchange interaction 
in the case when the (1, 1)-subspace is our LES. 
There we omitted to show the conditions to ensure 
that (1, 1)-states are lower in energy than (2, 0) and 
(0, 2) states. We report them here. To simplify the 
discussion we assume that the spin Zeeman coupling 
constants associated with x- and y-Pauli matrices are 
small: |hSji| � U , j = L, R, i = x, y . Then, choosing 
an appropriate basis where σjz  and τjz  are diagonal, 
it is easy to see that (1, 1)-states are lower under the 
condition,

max{−2∆+ |Hz
S − Hz

V |,−2∆+ |δhz
S − δhz

V |,
+ 2∆+ |Hz

S + Hz
V |,+2∆+ |δhz

S + δhz
V |,

|δhz
S + Hz

V |, |δhz
S − Hz

V |,
|Hz

S + δhz
V |, |Hz

S − δhz
V |}

+ 2max{|∆|, |hVLz|, |hVRz|, |hSLz|, |hSRz|} < U − |ε|,
� (C.1)

where we used the same notation described in 
equation (41).
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