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Abstract

We present k-p Hamiltonians parametrized by ab initio density functional theory calculations to
describe the dispersion of the valence and conduction bands at their extrema (the K, Q, I', and M
points of the hexagonal Brillouin zone) in atomic crystals of semiconducting monolayer transition
metal dichalcogenides (TMDCs). We discuss the parametrization of the essential parts of the k-p
Hamiltonians for MoS,, MoSe,, MoTe,, WS,, WSe,, and WTe,, including the spin-splitting and spin-
polarization of the bands, and we briefly review the vibrational properties of these materials. We then
use k-p theory to analyse optical transitions in two-dimensional TMDCs over a broad spectral range
that covers the Van Hove singularities in the band structure (the M points). We also discuss the
visualization of scanning tunnelling microscopy maps.

1. Introduction

Monolayers of transition metal dichalcogenides
(TMDCs) [1, 2] are truly two-dimensional (2D)
semiconductors [3—11], which hold great appeal for
electronics and opto-electronics applications due to
their direct band gap properties (which contrast the
indirect band gaps of three-dimensional layered
crystals of TMDCs). Monolayer TMDCs have already
been implemented in field-effect transistors [12—18],
logical devices [15, 19], and lateral and tunnelling
optoelectronic structures [20-24].

Like graphene, the group-IVB monolayer TMDCs
of chemical composition MX, (where M = Mo or W
and X = S, Se and Te) considered in this work have
hexagonal lattice structures, and the extrema (valleys)
in the dispersion relations of both the valence and con-
duction bands (VB and CB) can be found at the K and
—K points of the hexagonal Brillouin zone (BZ).
Unlike graphene, however, these 2D crystals do not
have inversion symmetry. The minimalistic approach
to the theoretical modelling of monolayer TMDC:s is
therefore based on mimicking them as graphene with
a staggered sublattice potential that breaks inversion
symmetry [25, 26]. This approach captures certain

optical and transport effects related to the valley
degree of freedom of the electrons [26-31]. The stag-
gered graphene analogue [26] has also been general-
ized to the tight-binding (TB) description of TMDCs
[26, 32-38], but this approach suffers from the large
number of atomic orbitals that have to be included on
each site and the need for beyond-nearest-neighbour
hopping to account for the variation of the weight of
individual atomic orbitals in the band wave functions
across the BZ, as revealed by detailed density func-
tional theory (DFT) modelling (see, e.g., figure 3). The
accumulation of experimental data and the drive
towards the implementation of monolayer TMDCs in
practical devices call for theoretical models of their
electronic properties that are both detailed and com-
pact, containing a limited number of parameters while
still offering an accurate description.

In this review, we describe two complementary
theoretical approaches that have recently been used to
achieve a detailed description of the electronic proper-
ties of these materials. One consists of ab initio DFT
modelling of the band structure, which has the poten-
tial to be accurate. DFT can be combined with trans-
port codes [17, 38—44] or used to calculate optical
spectra [45-48], but ab initio calculations are

©2015IOP Publishing Ltd
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lattice vectorsa, and a, are also shown.

Figure 1. Crystal structure of monolayer MX,. (a) Side view and (b) top view. Metal atoms are cyan and chalcogens are yellow. The

prohibitively expensive for many practical problems
focused on modelling devices and studies of, e.g.,
quantum dots [49, 50]. Moreover, magnetic-field
effects [32, 49, 51-54] and certain questions regarding
neutral and charged excitons [55] cannot easily be
addressed by DFT-based techniques. The second
approach uses the k-p methodology [56-59], which
exploits the symmetries of the system. This approach
provides an accurate characterization of the dispersion
of the VB and CB in the vicinity of, e.g., the K and —K
points and other points of interest in the BZ in terms
of a relatively small number of parameters [60]. Mag-
netic-field and spin-orbit coupling (SOC) effects can
also be taken into account in a straightforward way
[49]. In contrast to DFT modelling, this method is
only valid in the vicinity of certain high-symmetry
k-space points; however, for those intervals, it enables
one to quantify all the essential features of the electro-
nic properties. One can also relate a k-p Hamiltonian
to a particular TB model [26, 32, 34], although it is not
necessary to set up a TB model in order to derive ak-p
Hamiltonian. Here we present phenomenological k-p
Hamiltonians derived for all extrema of the bands (at
the K, Q, I', and M points of the BZ) using the sym-
metry properties of TMDC atomic crystals, with spe-
cific material parameters obtained by fitting them to
the DFT band structures of MoS,, MoSe,, MoTe,,
WS,, WSe, and WTe,.* The DFT calculations dis-
cussed in this review were performed using the vasp
[68] and rLEUR [69] codes. The robustness of our

* Most of the recent theoretical and experimental work has focused
on the properties of MoS,, MoSe,, WS, and WSe,, while MoTe, and
WTe, have received much less attention. Bulk MoTe, with a trigonal
prismatic coordination of the chalcogen atoms (see figure 1(a))
exists below 815 °C (known as a-MoTe,), whereas above 900 °C the
crystal structure is monoclinic and the material becomes metallic
(f-MoTe,) [61, 62]. Monolayer samples using liquid exfoliation
technique have been obtained from a-MoTe, [63], and the optical
properties of monolayer [64] and transport properties of few-layer
a-MoTe, have been investigated recently [65], giving a clear
motivation to include this material in our review. Bulk WTe, has an
orthorhombic crystal structure, where eight tellurium atoms
surround the tungsten atom in a distorted octahedral coordination
[66, 67]. Nevertheless, one would expect that it may be possible to
grow monolayer WTe, with hexagonal prismatic coordination on a
suitable substrate. For completeness, therefore, we include this
material as well, assuming that its hexagonal structure is stable.

results is well illustrated by the close agreement
between the results obtained from these two different
first-principles codes and through comparison to all
available experimental results.

Finally, we note that the field of TMDCs, akin to
that of graphene [70-73], has witnessed a large expan-
sion over the last four years, encompassing both fun-
damental and more applications-oriented research
directions. Here we focus on a particular topic that we
think will be important for the further development of
this field. To limit the length of this review, some fasci-
nating topics related to, e.g., the valley-dependent
optical selection rule or the exciton physics are not dis-
cussed in detail here. We refer the interested reader to
complementary reviews [74—81] instead.

This review is organized as follows. Section 2 is
devoted to the crystalline lattice parameters and vibra-
tional properties of TMDCs. Sections 3 and 4 discuss
spin-splitting due to SOC and band width [relevant for
angle-resolved photoemission spectroscopy (ARPES)
studies of TMDCs]. Sections 5-8 describe the struc-
ture and parametrization of k-p Hamiltonians for K,
Q, I', and M points of the BZ, respectively. Finally, we
draw our conclusions in section 9.

2. Lattice parameters, band-structure
calculations and vibrational properties

The crystal structure of each MX, monolayer consid-
ered in this work consists of three atomic layers, X—M—
X. Within each layer the M or X atoms form a 2D
hexagonal lattice: see figure 1. The M atoms in the
middle plane are surrounded by three nearest-neigh-
bour X atoms in both the bottom and the top layer so
that the crystal has D3, symmetry. The crystal struc-
ture is characterized by the in-plane lattice constant a,
and the distance dx_y between the two chalcogen
planes. It has already been noted [82] that certain
details of the band structure obtained from DFT
calculations depend rather sensitively on ag and d x_x.
Indeed, we have also found that agreement with the
available experimental results regarding, e.g., the
effective mass #," at the I' point of the BZ or the

2
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Table 1. Lattice vector aq and chalcogen—chalcogen distance d x_x as obtained from DFT calcula-
tions. Experimental values for the corresponding bulk material are shown in rows labelled by
‘Exp’. For WTe, experimental results are only available for the orthorhombic structure and are

therefore not shown.
MoS, MoSe, WS, WSe, MoTe, WTe,
ao [A] (HSE) 3.1565 3.289 3.16 3.291 3.516 3.521
ao [A] (PBE) 3.1854 3.319 3.18 3.316 3.557 3.553
ao [A] (Exp) 3.1604% 3.288° 3.154*° 3.286° 3.519 -
3.14° 3.299°¢ 3.1532¢ 3.282° 3.522°K -
3.1602¢ 3.289¢ 3.282¢ 3.517° -
3.1475' 3.290% -
dx_x [A](HSE) 3.0996 3.307 3.1176 3.327 3.5834 3.5999
dx_x [A] (PBE) 3.1246 3.4371 3.1529 3.471 3.6195 3.6394
dx_x [A] (Exp) 3.17¢ 3.335° 3.14¢ 3.34¢ 3.604¢ -

2 Reference [89].
b Reference [90].
¢ Reference [91].
4 Reference [92].
¢ Reference [93].
8 Reference [94].
i Reference [95].
k Reference [62].
f Reference [96], measurement at 293 K.

energy difference Ex between the top of the VB at the
K and I" points can only be achieved if the values of g,
and dx_y fall in arather narrow range.

As a first step, we have used two approaches to cal-
culate the basic lattice parameters a, and dx_x. The
first approach used vasp [68]. The vasp geometries
were calculated using the Heyd—Scuseria—Ernzerhof
2006 (HSE06) exact-exchange density functional [83].
The plane-wave cutoff energy was set to 600 eV and
the BZ was sampled by a 12 X 12 X 1 Monkhorst—
Pack grid. The vertical separation between the layers
was set to 20 A to make the interaction between the
repeated images of the layer in the three-dimensional
cell negligible. Optimization was carried out until
atomic forces fell below 0.005eV/A. The second
approach used the full-potential linearized augmented
plane-wave (FLAPW) method as implemented in the
FLEUR code [69]. The FLAPW method is an all-electron
method within DFT. The rLEUR code allows 2D systems
to be studied without constructing slabs in three-
dimensionally periodic cells and the resulting electro-
nic spectra are free of plane-wave continua. All our
FLEUR calculations were carried out with a cut-off k,,
of 10.6 eV~ for the plane-wave basis set and 144 k
points corresponding to a 12 X 12 X 1 Monkhorst—
Pack grid in the irreducible wedge of the BZ. Muffin-
tin radii of 1.0, 1.21, 1.27, 1.27, and 1.27 A were used
for S, Se, Te, Mo, and W, respectively. We note that
considering local orbitals for Mo (s, p), Se (s, p, d), and
W (s, p, f) to improve the linearized augmented plane-
wave basis proved to be crucial for a correct descrip-
tion of the excited states. We used the Perdew—Burke—

Ernzerhof (PBE) generalized gradient approximation
[84] to the exchange-correlation potential. The struc-
tures were relaxed (with the effects of SOC included)
until the forces were less than 0.0005 eV/A.

The calculated values of aq and ds_g for monolayer
TMDC s are shown in table 1 and compared to mea-
sured values for the corresponding bulk materials. The
lattice parameters obtained from the first of the DFT
approaches described above are shown in the rows
labelled by ‘(HSE)’, the ones from the second
approach are in the rows labelled by ‘(PBE)’. ‘(Exp)’
indicates experimental results found in the literature.
Although there is some scatter in the experimental
data, table 1 suggests that using the HSE06 functional
to relax the monolayer crystal structure leads to a good
agreement with the room-temperature empirical bulk
ay values. On the other hand, the PBE functional
seems to slightly overestimates ay. However, the situa-
tion is less clear in the case of dx_x. We note that both
the HSE06 and the PBE results are in good agreement
with [85].

Recent experiments show that the energy of the
photoluminescence peak is quite sensitive to the tem-
perature [5, 86, 87], which can be understood in terms
of the dependence of the band structure on a, and
dx_x. Indeed, a recent computational study [88] was
able to qualitatively reproduce the redshift of the pho-
toluminescence peak of MoS, as a function of tem-
perature by assuming a thermal expansion of the
lattice. The good agreement between the calculated
lattice parameters and the corresponding experi-
suggests that,

mental ones interestingly, the
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predictions based on our DFT results are expected to
be most accurate at room temperature (except for the
band gap, which is known to be underestimated by
DEFT). To our knowledge systematic measurements of
the temperature-dependence of the lattice parameters
of bulk MX, have not been performed, except for
MoS, [96].

As in the case of the lattice parameters, we have
used both the vasp and the FLEUR codes to calculate the
band structures of monolayer TMDCs. For the vasp
calculations we used the HSE lattice parameters as
input. The band structures were calculated in the local
density approximation (LDA). SOC was taken into
account in the non-collinear magnetic structure
approach with the symmetry turned off. The charge
density was obtained self-consistently using a
12 X 12 x 1 k-point grid and a 600 eV cutoff energy.
The results obtained by this method are shown in rows
denoted by ‘(HSE,LDA)’ in tables 2—10 below. For the
FLEUR calculations the charge densities obtained from
the geometry relaxation calculations (see section 2)
were used for further calculation of the band structure
and spin expectation values. SOC in rLEUR is included
within the second variational method for the valence
electrons, whereas the core electrons are treated fully
relativistically. These results are in rows denoted by
‘(PBE,PBE)’ in tables 2—10 below.

One possibility, which we did not explore, is to use
the HSE lattice parameters and the HSE06 functional
for band-structure calculations, as in [85]. We note
that the results of [85] seem to indicate that the HSE06
functional gives larger VB spin-splittings than found
experimentally.

In addition to the band structure of the TMDCs,
which is our main focus in this work, electron—pho-
non coupling is also essential in order to understand
transport [39-41] and relaxation [97] processes. For
completeness, we give a brief review of the vibrational
characteristics of monolayer TMDCs. Ab initio lattice-
dynamics calculations indicate that single layers of the
TMDCs MoS,, MoSe,, WS,, and WSe, are dynami-
cally stable [98—100], in agreement with experiments.

A comprehensive group-theory analysis of the dif-
ferent polytypes and stacking arrangements of few-
layer TMDC:s is presented in [101]. The symmetry of
few-layer structures determines which phonon modes
are Raman-active, and therefore provides an impor-
tant means of characterizing samples. As mentioned
earlier, monolayer MX, has Dj;, point-group sym-
metry (see table 11 for the character table and irre-
ducible representations (irreps)). The six zone-centre
optical phonon modes may be classified according to
the irreps under which their eigenvectors transform:
in the twofold-degenerate E” modes the metal atom
remains stationary while the chalcogen atoms vibrate
in opposite in-plane directions; in the twofold-degen-
erate E' modes the chalcogen atoms vibrate together
in-plane in the opposite direction to the metal atom; in
the non-degenerate A, mode the metal atom remains

A Korményos et al

stationary while the chalcogen atoms vibrate in oppo-
site out-of-plane directions; finally, in the non-degen-
erate A) mode the chalcogen atoms vibrate together
out-of-plane in the opposite direction to the metal
atom. Of these vibrations, all but the A; mode are
Raman-active. Only the E" and A} modes are infrared-
active.

DFT-LDA and DFT-PBE results for the phonon
frequencies are summarized in table 1 of [102]. There
is a reasonable degree of agreement between the LDA
and PBE results, suggesting that the DFT phonon fre-
quencies are accurate. Subsequent theoretical studies
[98-100] have reproduced the results of [102] for the
monolayer. Regarding WTe,, we note that our calcula-
tions give real phonon frequencies in the whole BZ,
indicating that the assumed hexagonal structure may
indeed be stable. In experimental studies of thin films
of WS,, WSe,, and MoS, it is found that modes that
were Raman inactive in the bulk become active in thin
films and that there are small shifts in the phonon fre-
quencies on going from the bulk to a thin film [103-
105]. Where comparison is possible, the experimental
Raman frequencies of thin films are in agreement with
the DFT results.

3. Band-edge energy differences and spin-
splittings

Detailed discussion of the conduction and VB disper-
sions in the vicinity of the k-space points of interest
(K, Q, I', and M) will be given in sections 5-8. In this
section we briefly introduce the various band-split-
tings and band-edge energy differences that we use to
characterize the band structure. An overview of the
band structure obtained from DFT calculations is
shown in figure 2. The direct band gap Ey, of
monolayer TMDCs can be found at the K and —K
points of the BZ. Due to the lack of inversion
symmetry, all bands are split by the intrinsic SOC
except at the time-reversal invariant points M and I".
We denote by 24,; and 24, the spin-splitting of the
VB and CB, respectively. There are another six minima
in the CB that might be important, e.g., for transport
or relaxation processes in certain compounds. We
denote these points by Q;, i = 1...6. They can be
found roughly half way between the K (=K) and the I"
points. The spin-splitting of the CB at Q; given by 24,.
The importance of the Q; points depends, amongst
other things, on the energy difference between the
bottom of the CB at the K and Q; points. This energy
difference is denoted by Ex(. Looking at the VB now,
the energy difference between the top of the VB at K
and I’ is denoted by Eg;. Finally, since it is directly
available in recent ARPES measurements [107-109],
we also record the width of the VB, which we define as
the energy difference between the maximum of the VB
at K and the minimum that can be found on the I'-
Kline.

4
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Figure 2. Overview of the band structure of monolayer TMDCs as obtained from DFT calculations. (a) Dispersion along the '-K-M-
I'line in the BZ. SOC is taken into account. Various band-edge energy differences and spin-splittings are also indicated; for definitions
see the main text. (b) Dispersion of the VB as a function of the wavevector k in the whole BZ. The hexagonal BZ is denoted by thick
blacklines. (c) The same as (b) for the CB. In (b) and (c) SOC is neglected.

3.4
3.2

2.8
2.6
2.4
22
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08804 0 04 08
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Figure 3. Atomic orbital weights in the energy bands of MX,,. (a) d Orbitals of the metal atom, and (b) p orbitals of the chalcogen
atoms. The size of each symbol is proportional to the weight of the atomic orbital. SOC was neglected in these calculations.

Certain properties of TMDCs are easier to under-
stand if one considers which atomic orbitals con-
tribute to a given band at a given k-space point. For
example, as pointed out in, e.g., [26, 36, 37, 110], the

different atomic orbital composition can explain the
difference in the spin-splitting magnitude of the CB
and VB at the K point. Furthermore, the atomic orbital
composition of the energy bands underlies the TB
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Table 2. The width of the VB as obtained from DFT calculations. Experimental values are

shown in the row denoted by ‘Exp’.

D,y (eV) MoS, MoSe, WS, WSe, MoTe, WTe,
(HSE,LDA) 0.911 0.84 1.215 1.132 0.657 0.933
(PBE,PBE) 0.896 0.84 1.207 1.136 0.688 0.965
Exp ~ 0.8% ~1.0°

~ 0.9-1.0°

* Reference [107], exfoliated samples on a SiO substrate.

¢ Reference [109], samples grown by chemical vapour deposition on a highly oriented

pyrolytic graphite (HOPG) substrate.

" Reference [108], samples grown by molecular beam epitaxy (MBE) on bilayer graphene on

top of SiC (0001).

Table 3. Band dispersion parameters and spin-splittings at the K and —K points in the CB from DFT
calculations. m ) (m @) is the effective mass of the K} (K2)) band, and similarly for C{}) (C{2)). m, is
the free electron mass. 1., is the electron density above which the upper spin-split CB starts to fill.

MoS, MoSe, WS, WSe, MoTe, WTe,
m&l/m, (HSE,LDA) 0.46 0.56 0.26 0.28 0.62 0.26
m{l)/m, (PBE,PBE) 0.47 0.58 0.27 0.29 0.61 0.25
m? /m, (HSE,LDA) 0.43 0.49 0.35 0.39 0.53 0.39
m{? /m, (PBE,PBE) 0.44 0.50 0.36 0.40 0.51 0.38
ciY (eVA®) (HSE,LDA) -3.36 -3.11 -2.8 —3.02 -3.85 ~5.86
CiY (eVA®) (PBE,PBE) -3.57 ~2.94 -1.8 ~2.44 -3.95 ~17.54
C{?) (eVA®) (HSE,LDA) -3.34 -3.12 -3.14 -3.23 -3.86 -4.90
C{? (eVA®) (PBE,PBE) -3.49 -2.86 ~2.54 -2.97 —4.04 -9.67
244, (meV) (HSE,LDA) 3 22 -32 -37 36 -52
2A4 (meV) (PBE,PBE) 3 20 -31 -37 32 —54
e (10'% cm™2) (HSE,LDA) 0.54 4.5 4.68 6.03 7.97 8.48

modelling of TMDCs [26, 32, 33, 35] and was also
important in developing the k-p model [49, 60]. The
contribution of individual atomic orbitals to a given
band is shown in figure 3 for the d orbitals of the metal
atoms and the p orbitals of the chalcogens (the weights
of other atomic orbitals are much smaller). Compar-
ing figures 3(a) and (b) we find that in general more
than one type of atomic orbital contributes to both the
CB and the VB and the weight of the atomic orbitals
changes throughout the BZ. Setting up a consistent TB
model for TMDCs is therefore more difficult than is
the case for, e.g., graphene.

4.VBwidth D,

An observable that can be directly compared to
experimental ARPES measurements [107-109] is the
width of the VB Dyy,. In order to be able to compare the
experimental and theoretical results, we define Dy, to
be the difference between the top of the VB at the K
point and the minimum, which lies between the I" and
K points: see figure 2. (Note that the absolute

minimum of the VB is not at this k-space point.
However, [108] shows the dispersion only between I"
and K; therefore we use the definition of Dy, given
above.) Comparison between the calculated and
experimental values is given in table 2.

In the case of MoS,, [107] reported that the VB is
narrower than the calculated one by #10%, whereas
for MoSe; [108] the opposite seems to be true. [107]
Also provides a comparison between calculations
and the ARPES band structures of bilayer, trilayer
and bulk MoS,, showing a better agreement than is
found for monolayer MoS,. Furthermore, a good
agreement between DFT calculations and ARPES
measurements for the VB was observed for bulk
MoS, and MoSe, [62, 111] and for MoTe, [62]. The
orbital composition of the VB away from the K point
is not purely of Mo d orbital type: p orbitals of X
atoms are also admixed (see figure 3); hence Dy, in
monolayers can be sensitive to interactions with sub-
strates, which are not considered in our calculations
and which might explain some of the differences
with respect to measurements.

6
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Table 4. Effective masses and spin-splittings at the K point in the VB from DFT calculations. m () (m@)) is the

vb

effective mass of the K. \(,11)) (Kv(f,) ) band, and similarly for C{Y) (C{2). m, is the free electron mass. The values in
brackets were obtained using a slightly different fitting range, as explained in the text. Experimental values are

shown in rows denoted by ‘Exp’.

MoS, MoSe, WS, WSe, MoTe, WTe,
m{})/m, (HSE,LDA) —0.54 —0.59 (—0.64) -0.35 -0.36 ~0.66 ~0.34
m!)/m, (PBE,PBE) —0.54 —0.60 (~0.60) -0.36 -0.36 -0.62 -0.32
Exp —0.60.08" —0.67+0.4"
m? /m, (HSE,LDA) —0.61 —0.7 (=0.72) —0.49 —0.54 -0.82 -0.58
m'? /m, (PBE,PBE) —0.61 —0.7 (—0.69) -0.50 —0.54 —0.77 —0.54
Exp —0.60.08" —0.75+0.3"

CiY (evVA®) (HSE,LDA) 6.16 5.67 4.59 6.47 5.44 6.77
CiY (evVA®) (PBE,PBE) 6.08 5.21 6.07 5.79 5.46 17.61
C{?) (eVA®) (HSE,LDA) 5.78 5.42 5.50 5.18 5.14 4.83
C{?) (eVA®) (PBE,PBE) 5.71 5.064 5.04 4.78 5.09 9.08
24, (meV) (HSE,LDA) 148 186 429 466 219 484
24 (meV) (PBE,PBE) 148 184 425 462 213 480

Exp (meV) ~140° ~180° ~4008, ~400°

~150¢ ~180° 380" 460"

160™ ~200™ 410' 400'

140" 400/ 510™

140° 400" ~5001

138" 202" 379" 404"

391" 412"

430"

* Reference [132], sodium intercalated sample and ARPES measurement.
® Reference Private communication by Yi Zhang based on ARPES measurements; see [ 108].

¢ Reference [27].

f Reference [133].

i Reference [134].

7 Reference [135].

! Reference [136].

* Reference [137], from differential reflectance.
¢ Reference [108], from ARPES measurement.
4 Reference [138].

& Reference [139].

P Reference [140], from photoluminescence.

h Reference [141], from differential transmission.
k Reference [23], from electroluminescence.

™ Reference [142], from photocurrent spectroscopy of suspended samples.

" Reference [143], from absorbance measurement.

9 Reference [122], from spin-resolved ARPES measurement.

* Reference [144], from reflectivity measurement.
* Reference [145], from linear absorption.

5. Effective model at the Kand —K points

5.1. Kand —K points

The physics around the K and —K points has attracted
the most attention both experimentally and theoreti-
cally so far. This is mainly due to the exciting optical
properties of these materials at the direct band gap,
which can be found at the K and —K points. Moreover,
it turns out that the effect of SOC is strong at this BZ
point, leading to spin-split and spin-polarized bands.

Since the K and —K points are connected by time-
reversal symmetry, the polarization of the bands has to
be opposite at K and —K, i.e., the spin and the valley
degrees of freedom are coupled [26]. We start our
discussion in section 5.2 with a basic characterization
of the band structure in terms of effective masses and
spin-splittings. Then, in section 5.3, a detailed k-p
theory is presented which captures the salient features
of the DFT band structure and allows us to interpret
the results of recent experiments [112-116].
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Table 5. Band gap Epg,  at the K point from DFT calculations, from GW calculations, and from measure-
ments. Eyg is defined as the energy difference between the bands K () and K@’ at K. The GW “flavour’
used in the calculations is also shown. Experimental values are shown in rows denoted by ‘Exp’. All values

areineV.
MoS, MoSe, WS, WSe, MoTe, WTe,
(HSE,LDA) 1.67 1.40 1.60 1.30 0.997 0.792
(PBE,PBE) 1.59 1.34 1.58 1.27 0.947 0.765
GW 2.84" 2410 2.88'9 2.42' 1.77' 1.779
2.76,4 2.26(2.13)" 2.70° 2.384 1.79™ 1.79"
2.80" 2.331 3.11" 2.51% 1.829
2.82! 2.31% 2.91% 1.77%
2.97™
Exp 2.5° 2.18" 2.14° 2.5140.04"
2.14+0.08° 2.02°,2.22° 2.41¢ 2.0°,2.18°
Exp (ARPES) 1.86° 1.58"

* Reference [142], photocurrent spectroscopy on suspended samples, lower bound.
b Reference [146], scanning-tunnelling experiments, on bilayer graphene substrate.
¢ Reference [24], transport measurements using ionic liquid gating.

4 Reference [135], differential reflectance, on SiO, substrate.

¢ Reference [132].

f Reference [108], from ARPES, heavily doped sample.

8 Reference [151].

* Reference [152], scanning-tunnelling experiments, on graphite substrate.

" Reference [153], scanning-tunnelling experiments.

b Reference [47],G,W.

i Reference [118], quasiparticle self-consistent GW.

k Reference [82], self-consistent GW,,.
! Reference [45].

™ Reference [46].

9 Reference [147].

* Reference [102], Gy Wy method.

" Reference [146], G, W, without (with) substrate screening taken into account.

P Reference [134],G;W.

5.2. Basic characterization and material parameters
The aim of this section is twofold. First, we want to
point out that there is a difference between the MoX,
and WX, materials regarding the sign of the SOC
constant in the CB (for a microscopic explanation see
[34, 36] and [49]). This difference is important for the
interpretation of experiments in which properties of A
and B excitons [27, 30] are compared (for introduc-
tion to exciton physics see e.g., [117]). Second, we
report effective masses and spin-splittings extracted
from our DFT calculations and compare them to
experimental results, where available; see tables 3
and 4.

One of the phenomena that first sparked strong
interest in monolayer TMDCs was the pronounced
effect of SOC on the VB around the K and —K points.
SOC leads to the spin-splitting and spin-polarization
of the VB and the energy scale associated with SOC is
several hundreds of meVs: see table 4. SOC in the VB
was first studied using DFT calculations [110, 118—
120], but it can be readily understood using, e.g, a TB
model and first-order perturbation theory [26, 36, 37].
An experimental signature of the spin-splitting of the
VB is the energy difference of the A and B exci-
tons [27, 30].

SOC also affects the CB. This was initially neglec-
ted, mainly because in MoS,, which is the most widely
studied of the TMDCs, it is indeed a small effect and it
was assumed that the situation would be similar in
other monolayer TMDCs. In general the magnitude of
the spin-splitting of the CB is only 7-10% of that of the
VB, with the exception of MoS,, where it is only ~2%:
see table 3. However, in absolute terms it is an energy
scale that can be important at low temperatures and in
ballistic samples. Note that the SOC in the CB at the K
point is a more subtle effect than in the VB. In the sim-
plest theoretical approximation, which assumes that it
is sufficient to consider only the d2 atomic orbitals of
the metal atoms, the SOC vanishes. DFT calculations,
on the other hand, indicate that there is a finite spin-
splitting in the CB at the K point [60, 110, 118-120].

As it turns out, the SOC in the CB can be under-
stood in terms of a competition between two con-
tributions [34, 36, 49, 60, 121]: (i) a first-order
contribution from the chalcogen atoms, which have a
small, but finite weight [34, 37] and (ii) a second-order
contribution due to the coupling to other bands
[34, 36, 49, 60], where the d,, and d,, atomic orbitals
have large weights; see figure 3. Due to this competi-
tion the spin-polarization of the spin-split CBs is dif-
ferent in MoX, and WX,. Our latest results were
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Figure 4. Spin polarization and dispersion of the spin-split CB and VB in the vicinity of the K point from DFT calculations. Arrows
show the direction of the spin expectation values (red: spin-up, blue: spin-down). (a) And (c) results for MoX,; (b) and (d) results for
WX,. Note that the order of spin-up and spin-down bands in the CB is different for MoX, and WX,. The vertical dashed line shows
the position of the K point. The actual calculations were performed for MoSe, and WSe, using the ‘(PBE,PBE)’ approach.
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obtained using the FLEUR code, which allows the expli-
cit calculation of the spin expectation value (s,) in a
given band. We find that the spin-split CB with
(s;) >0 ((s,) <0) is higher (lower) in energy in
MoX,, while the opposite is true for WX,: see
figures 4(a) and (b), in which the CBs of MoSe, and
WSe, are shown, respectively. By contrast, as shown in
figures 4(c) and (d), in the VB the sign of (s, ) is the
same for both MoX, and WX,. Furthermore, as can be
seen in figures 4(a) and (b), the band with the lighter
effective mass is lower in energy for MoX,, leading to
band crossing of the two spin-split bands in the vici-
nity of the K and —K points [34, 36, 49], whereas for
WX, the lighter spin-split band is higher in energy and
therefore there is no band crossing. (MoTe; is some-
what special in that the crossing of the spin-split bands
on the I'-K line is absent. The other band crossing, on
the K—M line, is present). These differences notwith-
standing, there is a spin—valley coupling in the CB
similar to the VB. In figure 4 we also introduce the
notation K{{) (K@) for the higher-in-energy (lower-
in-energy) spin-split VB, and similarly for the CB. As a
consequence of the spin polarization of the bands in
optical experiments the lowest-energy spin-allowed
transition is K{) = K@ for MoX, and K}) - K
for WX,. We note that very recently the first spin-
resolved ARPES measurement on bulk WSe, has
appeared [122] and seems to indicate an out-of-plane
spin polarization of the spin-split VB around K and
—K points. Assuming that the measurements pre-
dominantly probe the top layer [122], i.e., effectively a

monolayer sample, they are in agreement with the
DFT calculations presented here.

The dispersion around the K and —K points is not
simply parabolic [60], which has to be borne in mind
when fitting the band structure to obtain the effective
masses and other band parameters. This can already be
appreciated in figures 2(b) and (c), where a trigonal
warping (TW) of the dispersion around the K and —K
points can clearly be seen. The TW is more pro-
nounced in the VB than in the CB. In the simplest
approximation this can be taken into account by a
cubic term in the dispersion. Therefore the dispersion
of each spin-split band in the VB and the CB can be
described by

2.2

i
Ex(q) = =3
2Met

+ Csy Iqf cos (3%), (1)

where the wavevector q = (q,, ¢,) is measured from
the K point, ¢ = arctan (g p /qx), Mmegr is the effective
mass of the given band, and C;, is a parameter
describing the TW. The derivation of Ex (q) based on a
multi-band k-p model is presented in section 5.3 and
appendix A. We note that a similar model was recently
usedin [123].

The values of the m.¢ and Cs,, that we have extrac-
ted from our DFT calculations for each band and
material are given in tables 3 and 4. We note that sev-
eral works have already presented tables of, e.g., effec-
tive masses [43, 45, 82, 124-127] for different
monolayer TMDCs. However, the effects of SOC have
often been neglected leading to, e.g., the conclusion

9
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Table 6. k-p parameters at the K point. In columns labelled by ‘DFT’ the parameters obtained with the help of DFT band
gap are shown, for the columns labelled by ‘GW’ the band gap is taken from GW calculations.

MoS, MoSe, WS, WSe,

DFT GW DFT GW DFT GW DFT GW
Epgx [eV] 1.67 2.80 1.40 2.26 1.60 2.88 1.30 2.42
[ s (eV-A) (HSE,LDA) 3.00 - 2.52 - 3.85 - 3.31 -
ly|(eV-A) (HSE,LDA) 2.76 222 2.53 2.20 3.34 2.59 3.17 2.60
a; (eV-A?) (HSE,LDA) -5.97 -6.21 —5.34 -5.76 —6.14 -6.56 -5.25 -5.97
ay (eV-A%) (HSE,LDA) —6.43 —6.65 —-5.71 —6.20 -7.95 -7.96 —-6.93 -7.58
B (eV-A?) (HSE,LDA) 0.28 0.52 —-0.95 —0.54 1.62 2.03 0.33 1.08
B, [eV-A?] (HSE,LDA) 0.54 0.76 —-0.52 -0.03 4.00 4.00 2.35 3.0
k1 (eV-A%) (HSE,LDA) —1.48 —-1.84 -1.31 —-1.49 —1.24 -1.60 -1.11 -1.36
k; (eV-A%) (HSE,LDA) —1.45 -1.80 -1.23 —1.40 -1.09 -1.41 -0.93 -1.14
m (eV-A%) (HSE,LDA) 13.7 17.74 15.11 18.28 21.85 29.49 18.04 23.78
1, (eV-A%) (HSE,LDA) 21.1 26.95 17.10 20.93 31.73 40.94 26.17 34.49

that the effective masses of the spin-split VBs are the
same. Recent experimental evidence shows that this is
not the case [108]. Moreover, due to the presence of
the TW, some care has to be taken when defining the
effective mass and, especially, when choosing the fit-
ting range that is used to obtain it from a DFT band
structure. All our DFT band-structure calculations
were performed along the I'-K—M line in the BZ. We
first fitted m.¢, i.e., we set Cs,, = 0 in equation (1). The
fitting range corresponded to 5% of the I'—K distance.
The dispersion over such range was considered to be
isotropic and the difference in the effective masses along
K-I' and K-M was neglected. Therefore the effective
masses shown in tables 3 and 4 characterize, strictly
speaking, a rather narrow vicinity of the band edge. The
non-parabolicity of the band structure and the trigonal
distortion of the constant energy contours, described by
the second term in equation (1), was taken into account
in a second step, whereby equation (1) was fitted over a
wider range (typically ~#10% of the I'-K distance), but
Mg, obtained in the previous step, was kept fixed. This
two-step fitting was needed to obtain coherent para-
meter sets between the simple approach outlined here
and a more accurate model presented in section 5.3.
Further details of the fitting procedure are discussed in
appendix B. Looking at tables 3 and 4 one can see that
the effective masses and spin-splittings obtained from
the two different DFT calculations are in almost perfect
agreement, while there are some differences in the
extracted values of Cs,,..

Considering first the CB, the extracted band para-
meters and SOC splittings 24, for different mono-
layer TMDCs are shown in table 3. To our knowledge
there are no direct measurements of Ay, orm, for any
of these materials yet; therefore it is difficult to tell how
reliable these DFT-based predictions are. In addition
we show the charge density ng at which the upper
spin-split CB K starts to be populated. This charge

Table 7. k-p parameters at the K point. In columns labelled by ‘DFT”
the parameters obtained with the help of DFT band gap are shown,
for the columns labelled by ‘GW” the band gap is taken from GW
calculations.

MoTe, WTe,

DFT GW DFT GW
Epg [eV] 0.997 182 0792 1.77
[%s| (eV-A) (HSE,LDA) 2.12 - 2.84 -
|y|(eV-A) (HSE,LDA) 2.33 2.16 3.04 2.79
a; (eV-A”) (HSE,LDA) —4.78 531 -394  -5.02
a; (eV-A%) (HSE,LDA) -485  -578  -520  -7.31
B, (eV-A%) (HSE,LDA) 219  -166 -0.9 0.17
B, (eV-A?) (HSE,LDA) -178  —0.84 0.60 2.72
k1 (eV-A%) (HSE,LDA) -1.19  -128 -1.01  -110
x, (eV-A%) (HSE,LDA) -1.01  -109  —-0.96  -1.04
1y (eV-A)(HSE,LDA) 1326 1518 1472  17.61
1, (eV-A) (HSE,LDA) 13.54 1637 1941  27.12

density is calculated using the effective mass of the
K c(}f) band given in table 3 and assuming a simple para-
bolic dispersion (i.e., neglecting Cs,,), which is a good
approximation in the CB. Note that typical charge
densities achieved by gating in MoS, are reported to be
~4 X 10" cm™ -3.6 x 10" cm™? [128], a few times
10'* cm ™2 for monolayer samples [129] and few-layer
samples [130]), and up to 10'* cm™? in few-layer WS,
using ionic liquid gating [131].

Turning now to the VB, the band parameters and
SOC splitting 24,;, obtained from our DFT calcula-
tions are shown in table 4. In the case of MoSe,, very
recent high-resolution ARPES measurements [108]
allow for a direct comparison with the calculations,
because the difference between the effective masses of
K'Y and K? could be directly observed. We show
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two theoretical values for the effective masses in the
VB of MoSe;,. The first one is obtained using the fitting
procedure described above, ie., by averaging the
values along the K—I" and K—M directions. The second
value, shown in parenthesis, is obtained by following
the fitting procedure that was used for the experi-
mental data’. This latter procedure involves fitting
only along the K-I" direction, and a fitting range of
~13% of the K—I" distance. One can see that the theo-
retical and experimental effective masses that were
obtained using the same fitting range are in good
agreement. Moreover, the calculated value of 24, also
corresponds rather well to the measured one. MoS; is
the only other monolayer TMDC for which ARPES
measurements are available to extract the effective
mass. However, the ARPES data of [132] do not
resolve K{{) and K?) separately; therefore the repor-
ted effective mass is the average of m}) and m ) Tak-
ing into account the experimental uncertainty, our
results are in reasonable agreement with the measure-
ments of [132]. The available data for MoS, and
MoSe, suggest that DFT can capture the VB effective
masses quite well even without GW corrections, such
as those found in [47]. For the other four monolayers,
to our knowledge, no ARPES data are yet available.

In optical experiments the difference of the A and
B exciton energies are usually identified with 24, pro-
viding the results shown in table 4. We note that there
are two assumptions behind the identification of the A
and B exciton energy difference with 24y: (i) that the
spin-splitting in the CB is negligible and (ii) that the
binding energies of the A and B excitons are the same.
Regarding (i), one can see in table 3 that A, is small,
but finite, and for quantitative comparisons between
theory and experiment it should not be neglected. As
for (ii), we note that the binding energy of the A and B
excitons depends on their reduced mass, which,
according to table 4, should be different for the differ-
ent exciton species. With these caveats the agreement
between the calculations and the experiments is quali-
tatively good, especially for MoS, and MoSe,.

Comparing the DFT-calculated effective masses in
tables 3 and 4 for the VBs and CBs that have the same
spin-polarization, one can observe that there is no
electron—hole symmetry in the band structure. The
first experimental evidence to support this observa-
tion, coming from magnetoluminescence experi-
ments, has appeared very recently [113-116].
Regarding the experimental relevance of TW, it has
been argued [112] that it leads to measurable effects in
the polarization of electroluminescence in p—n junc-
tions. We note that due to the heavier effective mass in
the VB and the larger values of Cs,,, the TW is more
pronounced in our DFT calculations in the VB than in
the CB. In the latter a simple parabolic approximation
is often adequate.

> The fit results based on the ARPES measurements of [108] were
communicated to us by Yi Zhang.

A Korményos et al

We finish section 5.2 with a brief discussion of the
quasiparticle band gap Eyg x, which we define as the

difference between the maximum of the K{{) and K?)
bands at the K and —K points. DFT calculations for
monolayer TMDCs underestimate the band gap (see
table 5) and its evaluation requires the use of GW
methodology [45-47, 82, 118]. Experimental evidence
that supports the conclusions of the GW calculations is
now also emerging. Apart from its fundamental
importance, the main reason for discussing Ey, x and
showing our DFT results is that Epg x enters into the
fitting procedure that we use to obtain the parameters
of the k-p Hamiltonian that describes the dispersion in
the vicinity of the band edge. The details of the k-p
model and the fitting procedure are given in
section 5.3 and appendix B. As one can see, our DFT
calculations significantly underestimate the experi-
mental quasiparticle band gaps. We also note that in
heavily doped samples, which were used in the ARPES
measurements [108, 132], the observed band gap is
reduced with respect to results obtained by other
methods [24, 135, 142, 146], hinting at the crucial
importance of screening in monolayer TMDCs.

5.3.k-p Hamiltonian

We now present a low-energy effective k-p Hamilto-
nian that describes the coupled dynamics of the VB
and CB. Part of the theory was previously discussed in
[60] and [49]; in the present work we both overview
and extend these earlier results.

To obtain a model that captures the most impor-
tant features of the dispersion of the VB and CB one
can start from a seven-band model, which was intro-
duced in [49, 60]; motivation and details of the model
are given in appendix A. An effective low-energy
Hamiltonian can be derived from the seven-band
model by systematically eliminating all degrees of free-
dom other than the ones corresponding to the VB and
CB using Lowdin partitioning [150]. We keep terms
up to third order in the off-diagonal coupling elements
of the original seven-band model and use the spinful
basis {|¥*, s), |, s)}, where |#') (¥P)) are
spinless Bloch wave functions in the VB (CB) and
P05y = |¥*)®Is), with b= {cb,vb} and
s=1{1, ]} denoting the band spin degree of free-
dom, respectively. One finds that the low-energy effec-
tive Hamiltonian

Herffs = HO + Hl‘([’ls) + Hsgs (2)

is the sum of the following terms.

(i) The free-electron term H, = A (1,&s. ), where

2m,
1, is a unit matrix in the electron-hole space, s, is a
spin Pauli matrix, and m, is the free electron mass.
Here and in equations (4b)—(4f) the wavevector
q = (4, 9,) is measured from the K'or —K points.

We note that H, is usually neglected in the GaAs
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literature on account of the light effective mass in
this material, but here we want to keep it.

The SOC Hamiltonian HZ*, which contains the
diagonal and q-independent contributions of the
SOC. It reads

TAyp S 0
H =0 ,
0 TAL S,

(3)

i.e., it is diagonal in spin space and is proportional
to the Pauli matrix s, (for further details see
appendix A). HS® describes the spin-splittings of
the CB and the VB, which are due to the absence
of inversion symmetry in monolayer TMDCs.
Since H® is diagonal, one can also write it in
terms of the eigenvalues s = 1 of s,; we will use
the two notations interchangeably. Moreover, the
index 7 = 1 (r = —1) denotes the valley K (-K).
Where it is more convenient, we will also use the
matrix 7, which acts in the valley space. In the VB,
the parameter Ay, that describes the strength of
the SOC can always be taken to be positive. As
explained in section 5.2, the situation is more
complicated in the CB [34, 36, 49], because DFT
calculations show that, in the case of MoX,, the
spin-split bands cross close to the K and —K
points, while there is no such band crossing for
WX,. This can be understood in terms of Ay,
having opposite signs in MoX, and WX,.

Finally, the k-p Hamiltonian Hy, in equation (2)
is given by

Hiy = HE + HE' + H + H, (o)
where
&b T V.40
Hp* = . , (4b)
T 7/r,sq+ €
2
L Y
5 Nt (4c)
0 fa
0 K,,S(qj)
Hyy ; (4d)
2
kio(af) o
7,5 1 2 0 s
Hcﬁb,l =-7-q . > (4e)
2 nf,sq+ 0
e O 10
HEho = =2 lab cos (30) (3 0)- @n
Here ¢q, is defined as qe = q, * i7q,,

¢ = arctan (qy /qx), &vw and ey, are band-edge
energies, y, ., &z s, /)’T o Kool o and w, are material
parameters discussed below. Hy, is a general-
ization of the results given in [60] for the case in
which the material parameters depend on
the SOC.

A Korményos et al

In general all off-diagonal material parameters
appearing in H, are complex numbers such that for
7 = —1 (=K valley) they are the complex conjugate of
the 7 = 1 (K valley) values. Concrete values of the
material parameters for each MX, material can be
obtained by, e.g., fitting a DFT band structure, see
tables 6 and 7. Note however, that the fitting proce-
dure (see appendix B) yields real numbers for each
parameter. We now briefly discuss each of the terms
(equations (4b)—(4f)).

(i) Terms up to linear order inq, andq_ can be found
in equation (4b). Hy® is basically the massive
Dirac fermion model introduced in [26]. It
describes an isotropic dispersion around the
band edge and it does not break the electron-hole
symmetry. The value of y; , also depends on the
SOC, but the Lowdin-partitioning calculations
suggest that this dependence should be weak.
This is indeed what we have found from fits to the
DFT band structure. Therefore in the following
we suppress both the spin index s and, since y is
taken to be a real number, the valley index .

(ii) Diagonal terms quadraticingq, andq_ are given in
equation (4c). H,;* breaks the electron—hole
symmetry because in general a;,# . The
recent observation of photoluminescence peak
splitting in magnetic fields [113-116] suggests
that electron-hole symmetry is indeed broken.
Both a, and ﬂm can be written as, e.g,
ars=ay+7-s-a and hence a,,= a_,_,

ﬂ:,s - ﬂ—‘r,—s’

Off-diagonal terms quadratic in q, and q_ are

(iii)
given in equation (4d). Hs;;, in combination with
HJ*, leads to the TW of the energy contours that
can be observed in figures 2(b) and (c). (For
further details see equation (B.1) in appendix B).
The TW is expected to play an important role in
the explanation of recent electroluminescence
experiments [112]. It may facilitate the genera-
tion of valley and spin currents that are second
order in the applied bias [123]. Moreover, it was
observed in ARPES measurements [109, 122].

(iv) Off-diagonal terms cubic in q, and q_ appear in
equation (4e). H3j | is important for obtaining a
good fit to the DFT band structure away from the
K point in a two-band model that describes the
coupled dynamics of the VB and CB. They also
play role when one uses the eigenvalues of
Hamiltonian (2) to fit the DFT band structure in
order to extract material parameters (see tables 6
and 7 below). In particular, combined with the
off-diagonal first-order terms, they contribute in
second order in the wavenumber to the eigenva-
lues (for details see appendix B).
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Table 8. Material parameters at the Q point. n¢ is the electron density above which the carriers start to
populate the Q valleys, assuming (HSE,LDA) values for Ex.

MoS, MoSe, WS, WSe, MoTe, WTe,
m),/m. (HSE,LDA) 0.64 0.54 0.69 0.73 0.42 0.44
m¢),/m, (PBE,PBE) 0.66 0.58 0.86 0.71 0.36 0.44
mg)/m. (V,HSE,LDA) 121 L11 0.94 091 116 0.922
my;)/m. (PBE,PBE) 1.31 1.18 0.95 0.93 1.18 0.94
m&./m, (HSE,LDA) 0.56 0.48 0.52 0.42 0.43 0.3
ms) / m, (PBE,PBE) 0.61 0.51 0.54 0.45 0.44 0.29
mg; /mz (HSE,LDA) 1.13 1.08 0.74 0.74 0.99 0.81
mg)/m. (PBE,PBE) 1.21 1.15 0.74 0.75 1.22 0.8
24 (meV) (HSE,LDA) 70 21 264 218 22 192
24, (meV) (PBE,PBE) 75 26 262 221 13 201
Exq (meV) (HSE,LDA) 207 137 81 35 158 158
Exq (meV) (PBE,PBE) 246 163 58 32 173 140
Exq (meV) (Exp) 260° 150+30" ~0"
1no(10" cm™?)(HSE,LDA) 76.42 54.97 17.17 5.7 66.62 37.27

* From ARPES; private communication by Philip King, based on the resultsin [132].

b Reference [152], from scanning-tunnelling microscopy.

(v) Diagonal terms cubicinq, andq_.In some cases it
is more convenient to work with a model that
gives the dispersions of the VB and CB separately.
Cubic terms in q are needed to capture the non-
parabolicity of the bands, and such a model is
given by equation (1). It can easily be obtained by
applying Lowdin partitioning to equation (2) and
eliminating either the electron or the hole degrees
of freedom. In this case, for consistency, the term
HZj» in equation (4f) also has to be taken into
account.

We note that, starting from a TB Hamiltonian, a
model containing the terms (4b)—(4d) and the VB
spin-splitting was also obtained in [32].

In comparison to equations (3) and (4b)—(4f), the
widely used gapped Dirac Hamiltonian model intro-
duced in [26] contains only the terms linear in g and
the spin-splitting in the VB. It can be written as

Hp = y(quax + qya},)

Ey o, —
+ ngz + Ay s, ———

(5)
Here the Pauli matrices oy . act in the electron-hole
space. This simple model correctly captures the large
spin-splitting of the VB, that the dispersion in the close
vicinity of the K valley is quadratic, and predicts the
valley-dependent optical selection rule [26] in accor-
dance with experiments [27-29]. However, the pre-
ceding discussion of the various terms in equation (2)
clearly indicates the limitations of equation (5) in the

interpretation of certain experimental results and DFT
calculations: it cannot describe, for example, the spin-
splitting of the CB, the electron—hole asymmetry and
the trigonal warping of the spectrum.

The eigenstates and eigenvalues of the k-p Hamil-
tonian (2) can also be used as a starting point for analy-
tical calculation of the Berry curvature [148]. The Berry
curvature is relevant for the quantum transport char-
acteristics of TMDCs, such as the valley Hall effect [26]
and weak localization [154], while a related quantity,
the spin Berry curvature [149], gives rise to a finite
spin Hall conductivity for moderate hole doping.

Finally, we show the k-p parameters obtained from
fitting of the DFT band structure (see tables 6 and 7)
using the model that explicitly contains the coupling
between the VB and the CB. In this case the diagonal
cubic term (equation (4f)) is not important for obtain-
ing a good fit to the band structure and therefore the w;
parameter is not shown. Close to the band edge the k-p
parameters given in tables 6 and 7 reproduce the effec-
tive masses shown in tables 3 and 4. The details of the
fitting procedure are given in appendix B. Since the
effective masses and C;,, parameters extracted from
the (HSE,LDA) and (PBE,PBE) approaches are rather
similar, we only show results that are based on (HSE,
LDA) DFT band-structure calculations. Due to the
SOC all parameters, with the exception of y, are differ-
ent for different spin indices s. Since the Hamiltonian
of equation (4a) is diagonal in the spin space, i.e., it
describes the coupled dynamics of the VB and CB hav-
ing the same spin, it is convenient to introduce the
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Table 9. Character table and invariants for the

group Cyj.

Cin E oy
A’ K2, kﬁ, kik, spkok, 1 1
A" 2,505, 1 -1

notation s = 1 (s = |) for s = 1 (s = —1). Regarding
the correspondence between the notation used in
section 5.2 and here, note that the order of the bands
with 1 and | polarization in the CB is different for
MoX, and WX,. Therefore in the VB the upper index
(1)(2) is equivalent to | ( 1 ), but in the CB the rela-
tion depends on which material is considered. We
note that the parameter y can, in principle, also be
obtained directly as a momentum matrix element
between the Kohn—-Sham wave functions of the VB
and CB. For these calculations we used the casTep code
[155], where the necessary plane-wave coefficients of
the wave functions at the band edges are readily acces-
sible. These values are denoted by || in tables 6 and
7. On the one hand, the good agreement between |y |
and |y | indicates the consistency of our fitting proce-
dure. This is not trivial, because the fitting involves a
nonlinear function of the k-p parameters. On the
other hand, one has to bear in mind that|y | is obtained
such that it would give the best fit to the DFT band
structure over a certain range in the BZ. Therefore it
may differ from the value of| | that is calculated at a
single point of the BZ. The valley index 7 is suppressed
in tables 6 and 7 because, as mentioned above, from
the fitting procedure we obtain real numbers for the
off-diagonal terms.

As explained in appendix B, our fitting proce-
dure involves the quasiparticle band gap Eyg k. For
this reason two sets of k-p parameters are reported in
tables 6 and 7: one in which we used Epg g values
obtained from our DFT calculations and one in
which we used Epg g values found in GW calcula-
tions; see table 5. In the latter case we make the
assumption that the bands above the Fermi energy
are rigidly shifted upwards in energy such that the
effective masses and the TW in the VB and CB
remain the same. We believe that this is a reasonable
assumption because the available experimental evi-
dence (see tables 4 and 10) suggests that, at least in
the VB, the effective masses are captured quite well
by the DFT calculations.

6. Effective models at the Q (a.k.a. A) point

6.1. Q; points

In addition to the K and —K points, there are six other
minima in the CB which may be important for, e.g.,
relaxation processes. We denote the BZ points where
these minima are located by Q;, (i = 1...6); they are

A Korményos et al

also known as A points (see figures 2 and 5(b)). We
note that phonon scattering between the K and —K
points and Q; points is symmetry-allowed [97] and
that, depending on the energy difference Exq (see
figure 2), the electron mobility may be significantly
affected by these scattering processes [39, 40, 42].
However, as we will show, understanding the SOC at
the Q; points is also important when considering the
possible scattering processes, a fact which seems to
have been overlooked in some recent publications. We
start in section 6.2 with a basic characterization of the
band structure in terms of the effective masses and
point out an important effect of SOC on the spin
polarization of the bands. A detailed k-p theory is given
in section 6.3.

6.2. Basic characterization and material parameters
Let us consider the Q; minimum, which can be found
along the I'-K direction (see figure 2(c)). We choose k,
to be parallel to the I'-K direction, while k, is
perpendicular to it. Neglecting SOC for a moment,
our DFT calculations show that, close to the Q, point,
the energy contours are to a good approximation
ellipses whose axes are parallel to k. and k, (see
figure 5(a)). Therefore, to a first approximation the
dispersion around Q; is quadratic with different
effective massesm) , and mg,y along k. and k,:

;qu 2 fizq 2
Eq(q) = —2 =, (6)
2mQ,x 2mQ)y

where the wavenumbers g, and g, are measured from
the energy minimum of the dispersion (see section 6.3
for details). As one can see in table 8, the ratio of the
effective masses is m&y / mg,x ~ 2 for MoX, and WTe,

and mg,},/m&xz 1.3-1.8 for WS,, WSe,. The SOC has
two major effects (see figure 5(b)):

(1) it splits the spin-degenerate levels by an energy
244, and

(ii) the effective masses in the spin-split bands are
different.

Similarly to section 5.2, we introduce the notation
QY (QY) for the higher-in-energy (lower-in-
energy) spin-split CB at the Q, point (see figure 5(b)).
The basic characterization of these bands therefore
requires two effective masses for each of the two spin-
split bands and the spin-splitting energy 24,. In addi-
tion, it is also important to know the energy difference
Exq between the band extrema of the Q* and K’
bands. These parameters, obtained by fitting to our
DFT band structures, are shown in table 8. The fitting
range we used was ~ +7.5% of the I'-K distance
around the Q pointin the k, direction and roughly half
of that in the k, direction. Looking at table 8 one can
see that the effective masses obtained from the two
DFT calculations are again in good agreement, while
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Figure 5. (a) Energy contours at the Q point obtained from (HSE,LDA) DFT calculations for MoS,. SOC is not taken into account.
The energy difference between the energy contours is 0.04 eV. (b) Band structure of WSe, along the 'K direction around the Q point
with SOC (red and blue lines) and without SOC (green line). The bands without SOC are shifted in energy for clarity. Vertical bars
indicate the k, values at which the corresponding curve has a minimum. The results were obtained from (PBE,PBE) DFT calculations.

small differences can be seen in the results for 24q.
However, there are noticeable differences in the
energy separation Ex, between the bottom of the CB
at the Q and the K points, which we ascribe to the dif-
ferent lattice constants used in the two types of DFT
calculations. There are no experimental results for Exq
to date, except for MoS,, where the data indicate that
Exg Z 60 meV [132]. Note, however, that the ARPES
measurements in [132] were performed on potas-
sium-intercalated samples, and the effects of the inter-
calation on the band structure of TMDCs have not yet
been studied in detail. We also note that computation-
ally Exq, in contrast to the band gap Eyg, appears to be
less sensitive to GW corrections® if the latter calcula-
tions are well converged. As already pointed out in
section 5.2, due to the lack of experimental evidence, it
is currently difficult to tell how accurate these predic-
tions for the effective masses and spin-splittings are.

We have also calculated the carrier density ng at
which the Fermi energy, measured from the bottom of
the K-point valley in the CB, reaches the bottom of the
Q-point valley; see table 8. We assumed a simple para-
bolic dispersion for the CB in the vicinity of K, where
the effective masses of K} and K{? are given in
table 3. Our results suggest that for MoX; it would not
be easy to achieve the doping levels needed to populate
the QY valleys, but for WS, and WSe, the required
doping levels appear to be attainable.

As noted in [37], the valley—spin coupling is pre-
sent not only in the K and —K valleys, but also in the Q;
valleys, and this may have experimental consequences.
The calculated spin polarization of the CB between the
K and the Q ; point is shown in figure 6 for MoSe, and
WSe,. One finds that despite the band crossing(s)
between the K and Q) points, for MoS, and MoSe, the
spin-polarization of the Q? band is the same as the
spin polarization of the K C(lf) band (see figure 6(a)).

Private communication by Diana Qiu, see calculations in [47].

For WX, and MoTe,, however, due to the band cross-
ings, the spin-polarization of Kc(g) is opposite to the
spin polarization of Q% (figure 6(b)). The spin polar-
ization of the Qi(l) and Qi(z) bands in other Q; valleys
can be deduced by taking into account time-reversal
symmetry and whether they are along the /-K or /-
(—K) line. The spin-polarization of bands at the Q;
points determines which scattering processes are
allowed or suppressed between the K (—K) and Q ; val-
leys. This is illustrated in figures 6(c) and (d). For
example, in the case of MoS, and MoSe, (figure 6(c))
scattering from K to Q(?, Q{?, and Q) is allowed,
while scattering to Q{V, QV, and Q.Y is, strictly
speaking, also allowed but should be suppressed with
respect the former processes due to the relatively large
spin-splitting 2A.

6.3. k-p Hamiltonian

Due to the low symmetry of the Q; points in the BZ
and because there are many nearby bands in energy,
there is a large number of band-overlap parameters
that would need to be taken into account in a detailed
multi-band k-p model. Therefore it is more difficult to
develop such a theory and it would offer less insight.
Nevertheless, a low-energy effective k-p Hamiltonian
can be derived with the help of the theory of invariants
[57] (for arecent discussion see, e.g., [156] and [157]).
The pertinent symmetry group is Cy,; for convenience,
its character table is shown in table 9 [58].

As in the case of the K and —K valleys, the Q;-point
minima are pairwise connected by time-reversal sym-
metry and to describe this one can introduce the
matrix z,, whose eigenvalues, 7 = +1 label individual
members of the pairs of valleys. As an example, let us
consider the Q; (r =1) and Q4 (r = —1) minima,
which can be found along the /'-K and I'H — K)
directions, respectively (see figure 2(c)). This direction
is parallel to the k, component of k. Using table 9, the
most general Hamiltonian, up to second-order in k
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and taking SOC into account, reads:
2
7%k 5

Zmé’j

7%k,

7,8
ZmQ’xy

72%k2

2m

HT,S —_

+ Ags.T; + atkys; + azk,s,

+ bik.t, + byk,7, + Eq, (7)

1/m(Q,x,y,xy)~ are effective masses, s = +1 are the
eigenvalues of the spin Pauli matrix s,. Further-
more, Eg is the band-edge energy if SOC is
neglected, A, is the spin-splitting at Q, and a, ; and
by, are material parameters to be discussed later.
Since we are going to develop a theory in which the
dispersion is parabolic, in contrast to section 5, we
will not keep track of the free-electron contribution
explicitly.

To simplify the discussion, let us first neglect the
spin degree of freedom. Then A; =a;, =0 and
m(’éfx,y’m = m(OQ,x,},,xy). Since close to Q; (Q4) the
energy contours are, to a good approximation, ellipses
whose axes are in the k. and k, directions (see
figure 5(a)), one finds that1 / m(%,xy) = 0. The effect of
the terms ~by, b, in equation (7) is to shift the mini-
mum of the dispersion. Therefore introducing the
wavenumbers g, and gq,, which are measured from
k = (tkq, 0), i.e., from the Q, (Q,) point, one can set
b, = b, = 0 and write

nq?  q
H(g = OX + 0}/ + EKQ, (8)
ZmQ,x ZmQ’},

where Eyxo measures the energy difference with
respect to the K point in the absence of SOC. The

effective masses mQ, and mg)y are in general
different.

Taking SOC into account, H5* (equation (7)) can
be re-written in the following form:

}%2<qx + s, ‘JQ,x>2

TS
Hy =

2
ﬁz<qy + 5, qQ)y>
2me;,

+ AQSZTZ + EKQ,

+

(9)

where Exq, is defined in figure 2. One can see that SOC
has the following effects:

(i) itsplits the bands and opens a gap A, between the
spin-up and spin-down bands;

(ii) it shifts the minima of the spin-split bands off
from thek = (zkq, 0) pointbyq,, . andqy, ;

(iii) it makes the effective masses of the spin-polarized
bands different, so they are given by
l/l’l/l(Q)x,y)rys = I/H’I(Q)x,y)ﬂ - TS/5I’I’I(Q)x)y).

An illustration of (i) and (ii) is shown in
figure 5(b) taking WSe, as an example, where these
effects are most clearly seen. The material parameters
mé:;,y, Ao g,y Ag, and Egq can be obtained from,
e.g., DFT calculations; see section 6.2. We find that
dq,y is zero within the precision of our calculations and

qq,x is always very small.
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Table 10. Effective masses 1, at the I" point in the VB from DFT calculations. 1, is the free electron mass. The
energy difference Ex;- between the VBMG and VBMKT1 is also given. 71 is the hole density where the states at the I”
point start to fill with holes assuming the (HSE,LDA) values for Ex. Experimental values are shown in rows deno-

ted by ‘Exp’.

MoS, MoSe, WS, WSe, MoTe, WTe,
m;®/m, (HSE,LDA) -2.60 -3.94 -2.18 -2.87 -29 -5.19
m®/m, (PBE,PBE) -2.45 -3.49 -2.15 -2.70 -10.76 -4.18
m®/m, (Exp) —2.440.3° -3.940.3"
Exr (meV) (HSE,LDA) -70 342 -252 —496 —540 -630
Exr (meV) (PBE,PBE) —46 -329 -269 —506 -526 —646
Exr (meV) (Exp) ~—140" —380°

—370+40¢ —590+40¢

nr(10"%cm™)(HSE,LDA) 15.8 130 36.86 81.4 259 124.92

* Reference [107], ARPES measurements, exfoliated samples on SiO substrate.

" private communication by Yi Zhang, ARPES measurements, see [107].

¢ Reference [108], ARPES measurements, samples grown by MBE on bilayer graphene on top of SiC (0001).

4 Reference [152], STM measurements, samples grown by MBE on HOPG.

7. Effective models at the I"point

7.1.I'point

Next we consider the band structure at the I” point.
There are three main motivations to include the I
point in our work: (i) there is a local maximum in the
VB at the I” point, which could be observed in recent
ARPES measurement [107, 108] and therefore it is of
interest to compare the experimental and calculated
effective masses; (ii) there are several experimental reports
[137, 142, 143] on optical transitions over a broad energy
range showing peak(s) in the absorption of monolayer
TMDC:s at energies larger than the one corresponding to
the fundamental gap at the K point. Theoretically, it was
argued that in MoS, excitons can also be formed in the
vicinity of the I" point [47] and that these ‘C-excitons’ are
qualitatively different from the ones at the K point because
they arise from an effectively one-dimensional energy
minimum in the ‘optical band structure’ (for the exact
definition see below); and (iii) finally, understanding of
the VB and CB behaviour at the I point is important in
the interpretation of scanning tunnelling microscopy
(STM) experiments [146, 151-153, 158, 159].

7.2. Basic characterization and material parameters
We start the discussion with the VB maximum at the I”
point (VBMG). The spin-splitting at the I" point is
zero, and in the VB it remains negligible over a
considerable region of k space (see figure 2(a)). More-
over, to a good approximation the dispersion around
the VBMG is isotropic (see figure 2(b) and section 7.3)
and parabolic. Therefore it can be described by
)
Er (9 = B + 25, (10)
2mp
which is characterized by a single effective mass 11,
and the energy Exr, which is the energy difference

between the maximum of the K} band at the K point
and the VBMG. The values of m,® obtained from
fitting the results of our DFT calculations are given in
table 10 and experimental results, where available, are
also shown. The effective masses m;.> were obtain by
fitting the band structure along the I'-K direction in a
range of #21% of the I'-K distance. The calculated
m,> values are in reasonable agreement with the
available experimental results. There are, however,
noticeable differences between the theoretical and
experimental Exy values, which we attribute to
substrate effects. Note that the weight of the chalcogen
p orbitals is substantial at the I” point (see figure 3 or
[35]) so that one can expect a stronger interaction
between the substrate and the electronic states. Inter-
estingly, the 1, parameter does not seem to be
affected as strongly as E g by the substrate. Comparing
tables 4 and 10, one would expect the VBMG to be the
most important for the transport properties of MoS,
because it is probably quite close in energy to the
maximum of the K{) band (which we denote by
VBMKI1; we also introduce the label VBMK?2 for the
maximum of the K?) band), thus facilitating scattering
processes in the VB that do not require spin-flips.
Furthermore, according to our DFT calculations VBMG
lies in between VBMK1 and VBMK2 for MoS, and WS,,
while it lies below VBMK2 for MoSe, and WSe,.

Optical transitions at higher energies than the
ones at the fundamental band gap have attracted
considerable theoretical interest [47, 160-162]
recently. To obtain an insight into the possible tran-
sitions, we plot the optical band structure for mono-
layer TMDCs in figures 7-9 over the whole BZ. Here,
following [142] and [163], the optical band structure
is defined as the difference between the dispersions
of the CB and VB: E, (k) — Ey (k). For simplicity,
SOC is neglected in these calculation. A clear ‘gear-

vb
r
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shaped’ minimum [142] is noted both for Mo$S, and
WS, around the I" point (figures 7(a) and 8 (a)) and
for each material one can also observe saddle point
(s). Both minima and saddle pointslead to Van Hove
singularities in the optical density of states (see
below) and can have an important effect on the
interband optical transitions. For a more quantita-
tive understanding of the interband transitions
therefore one also needs to consider the optical den-
sity of states (optical DOS), which is defined as the
density of states of the optical band structure (the
terminology ‘joint density of states’ is also used; see,
e.g., [163]). For 2D systems it reads

(2727’,)2 /6 ([ECb (k)

- Ew(0)] - E) dk. (11)

p, (E) =

The calculated optical DOS for the monolayer
TMDCs that we have considered are shown in
figures 7-9. A peak in the optical DOS corresponding
to the minimum in the optical band structure is
present at ~2.65 eV for MoS, (figure 7(c)) and ~2.75
eV for WS, (figure 8(c)). However, other peak(s) and
a wide shoulder extending into higher energies can
also be seen in the optical DOS. We attribute these
features to saddle points in the optical band structure,
which can be observed, e.g., along the I'-K line for
WS, and to the saddle points at the M point in the

optical band structure of all four MX, materials.
These observations motivate us to have a closer look
at the band structure at the M point as well, which is
presented in section 8.

Finally, we emphasize that for a quantitative
understanding of the optical band structure and the
interband optical transitions the effects of SOC are
also important. In general, they lead to spin-splitting
of the bands (except along the I'-M line), or splitting
of the Van Hove singularity (see section 8.1). The
energies of these splittings may be comparable to or
larger than the linewidth of the optical transitions
leading to, e.g., the possibility of spin-polarized optical
current injection [26, 162].

7.3.k-p Hamiltonian

As in previous sections, we use group theory to obtain
effective k.p Hamiltonians for the VB and CB.
Similarly to the K point, it is possible to set up a multi-
band k-p model. We have found, however, that the
number of necessary bands, even if one neglects SOC,
is quite large and, as will be shown later, terms up to
fourth order in k need to be taken into account in
order to capture the features of the band structure
related to the C-exciton terms. Therefore we present
here only a simplified discussion of the problem; a
more complete theory is left for a future work. As we
will show, important insight can be gained from the
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Table 11. Character table of the point group Dj;,.

D3y E o 2C; 25, 3C, 30,
Al 1 1 1 1 1 1
A} 1 1 1 1 -1 -1
Al 1 -1 1 -1 1 1
AJ 1 -1 1 -1 -1 -1
E’ 2 2 -1 -1 0 0
E” 2 -2 -1 1 0 0

spinless case, i.e., in the discussion that follows we will
neglect SOC.

The bands of interest are the VB, the (doubly
degenerate) CB (shown by green lines in figure 10(a))
and the first (doubly degenerate) band above the CB,
which we denote by CB+1 (black lines in figure 10(a)).
We will rely on group-theoretical arguments, which
are very convenient at the I” point, where, as men-
tioned above, several atomic orbitals contribute with
significant weight to each band. The pertinent sym-
metry group is Dsj, and the character table is shown in
table 11.

Symmetry analysis of the contributing atomic
orbitals implies (see, e.g., table IV in [60] and the dis-
cussion at the end of appendix A) that the VB at the I
point belongs to the A, irrep of Ds,. As already given
in equation (10), up to second order in q, the disper-
sion is parabolic and isotropic (see figure 2(b)),

characterized by a single effective mass m,>. Values of
m " obtained from fitting the DFT band structures are
shown in table 10. Along the /'K direction, the spin-
splitting of the VB is small up to wavevectors corre-
sponding to about half of the I'-Q distance. This is due
to the fact that in the vicinity of I" the dZ atomic orbitals
of the metal and the p, atomic orbitals of the chalcogen
atoms contribute with large weight to the VB (see
figure 3 and [34, 35]). Along I'-M all bands remain
spin-degenerate due to symmetry; see section 8.1. The
spin-splitting of the VB is therefore suppressed around
the I" point.

Turning now to the CB (shown by green lines in
figure 10(a)), at the I" point it is doubly degenerate and
antisymmetric with respect to the horizontal mirror
plane o;, of the crystal lattice. In group theoretical
terms, it corresponds to the E” irrep of Dj;,. Since the
VB is symmetric with respect to oy, one can show
using group-theoretical arguments that the optical
matrix element between the VB, which has A| sym-
metry, and the CB, which has E” symmetry, is zero at
the I" point.

However, as shown in figure 10, due to band cross-
ings one of the degenerate CB+1 bands becomes the
CB at some distance from I". The doubly degenerate
CB+1 band belongs to the 2D E’ irrep of Dsj,. This
irrep is symmetric with respect to oy, and optical tran-
sitions between bands of A and E’ symmetries are
allowed. Therefore as a starting point for studying the
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Figure 9. Optical band structures ((a) and b)) and the corresponding optical densities of states ((c) and d)) obtained from (HSE,LDA)
DFT calculations in which SOC was neglected. In (a) and (c) data for MoTe, are shown; in (b) and (d) data for WTe, are shown.

optical transitions in the vicinity of the I" point one has
to describe the CB+1 bands.

Up to second-order terms in the wavevector k, the
effective Hamiltonian describing the E’ bands in the
vicinity of I reads:

HPH = Ho+ HP + H), (12a)
HP) = (eas + ak?) - L, (120)
H) = —pk?
1, . )
(1 — cos (3¢k)) —(e‘6¢k - 1)e‘2‘¢k
2
, (120)

%(e‘ié‘ﬁk - 1)e2i¢k (1 + cos (3¢k>)

where 1, is a 2 X 2 unit matrix, and ¢, is the argument

ofk, + ik, (here the wavevector components k,and k,

are measured from I"). We also keep explicit the free-
72

electron term Hy = 2= - 1. The term ak? in H,”

describes the coupling of the CB+1 bands to other
remote bands with the same E’ symmetry, while H?)
captures the coupling of the CB+1 bands to other
remote bands with A symmetry. In contrast to the
VB, one can see that H? leads to a hexagonal
distortion of the energy contours of the CB+1 bands
already in second order of k. Looking at
equation (12¢) one can also note that, e.g., along the
'K line the off-diagonal and one of the diagonal

terms become zero. Therefore equation (12¢) alone
would suggest that one of the E’ bands is dispersion-
less. Since the dispersion of the higher-in-energy E’
band is indeed very flat along I'-K (see figure 10(a)),
we expect that H'? largely cancels H,.

SOC, as illustrated in figure 10(b), has two main

effects.

(i) At the I" point it leads to a splitting of the
otherwise degenerate states. Therefore, instead of
four-fold degeneracies, which would follow from
taking into account the spin but not the SOC
there are only two-fold degeneracies. (For the E’
bands in MoS; the splitting is too small to be seen
on the scale of figure 10(b)).

(i) Close to the I" point the band crossings between
the E’ and E” bands are turned into avoided
crossings.

One can observe, however, that beyond these avoi-
ded crossings the dispersion of the spin-split CB follows
that of the spinless CB quite closely. This is remarkable
for the following reason: it has been argued [142] that
the existence of the C-exciton is related to a minimum in
the optical band structure. Looking along the I'-K or I'-
M lines, the minimum in the optical band structure can
be found for k values where the spinful CB closely

20



10P Publishing

2D Mater. 2 (2015) 022001

A Korményos et al

35- a)

4
/
/

E-Ef [eV]

. no SOC

N

0 005 01 015 02 025 03 035
ke [2m/ag]

similar, except that the spin-splittings are larger.
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follows the lower-in-energy E’ band. We expect there-
fore that, theoretically, the starting point for describing
the C-exciton physics in an effective-mass approxima-
tion would be to extend the model shown in
equations (10) and (12a) by terms that contain higher
powers of k, especially for the E' bands, where these cor-
rections become important closer to the I” point than is
the case in the VB. Neglecting the coupling between the
two E’ bands and considering only the one lower-in-
energy band that becomes the CB, the terms up to
fourth order in k that need to be added to the dispersion
are

H® + H® = C® |k|3(1 + cos d)k)

+ |k|4[C1(4) +C® (1 + cos (l)k)
+ c3<4>(1 + cos¢k)2 ] (13)

where the constants C® and C%; can be obtained

from fitting the band structure.

Looking at figures 7 and 8, this approach appears
to be most useful for MoS, and WS,, where a clear
minimum in the optical band structure in the vici-
nity of I can be seen. However, the exact location of
the minimum in the optical band structure would
also depend on the SOC, which was not taken into
account in figures 7 and 8 and this introduces addi-
tional complexity into the problem. A detailed dis-
cussion of the optical band structure based on k-p
theory is therefore left for a future work. Numeri-
cally, using DFT calculations combined with maxi-
mally localized Wannier functions, the effects of
SOC on the optical transitions have very recently
been studied in [162].

7.4. I point wave functions and STM measurements
The shape and extent of the VB and CB wave functions
at the I” point can also play an important role in the
interpretation of STM measurements. Since there is a
growing experimental interest [146, 151-153, 158,

Table 12. Decay rate of monolayer MX, at the I" point in units of
/A,

MoS, MoSe, MoTe, WS, ‘WSe, WTe,
Myg 1.44 0.91 120 1.54 1.02 1.35
Xys 2.31 2.19 3.18 2.33 2.10 3.07
Hyp 1.53 1.20 2.03 1.60 1.23 1.98
Mca 5.10 3.50 5.44 3.50 3.28 5.37
Xvs 3.84 4.28 6.01 4.50 4.48 5.99
Hyp 5.01 3.89 5.50 6.40 3.96 5.49

159] in STM studies of monolayer TMDCs, we give a
brief account of calculations that can be used to
interpret STM measurements.

We first focus on the STM maps that one can
obtain using a tip with a curvature radius larger than
atomic distances at scanning distances comparable to
or larger than the lattice constant. In this case the cur-
rent is dominated by electrons tunnelling from the
metal with the largest k, momentum component at the
energy given by the scanning voltage. Therefore the in-
plane momentum components of the tunnelling elec-
tron can be neglected: k,, — 0. On one hand, this
implies that the real space 2D maps of the tunnelling
current should reflect the vertical extent of the /-point
wave functions in the CB and VB. On the other hand,
electron tunnelling into the band edges, which are at
the K and —K points, can take place as a two-step pro-
cess: first, the electron tunnels into a virtual state close
to the I" point in the corresponding band, then it emits
a BZ-corner phonon to scatter into the final state near
the band edge. The expected I-V characteristic there-
fore should have a tunnelling gap in the current of
magnitude of the phonon energy, counted from the
Fermi level in a doped 2D semiconductor or the band
edge in an undoped one.

STM images of bulk MX, can be simulated from
first-principles. Since in STM measurements one
detects the tail of either the VB or CB wave function,
depending on whether electrons or holes are injected
into the material, one has to determine the decay rate
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of the wave function of the relevant states in different
parts of the unit cell. This can be achieved by numer-
ical differentiation of the logarithm of the square mod-
ulus of the band-decomposed wave function along the
z direction (i.e., perpendicular to the sheet). For this
purpose we use a trilayer geometry to model the sur-
face of the bulk material, since we do not expect the
inter-layer interaction to affect the tail of the wave
functions severely. In these calculations we used the
optB88 van der Waals density functional [106]. This
functional should provide a significantly better
description of the interlayer interaction than the LDA
or PBE functionals. Figure 11 illustrates the decay rate
of the VB of MoS,. Three points are highlighted: the
position of the metal atom (M), the chalcogen atom
(X), and the centre of the hexagon formed by three M
and three X atoms on the surface (H). Large tunnelling
currents occur when the decay rate is low. For exam-
ple, in the case of the VB, the tunnelling current is
dominated by the contribution of the sublattice where
the metal atom is located in the VB. Note that the cen-
tre of the hexagon is also quite bright; this is due to
constructive interference between the p, and p,, orbi-
tals of the chalcogen atoms. Table 12 summarizes the
decay rates at the three notable positions in the unit
cell for the four MX, materials studied in this work. It
can be used to explain which sublattice is expected to
dominate the tunnelling current in a particular MX,
material. A recent experiment [152] has shown a I'-
point decay rate of ~0.9/A in monolayer MoSe, and
~0.7/A in monolayer WSe, on graphitic substrate.
These values are in good agreement with our calcu-
lated result of 0.91 and 1.02 1/A, respectively.

One can also envisage an alternative STM arrange-
ment where the tunnelling current is determined by
coupling with a single atomic site at the end of the tip
brought to atomic/subatomic distances from the 2D
material. In this case, momentum transfer and
momentum conservation are not problems for the
tunnelling electron; hence, the tunnelling spectrum
may reflect the structure of the electronic wave func-
tion at the band edges in the BZ corners. However, in
this case, the actual current maps would be affected by
the form of the atomic orbital of the last atom in the tip
and analysis of such details lies outside the scope of
this review.

8. The M point: spin—orbit splitting of the
Van Hove singularity

In section 7 we have already shown that optical
transitions in monolayer TMDCs are expected to
occur not only at the K and —K points, but at other
points in the BZ as well. Indeed, a strong light-matter
interaction was observed in [20] and attributed to Van
Hove singularities in the electronic density of states.
Moreover, strong absorption beyond the energy range
of visible light has been found in MoS, [143] and high-
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Figure 11. Decay rate in the unit cell of MoS,.

energy optical transitions (in the range of 1.5-9¢V)
have been studied using ellipsometry in [140]. Moti-
vated by these observations and by the fact that,
according to figures 7 and 8, the optical DOS is finite at
energies that correspond to transitions at the M point
of the BZ, we briefly discuss the dispersion of the VB
and CB at the M point. Higher energy optical transi-
tions in TMDCs were studied theoretically [160, 162],
and the effects of a saddle point in the dispersion have
also been investigated recently in monolayer gra-
phene [164].

8.1. Basic characterization and k-p Hamiltonian
Figure 12 shows the band structure of a monolayer
TMDC near the M point of the BZ. Looking at
figure 12(a) first, where the SOC is neglected, one can
see that upon going from M towards K the energy
difference between the VB and the CB decreases,
whereas along the M-I direction it slightly increases.
This leads to a saddle point in the optical band
structure, as shown in figures 7 and 8. It is important
to point out that for all the monolayer TMDCs
considered here the energy difference between the CB
and the CB+1 (VB and VB—1) bands is rather small
compared to the band gap; the difference between the
CB and CB+1 is around 0.5eV and the difference
between the VB and VB—1 is 0.15-0.3 eV. Therefore,
regarding optical transitions, the situation at the M
point is different from the K point, where the CB and
the VB are well separated in energy from all other
bands. It is also different from the situation encoun-
tered at the I" point, where the CB was antisymmetric,
while the VB and the CB+1 bands were symmetric
with respect to the horizontal mirror plane. Here all
four bands are symmetric and in-plane polarized
electromagnetic radiation can, in principle, induce
transitions between them.

The discussion of the band dispersion at the M
point is simplified if one introduces the local
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Figure 12. Band structure of a monolayer TMDC at the M point obtained from DFT calculations (a) without taking SOC into account;
and (b) with SOC. In (a) the labels above the bands denote the pertinent irreps of the group C,,. The actual calculations were
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coordinate system shown in figure 13. Here both ¢,
and g, are measured from the M point, the former
being parallel to the K—M direction, the latter to the I'—
M direction. Similarly to the Q point, we content our-
selves with the construction of a k-p Hamiltonian
based on the theory of invariants. The six M; points in
the BZ are pairwise connected by time-reversal sym-
metry. To describe this one can introduce the matrix z,
, whose eigenvalues, 7 = +1 label individual members
of the pairs of M points. In the simplest approxima-
tion, the Hamiltonian of all four bands of interest is

n*q} 7 2‘1;

7,5 _
HM - 2m s
mM,x

Dingy + 7,4Mm4,.52 (14)

One can see that the dispersion is parabolic and
characterized by different effective masses my;’, and
myy,, along the M—K and M-I directions, respectively.
To understand the implications of equation (14), let us
first neglect the SOC, ie., we set Ay =0 and
Myix = My .. Looking at figure 12(a) one can notice
that for the CB (denoted by B,) the effective masses
mpc and my;, have the same sign. For the VB
(denoted by A;), however, their sign is different.
Similar conclusions hold for the CB+1 and the VB-1
bands. Therefore in the optical band structure one has
a saddle point in the dispersion and consequently a
Van Hove singularity.

SOC, as shown in figure 12(b), has two main
effects.

(i) It leads to a linear-in-q, splitting of the bands
along M-K, while the bands remain spin-degen-
erate along M-I". This means that the saddle
point in the optical DOS of any two bands will
also be split along M—K. In addition, the effective
mass 1,7, becomes spin dependent.

(ii) Itturnsband crossings into avoided crossings.

As shown in figure 12(b), the linear-in-g, splitting
of the bands is a rather good approximation close to
M. However, the situation is complicated by the fact
that the CB+1 (VB—1) band is quite close in energy to

Table 13. Character table for the group C,,. Basis functions for
agiven irrep arealso shown. R, ,, , denotes the angular
momentum components.

DZv E C2 Oy Op
A, q; q, 1 1 1 1
A, R, 1 1 -1 -1
B, Ry q: 1 -1 1 -1
B, .4, R, g 1 -1 -1 1

the CB (VB). SOC couples the CB and CB+1 (VB and
VB-1) bands and leads to avoided crossings between
them. Therefore a more complete description would
require a model similar to the K point, where the cou-
pling of nearby bands is explicitly taken into account.
We leave the construction of such a model to a
future work.

The Hamiltonian of equation (14) can be con-
structed using the theory of invariants. The symmetry
group at the M point (and along I'-M) is C,,, which
includes the following symmetry operations: a twofold
rotation C, around the I'-M direction, a reflection o,
with respect to the g,—q, plane, and the reflection oy,
with respect to the q,—q, plane. The character table of
C,, is shown in table 13, where the relevant basis func-
tions, in the chosen coordinate system, are also given.
The Hamiltonian, which can be constructed with the
help of table 13 and which is at most second order in
the wavenumbers g, and g,, is given in equation (14).
The symmetries of the individual bands at the M
point, which can be deduced by, e.g., considering
which atomic orbitals contribute to a certain band, are
indicated in figure 12(a).

It is important to note that there is another possi-
ble optical transition, which may have a similar energy
to the one between the VB and the CB at the M point.
This transition can occur between the upper spin-split
VB and the lower spin-split CB+2 (see figure 14). Our
DFT results shown in table 14 suggest that for MoX,
the transition at the M point has lower energy, while
for WX, they are nearly degenerate. This prediction
does not take into account excitonic effects, which are
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Table 14. Higher-energy optical transitions in monolayer TMDCs based on DFT calculations. SOC is

taken into account.

MoS, MoSe, WS, WSe, MoTe, WTe,
En,ve—cp (eV) (HSE,LDA) 2.93 2.52 3.60 3.03 1.67 2.04
En,ve—cs (eV) (PBE,PBE) 2.83 2.48 3.61 3.04 1.67 2.07
Epve—cs (eV) (GW) 3.87°
Ex,vB—cp+2 (eV) (HSE,LDA) 3.56 3.02 3.77 3.16 2.46 2.48
Ex ve—cp+2 (eV) (PBE,PBE) 3.40 2.88 3.66 3.05 2.31 2.37

2 Reference [47].

Figure 13. Local coordinate system at the M point of the BZ.
The twofold rotation axis C, is also shown.

also expected to be important and may determine
which transition actually has the lower energy, because
the exciton binding energies at K and M may be differ-
ent. We expect that, e.g., the polarization of the photo-
luminescence can give important information about
these transitions. If the incident light is circularly
polarized, then the photoluminescence related to the
transition VB — CB + 2, which takes place at the K
and —K points, should also be circularly polarized, as is
the case for the well known VB — CB + 2, transition.
Since the local symmetry at the M point is different, we
do not expect that the photoluminescence due to the
VB — CB transition at the M points is circularly
polarized.

9. Conclusions

In this short review we have focused on the band
structure of monolayer TMDCs. Our aim has been to
discuss all the details of the band structure that we
believe are relevant for transport and relaxation
processes and optical transitions. The two main tools
that we used were the (local) symmetries of the BZ (an
essential ingredient of the k-p expansion) and DFT
calculations. The first of these tools allowed us to
capture general features of the band structure. Mate-
rial parameters, such as effective masses, spin-split-
tings, and band edge energy differences depend on the
chemical composition of particular TMDCs and are
important for quantitative predictions. For this reason

; '
3 :
n 3 1>CB+2
w 3 VB—CB
0 SN o Ay
05 \\/\
1 - '\‘7
r Q K M r

Figure 14. Optical transitions discussed in sections 7.2 and
8.1. The actual band structure calculations were performed
for Mo$, using the (HSE, LDA) method.

we also performed extensive DFT calculations which
can, in many cases, predict material parameters
accurately. From a theoretical point of view, an
important aspect of the approach used in this work is
that it leads to explicit k-p Hamiltonians that can be
used to address a variety of problems. In particular,
they are expected to be accurate when external
perturbations vary on length scales much larger than
the interatomic distances. Therefore we believe our
results will help to develop further (semi)analytical
approaches to study, e.g., exciton physics [87, 165—
170], plasmons [171, 172], diffusive transport [173],
spin [174, 175], noise [176], topological properties
[177, 178], valley-currents [123, 179, 180], proximity
effect [181, 182], electron—electron interaction [183],
and quantum dots [49, 184]. On the other hand, TB-
based methods are probably more appropriate for
studying the effects of, e.g., point or line defects
[38, 185] on transport.

The picture that emerges from this study is that
monolayer TMDC:s in the ballistic limit should display
a remarkable variety of optical and electronic proper-
ties, many of which are yet to be verified experimen-
tally. Nevertheless, the recent reports of achieving
high-transparency these
[186, 187] are promising a further rapid development
of this field.

contacts to materials

24



10P Publishing

2D Mater. 2 (2015) 022001

Acknowledgments

AK acknowledges discussion with Yi Zhang, Philip
King, Diana Qiu, and Timothy Berkelbach. We also
acknowledge support by the DFG through the SFB 767
and SFB 689, the EU through the Marie Curie ITN
S3NANO, EC Graphene Flagship Project CNECT-
ICT-604391, ERC Synergy Grant Hetero2D, Royal
Society Wolfson Research Merit Award, and EPSRC
Science and Innovation Award EP/G035954.

Appendix A. Seven-band k-p model at the K
(—K) point

In this section we give a brief account of the seven-
band k-p model, which lies behind the effective
Hamiltonian of equation (2). The following discussion
is based on our previous work published in [49] and
[60]; we believe it is helpful to present the main steps
here again to make this work self-contained.

Our seven-band model (without spin) contains
every band between the third band below the VB
(which we denote by VB—3) and the second band
above the CB (denoted by CB+2), i.e., we take the basis

b b— b— b b
{I‘IU]:TY’2 3) 5>)| YIFY;’ 2) 5>)|){IEY; 1) S)) |lIJX/ > S>)|?I]§; > 5>)
FZvans s),|5”1§}’+2, s) } The wupper index b=
{vb —3,vb—2,vb -1, vb, cb, cb + 1, cb + 2}
denotes the band, the lower index y indicates the perti-
nent irrep of the point group Cs;, which gives the sym-
metry of the bands at the K point of the BZ (see
table A1 for the character table of Cs;,). The spinful
symmetry basis functions are introduced by
|’f’,ﬁ’, sy = |5”f)®|s), wheres = { 1, | } denotes the
spin degree of freedom. An important symmetry of the
system is that is has a horizontal mirror plane. As a
consequence, the basis states can be grouped into two
sets: the first one contains states whose orbital part is
symmetric (even) with respect to the mirror operation oy,:
on| Y’If ) = |5”ﬂb ). This first group contains the following

b b b-3 b+2
states: {|5”Avr s SIS SR, 5 8), | PE0 T, s) } The
second set contains antisymmetric (odd) states:
a;,l‘z"ﬂb ) = —|Y’ﬂb ).The corresponding states are

b—2 b— b
(#5072 0, 1907, ), 199, ).

Two important questions can be raised at this
point.

(1) What is the motivation to include seven bands in
the model and not more (or less)?

(if) How can we identify the irrep of C3;, according to
which a given band transforms?

To answer (i), we remind the reader that, as men-
tioned in section 5.3, a strictly two-band model, such
as the one introduced in [26] (see equation (5)) cannot
describe, e.g., the TW of the bands or the details of the
spin-splitting in the CB. In k - p theory these effects

A Korményos et al

can be understood as arising from the coupling of the
VB and CB to other energy bands. As a first step, let us
neglect the SOC. The operator Hy, which describes
the interaction of various bands in k-p theory (see
equation (A.2) below) is symmetric with respect to oy:
oy, lHk.Pa;, = Hyp. Therefore, non-zero matrix ele-
ments (Tf, slHk.PlT,ff, s) only exist between states

|‘I”,i7 , syand| ‘I’,fr/ , s) whose orbital parts are either both
even or both odd with respect to o,. A natural exten-
sion of a model containing only the VB and the CB is
to include one more band, which, regarding its energy,
is below the VB and one above the CB. The symmetry
properties of individual bands can be extracted from
DFT band-structure calculations. We found that, at the
Kand —K points, the first symmetric band below the VB
is the VB—3 and the first even band above the CB is the
CB+2 band. Thus we arrive at a four-band model con-
12X, )5 150, ), 19507 5), [WEPT2, 5)).
This four-band model can already describe the elec-
tron—hole asymmetry and the TW of the spectrum [60].
The next step is to take into account the SOC. In the
atomic approximation the corresponding Hamiltonian
is given by equation (A.3). This Hamiltonian can have
non-zero matrix elements between even and odd states.
Since our aim is, ultimately, to obtain an effective
Hamiltonian describing the coupled dynamics of the VB
and the CB, it is natural to enlarge our basis of four even
states by those odd states which, regarding their energy,
lie between VB-3 and CB+2: these are
{|Y’Evi/b_2, s), |5”EV/2/b_1, s), |[ZP*L s)1In this way we set
up a seven-band model, as indicated above.

As for question (ii), we next discuss how to find
out the symmetries of the bands. Some DFT codes,
suchas WIEN2k [188], can directly provide this infor-
mation. If this is not available, many DFT codes can
calculate the projection of the Kohn—Sham wave func-
tions of each energy band onto atomic orbitals @/,
where n = {M, X1, X2} denotes whether the given
orbital is centred on the metal (M) or on one of the
chalcogen (X1, X2) atoms in the unit cell, and the

taining

lower index 1/:{5, P> Py B> ddy, dy, dy, dxz_yz}
indicates the type of orbital. Such a calculation is also
shown in figure 3. To take into account the three-fold
rotational symmetry of the system, we use linear com-
binations of these orbitals to form spherical harmo-
nics Y{". We then consider the transformation
properties of the Bloch wave functions formed with
these spherical harmonics:

¥ (k, 1) = % Zeik'(R”“")

R,
x Y,’"(r ~[Ro+ t”]). (A.1)

Here the summation runs over all lattice vectors R,,,
ty and tx; = tx, give the positions of the metal and
chalcogen atoms in the 2D unit cell, and the wavevec-
tor k is measured from the I" point of the BZ. By
examination one can then find out how the Bloch wave
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Table 12&1. Character table for the group Csy, (6). Here

w=¢3.

Csh E G (o5 Oh S ,C3
A’ 1 1 1 1 1 1
A" 1 1 1 -1 -1 -1
E/ 1 ® ®* 1 ® o’
E; 1 @’ ® 1 @? ®
E/ 1 ® ? -1 - —w?
E; 1 @? ® -1 —w? -

functions 7, (k, 1) transform at, e.g., the k=K
point of the BZ when the reflection o, or the rotation
by 2z2/3 around an axis perpendicular to the plane of
the monolayer (denoted by C;) is applied. Considering
first oy, it is clear that the d orbitals of the M atoms are
either even ({d.2 dyy, de2_,2}) or odd ({dy. dy.}).
Regarding the p orbitals of the X1 and X2 atoms,
which are above and below the plane of the M atoms,
one can also form linear combinations of Y’l)f,} (k, r)
and Y’l},if (k, r) which are either even or odd (see
table A2 ).

The Bloch wave functions of equation (A.1) are
also eigenstates of the rotation operation C; with an
eigenvalue 4, : C3 ¥}, = A" /" . Atthek = K or —K
points, 4, can take on one of the following three
values: 1, ei%ﬂ, e 1% (see table A1). Note that Cs acts on
both the spherical harmonics part Y;" (r) and on the
plane-wave component e®+t) in ', (k, r) [58],
because in a rotated coordinate system the vectors tj,
and tx are also transformed. For this reason the eigen-
values 4, corresponding to ¥/, (k = £K, r) depend
on the choice of the unit cell, which determines the
centre of rotation. In our case the unit cell is defined in
figure 1(b) and the centre of rotation is the centre of
the hexagon formed by the M and X atoms. Other pos-
sible choices are, e.g., the position of the M or the X
atoms (see, e.g., table 2 in [77]). Once the eigenvalues
of ¥/ (k = K, r) under the action of ¢} and C; are
known, a symmetry label, e.g., A" or E’, of an irrep can
be assigned to each state. These are listed in table A2.
In the single-particle picture hybridization between
different Bloch wave functions should preserve sym-
metry properties; hence, e.g., the CB at the K point can
be thought of as a linear combination of ¥, and

% ( 'Plf(ll + 'f’lﬁz ) (third row in table A2). The corre-
sponding Bloch wave functions at the —K point can be
obtained by complex conjugation, because the K and
—K points are connected by time-reversal.

The above discussion illustrates how symmetries
of each band at each high-symmetry point in the BZ
can be found and used to construct effective Hamilto-
nians. It is important to point out the following:
although, as mentioned above, the eigenvalues with
respect to C; and hence the assignment of irreps may
depend on the choice of the rotation centre, the form
of the Hamiltonian (2), up to a unitary transforma-
tion, does not depend on such choices.
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A.1.k-p Matrix elements

The k-p matrix elements, which characterize the
coupling of the bands away from the K and —K points,
are calculated using the Hamiltonian

1 7 . . _
Hip = oo (0d + ) = Hip + My (A2)
e

where p, = P =+ ifj, are momentum operators. As the
operator (A.2) does not contain spin-operators, the
matrix elements are diagonal in the spin-space.
Furthermore, the matrix elements of M are con-
strained by the symmetries of the states with respect to
Cs. Namely, the relation (¥x°|p, |¥5**)=
(PPICICs b, CIC51PEH) should hold.
Since (¥}°|Cy = (¥X"l, C3p,Cf = ™23, and
cb+2\ _ —i2a/3|ypcb+2
G|V ™) =e [#E ") one that

b b+2 i b b+2
(ERIHE WD) = WP M ),
which means that this matrix element must vanish. By

b | 1y— b+2 .
contrast, (W3’ |Hi,|¥g ") =y, is allowed to be
finite.

The matrix elements Hlfp calculated at the K point
of the BZ are shown in table A3, where the diagonal
elements are the band-edge energies. The matrix ele-
ments at the —K point can be obtained with the sub-
stitutionsy; — 7" andq, — —q..

Concrete values for the parameters y, can be
obtained for each material by, e.g., directly evaluating
the matrix elements (‘Plf | ﬁilY’,f/’) using Kohn-Sham
orbitals. We used this method to calculate the values
denoted by y in tables 6 and 7.

obtains

A.2. Spin—orbit coupling
In the atomic approximation the SOC is given by the
Hamiltonian

A 1dV(n)

4mic*r dr

LS, (A.3)
where V(r) is the spherically symmetric atomic
potential, L is the angular-momentum operator, and
S = (Sx» Sy 5;) 1s a vector of spin Pauli matrices s, s,,
and s, (with eigenvalues =*1). Note that
L-S=1L,s,+L,s_+L.s,, where I:i =L, + i]:y
and s, = %(sx + is,). The task is then to calculate the
matrix elements of equation (A.3) in the basis
introduced earlier in this section.

The non-zero matrix elements Hy, can be obtained
by considering the transformation properties of the
basis states and angular-momentum operators with
respect to the mirror operation oy, and the rotation Cs.
Note that in contrast to the Hamiltonian in table A3,
the SOC Hamiltonian shown in table A4 has non-zero
matrix elements between symmetric and antisym-
metric basis states as well. This is due to the fact that
the L, operators are themselves antisymmetric with
respect to o,. The full SOC Hamiltonian at K is shown
in table A4.
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Table A2. Basis functions for the irreducible
representations of the Csj, group of the K point.
The rightmost column shows the band to which a
given basis function contribute. The basis func-
tions for the K’ point can be obtained by com-
plex-conjugation.

Irrep Basis functions Band
A sz,w—z:% ( L+ Y’l),(—zl) VB
A" wM ,%(Y’lf(_ll - y/lf‘_zl) CB+1
Ef 172505 (¥ + ¥i7) CB
E} v (S - ) VB3

CB+2
E/ M ),%(Y’ffll - ¥ VB-2
Ej VLo (0 + ) VB-1

The SOC Hamiltonian at —K can be obtained by
making the following substitutions:
P57 s) = 1957 ), it ) = 15 s),
VE sy = 1T 1T~ 19T ),
Ay = Apys Si = =54, S, = —S,.The change of the
wave-function symmetry notation follows from the
assumption that orbital wave functions at K and
—Kare connected by time-reversal symmetry, i.e.,
|'P,i’ (K)) = IA<0|Y’£,( —K)), where K, denotes com-
plex conjugation.

Low-energy effective Hamiltonian

The low-energy effective =~ Hamiltonian  of
equation (4a) can be obtained from Hy + Hyp + Hy,
by means of Lowdin partitioning (see, e.g., [150]) by
considering terms up to third order in various off-
diagonal couplings.

Appendix B. Fitting procedure at the K
point

The aim of this section is to explain the fitting
procedure that we used to extract the material

A Korményos et al

obtained can be compared to other works, we think
that it is important to give some details of the fitting
procedure.

To simplify the notation, we consider the K point
and suppress the 7 index. The eigenvalues of the low-
energy Hamiltonian of equation (2) read

Ep + Ex
2

( hz aS + ﬂs] 2
+ + q
2m, 2

Eb — Evp
2

EY =

_ 2
o : asqz) +f(q), (B.I)

fQ@) = IrPq’
+ laP 7 11| 2 cos (6 + 3q,)

cos (9,75},)], (B.2)

+af P = 171
where &4 = &y + 75 Ay, and similarly for &g,
¢, = arctan (g p /4,), 0, (6,,) are the relative phase of
ks and y (n, and y), and + (—) sign corresponds to the
CB (VB). Since equation (B.1) depends on the
parameters y, &, f3, ks, and 7, in a nonlinear way, some
care has to be taken in the fitting procedure.

First, one can determine |y |, a,, and # in the fol-
lowing way. For small enough q, the largest energy
scale under the square root in equation (B.1) is the
band gap (for a given spin s) Eéfg) = &g, — & Expand-
ing the square root one finds

n 2
EP wew+|— +p + g,
2m, Et(jg)
n 2
EV%ép+|— +a. — i Q. (B3)
2m, Eésg)

In this approximation E{* is described by a simple
parabolic dispersion where the effective masses are
given by

parameters that appear in the Hamiltonians of e e Iy
equations (4b)—(4e) from our DFT calculations (see T © = Py + 4+ 0 | (B.4)
tables 6 and 7). In order that the parameter sets < ¢ bs
Table A3. Matrix elements of H}., at the K point.
Hy, LSO 2D B 2 D | 7 aO I | ¢ SO R 7 O B 9 )
130, 5) e i h. N 0 0 0
15, 5) %4y & 1 Yol 0 0 0
|5”g’21”3, s) »a % d, £,_3 0 0 0 0
I#E2*, ) V4 Y4y 0 Een 0 0 0
#2072 ) 0 0 0 0 £v-2 K- N
|Y’EV2}?_1, s) 0 0 0 0 %, €1 Yo 4
1P+, ) 0 0 0 0 ra %, Ect1
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Table A4. Matrix elements of HZ at the K point.
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He b I¥ER ) I¥ETLs BT IR I ety

|32, ) S.4, 0 0 SA4,, S4y-1 0

P, s) 0 S.A, 0 0 S A, Sileein
L 0 S:4,-3 SeBvserr  Sibvseo 0 A3
P2 ) 0 S0 542 S.Acs Sihesays 0 S-Aryyer
P72 S, SAsys  SALs S.4y-s 0 0

L) SALL S 0 0 0 S:Au-1 0

[P, s) 0 S Al SHA] 3041 Sl en 0 0 SzAchn

oA Iy[? (B.5) 10), we think that this is a reasonable approach to take
2m© | 2m, +as E tgf,;) ) into account the results of GW calculations.

Since Eéfg) can be directly read off from the DFT

calculations and 2m ) and 2m}) can be obtained by
fitting the CB and VB in the vicinity of the K point with
a parabola, equations (B.4) and (B.5) constitute four
equations for five unknown parameters |y |, a;, and /3.
As explained in section 5.2, the fitting around K was
done in a range that corresponds to 5% of the I'-K
distance. The dispersion over this range can be
considered to be isotropic and the difference in the
effective masses along K-I"and K—M can be neglected.
Over the same range in q, one can also fit the function

Mﬂd’ + 0”@ + J(E())*/4 + ¢ ¢ to the CB and
the function 2= ‘b+€‘b +aq - J(E (S))2/4 + c“’q to

the VB such that the fitting parameters ¢* and c{*
simultaneously give the best fit to the dispersion both
in the CB and in the VB. Comparing to equation (B.1),
one can see that this corresponds to

as + h?

ath_ o) = —, (B.6)
2 2m,

f—a 2¢f)

——— + == (B.7)
2 ES)’

i.e., we have obtained four more equations for |y |, a;,
and f. Using equations (B.4)—(B.7) one finds eight
equations for the five unknown parameters|y |, a;, and
A, which can be solved as a linear least-squares
problem. The solution, however, depends on the value
of the quasiparticle band gap Ebs)/ 2 used in the least-
squares problem. As shown in table 5 this is signifi-
cantly underestimated in DFT calculations. Therefore
we have performed the fitting using both the DFT
band gap and the GW gap. Note that in order to find
El()fs) one has to add to the E},, values shown in table 5
the relevant spin-splitting energies, which can be
found in tables 3 and 4. The two approach lead to two
sets of parameters In both cases the same effective
masses m ) andm ), obtained from our DFT calcula-
tions, were used. Since the available experimental
results suggest that DFT can capture the effective
masses quite well, at least in the VB (see tables 4 and

Finally the four remaining parameters k; and 7,
were determined in following way. Similarly to the
previous step, a function of the form

Ep + Exp + Cl(s)qz

)2 (5) o2
Ebsg) /4 + cq (B.8)
+ci |qf cos 3¢y + cPqt

was fitted to the VB and CB. Here ¢ and ¢ were
kept fixed at the values that were obtained at the

previous step and the parameters ¢ and ¢} were

required to give the best fit simultaneously to both
the CB and the VB. The fitting was performed along
the I'-K-M directions around K and the fitting
range corresponded to ~16% of the I'-K distance.
Note, that cos 3¢q =—1 (cos 3¢q = 1) along I'-K
(K-M). Since |y |, a;, and f are already know by this
step, ks and 7, is calculated as k; = c35) (/2 ly]) and

=[(f — a;)*/4 — c\1/1y | (see equation (B.1)).
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