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In silicon spin qubits, the valley splitting must be tuned far away from the qubit Zeeman splitting
to prevent fast qubit relaxation. In this work, we study in detail how the valley splitting depends on
the electric and magnetic fields as well as the quantum dot geometry for both ideal and disordered
Si/SiGe interfaces. We theoretically model a realistic electrostatically defined quantum dot and find
the exact ground and excited states for the out-of-plane electron motion. This enables us to find the
electron envelope function and its dependence on the electric and magnetic fields. For a quantum
dot with an ideal interface, the slight cyclotron motion of electrons driven by an in-plane magnetic
field slightly increases the valley splitting. Importantly, our modeling makes it possible to analyze
the effect of arbitrary configurations of interface disorders. In agreement with previous studies, we
show that interface steps can significantly reduce the valley splitting. Interestingly, depending on
where the interface steps are located, the magnetic field can increase or further suppress the valley
splitting. Moreover, the valley splitting can scale linearly or, in the presence of interface steps,
non-linearly with the electric field.

I. INTRODUCTION

The spin of isolated electrons trapped in silicon-based
heterostructures is very promising for building high per-
formance and scalable qubits [1]. The long relaxation
time [2–4] and dephasing time [5–7] that are achieved in
these qubits are due to the weak spin-orbit interaction
and nuclear zero-spin isotopes. Strong coherent coupling
between Si spin qubits and photons using superconduct-
ing resonators has been realized [8, 9] while the fidelities
demonstrated for single and two-qubit gates are steadily
improving [10–14]. Having mentioned all these advan-
tages, we note that the nature of the degenerate conduc-
tion band minima, known as valleys, in bulk silicon poses
a significant challenge for the operation and scalability
of silicon spin qubits. It can be shown that a combina-
tion of biaxial strain as well as the sharp interface po-
tential lifts the valley degeneracy in Si heterostructures,
and gives rise to two low-lying states [1]. In general, a
qubit performs well only when the qubit energy splitting
is well-separated from any other energy scale in the en-
vironment. In Si spin qubits, the spin couples to the
valley degree of freedom due to interface-induced spin-
orbit interaction [15–17]. If the valley splitting becomes
equal to the qubit Zeeman splitting, a condition known as
spin-valley hotspot, the valley-spin mixing for the qubit
excited state reaches its maximum and gives rise to a
very fast qubit relaxation via electron-phonon interaction
[3, 18]. It is, therefore, of crucial importance to under-
stand how the valley splitting behaves as a function of
parameters of the system; namely, electric and magnetic
fields, the quantum dot geometry and the roughness at
the Si/barrier interface.

In studying the valley splitting, a suitable starting
point is the effective mass theory that can be used to ob-
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tain the electron envelope function. This envelope func-
tion, in turn, depends on the above-mentioned system
parameters, and the valley splitting can be deduced from
it. As we review in Section II A, in the absence of a
magnetic field, the Hamiltonian describing the full enve-
lope function is separable. While the in-plane envelope
function is trivially given by the harmonic-oscillator wave
function (due to the in-plane parabolic confinement), to
our knowledge, the (ground state of the) out-of-plane en-
velope function has only been studied and approximated
via variational methods [19–22] or by setting the barrier
potential to infinity [30]. However, the assumptions in-
volved in these methods render them less accurate for
higher electric fields. In this paper, we model a realis-
tic potential profile for a SiGe/Si/SiGe quantum dot by
taking into account both Si/SiGe interfaces as well as an
interface between SiGe and the insulating layer hosting
the gate electrodes. Within this model, we then find the
exact solution for the ground state as well as excited state
envelope functions for the out-of-plane electron motion.

In the presence of an in-plane magnetic field, a cy-
clotron motion of electrons takes place which tends to in-
crease the electron probability amplitude at the Si/SiGe
interface [23]. This effect can, in turn, modify and in-
crease the valley splitting. The magnetic field couples
in-plane to out-of-plane degrees of freedom and thus pre-
vents us from finding the exact solution for the electron
envelope function. Using the exact excited states for the
out-of-plane envelope function, we find the full envelope
function in the presence of a magnetic field by applying
perturbation theory. We show that an in-plane magnetic
field indeed slightly increases the valley splitting; up to
a few Tesla, the valley splitting increases quadratically
with the magnetic field. Besides this, for a quantum dot
with an ideal interface, i.e, no miscuts and steps at the
interface, we find that the dominant contribution to the
valley splitting scales linearly with the electric field, Fz.

During the experimental process of fabricating silicon
heterostructures, the formation of steps and miscuts at
the Si/SiGe seems to be inevitable [24, 25]. It has been
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shown that the presence of interface steps can severely
suppress the valley splitting [22, 26, 27]. Here we again
use the exact excited states for the out-of-plane envelope
function in order to perturbatively treat the effects of
interface steps to the envelope function. We argue that
our modeling is applicable to any configuration for the
interface disorder. We first study how the interface steps
suppress the valley splitting in the absence of a mag-
netic field. We show that the valley splitting of a disor-
dered quantum dot can scale either sub-linearly, linearly
or super-linearly with the electric field, depending on the
steps’ configuration. We then consider the effects of an
in-plane magnetic field. While it has been speculated
that the magnetic field can increase the valley splitting
in the presence of interface steps [26, 27], interestingly, we
find that the magnetic field can both increase or further
suppress the valley splitting depending on the locations
of the steps.

This paper is structured as follows: In Section II A we
present our model and find the exact solution for the out-
of-plane electron motion. In Section II B we obtain the
envelope function in the presence of an in-plane magnetic
field for a quantum dot with an ideal Si/SiGe interface.
In Section II C we extend our model to include the inter-
face disorders and derive the envelope function for a cer-
tain configuration of steps. In Section III we build on our
findings for the envelope function to obtain and discuss
the valley splitting; in Secs. III A and III B, we study how
the valley splitting of an ideal quantum dot depends on
the electric and magnetic field field. In III C, we consider
interface disorder and calculate the valley splitting and
its phase depending on the location of the step. We then
investigate the role of the electric and magnetic fields in
modifying the valley splitting. In Section IV we sum-
marize and conclude the paper. The Appendices contain
further details of our analysis.

II. MODEL

We consider a SiGe/Si/SiGe heterostructure grown
along the ẑ direction ([001]) while the silicon layer is
between −dt < z < 0. Panel (a) of Figure 1 shows a
schematic cross-section of the layer structure of the sys-
tem. An electric field is applied along ẑ via the gates,
and we consider both interfaces between Si and SiGe at
z = 0 as well as z = −dt. The energy offset between the
minima of the conduction band in Si and SiGe is given
by U0 = 150 meV. Moreover, we also consider the in-
terface between the top SiGe barrier and the insulating
layer that hosts the electric gates. Inside the insulating
layer, we take U∞ = ∞ which indicates the envelope
function does not leak into that region. Panel (b) of Fig-
ure 1 shows the full potential along ẑ. Moreover, here
we assume a generally elliptical quantum dot with har-
monic in-plane confinement. We denote the radius of the
quantum dot along x̂ by x0 and the radius along ŷ by y0.

FIG. 1. (a) Schematic layered structure of a single
SiGe/Si/SiGe quantum dot. The dark gray area is an in-
sulating layer hosting the electric gates. The ±V gates are
used to trap and confine a single electron in the silicon layer.
(b) The electrostatic potential profile along the growth direc-
tion ẑ. Fz is the out-of-plane electric field generated by the
gates, U0 is the potential barrier of the SiGe layers, U∞ is
the infinite potential barrier due to the insulating layer. The
potential energy U(z) is defined in Eq. (2).

A. Exact envelope function in absence of a
magnetic field

Within the effective mass theory and in the absence of
a magnetic field, the Hamiltonian describing the envelope
function reads,

Hxyz =
p2x

2mt
+

1

2
mtω

2
xx

2 +
p2y

2mt
+

1

2
mtω

2
yy

2

+
p2z

2ml
− eFzz + U(z). (1)

Here mt = 0.19me and ml = 0.98me are the transverse
and longitudinal effective mass, ωx = 2~/mtx

2
0 and ωy =

2~/mty
2
0 are the confinement frequencies along x̂ and ŷ,

and

U(z) = U0θ(−z − dt) + U0θ(z) + U∞θ(z − db). (2)

Eq. (1) clearly gives rise to a separable envelope func-
tion ψxyz = ψxψyψz where ψx and ψy are the well-known
harmonic oscillator wavefunctions. Our main objective
in this section is to find the exact eigenstates ψz,n and
eigenenergies Ez,n for the out-of-plane electron motion.

Given Eq. (1), we write the Schrödinger equation for
the envelope function ψz,n as{

p2z
2ml

− eFzz + U(z)

}
ψz,n = Ez,nψz,n. (3)

We now use the electrical confinement length,

z0 =

[
~2

2mleFz

]1/3
, (4)
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and its associated energy scale,

ε0 =
~2

2mlz20
, (5)

in order to piecewise expressing Eq. (3) as,

d2

dz̃2
ψz,n −

(
Ũ0 − z̃ − ε̃z,n

)
ψz,n = 0, 0 < z < db,

d2

dz̃2
ψz,n − (−z̃ − ε̃z,n)ψz,n = 0, −dt ≤ z ≤ 0,

d2

dz̃2
ψz,n −

(
Ũ0 − z̃ − ε̃z,n

)
ψz,n = 0, z < −dt . (6)

Here z̃ = z/z0, ε̃z,n = Ez,n/ε0 and Ũ0 = U0/ε0 are the
normalized length, eigenenergy, and potential.

The above equation, at each interval, has generally two
linearly-independent solutions known as Airy functions of
the first and second kind, Ai and Bi [28]. We thus find
the exact solution for ψz,n:

ψz,n = N0z
−1/2
0


c1Ai(ζ̃n) + c2Bi(ζ̃n) , 0 < z < db
c3Ai(ζ̃n) + c4Bi(ζ̃n) , −dt ≤ z ≤ 0

c5Ai(ζ̃n) , z < −dt
(7)

where we defined,

ζ̃n =


Ũ0 − z̃ − ε̃z,n , 0 < z < db
−z̃ − ε̃z,n , −dt ≤ z ≤ 0

Ũ0 − z̃ − ε̃z,n . z < −dt.
(8)

Note that the Bi function is omitted from the solution
for z < −dt. This is based on the physical ground that
Bi does not give rise to a decaying behaviour inside the
extended barrier layer.

In order to find the eigenenergies and determine the
coefficients involved in the envelope function Eq. (7), we
note that ψz,n and its first derivative must be continuous
at the boundaries between Si and SiGe, i.e. at z = −dt
and z = 0. Moreover, since there is no leakage to the
insulating layer, the envelope function must vanish at z =
db. By imposing these boundary conditions, we obtain
the equation below from which we can numerically find
all possible eigenenergies,

f1(ε̃z,n, d̃t, Ũ0)g1(ε̃z,n, d̃b, Ũ0)

− f2(ε̃z,n, d̃t, Ũ0)g2(ε̃z,n, d̃b, Ũ0) = 0, (9)

with the definitions,

f1(ε̃z,n, d̃t, Ũ0) =Bi′(d̃t − ε̃z,n)Ai(Ũ0 + d̃t − ε̃z,n)

+ Bi(d̃t − ε̃z,n)Ai′(Ũ0 + d̃t − ε̃z,n),
(10)

f2(ε̃z,n, d̃t, Ũ0) =Ai(d̃t − ε̃z,n)Ai′(Ũ0 + d̃t − ε̃z,n)

+ Ai′(d̃t − ε̃z,n)Ai(Ũ0 + d̃t − ε̃z,n),
(11)
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FIG. 2. Eigenenergies of the ground state Ez,0 and first few
excited states up to the 4’th excited state Ez,4 as a function
of the electric field Fz. The dots are obtain from numerically
solving Eq. (9). The dashed line is the ground state energy
obtained from Eq. (14). The used quantum dot parameters
are dt = 10 nm and db = 46 nm.

and,

g1(ε̃z,n, d̃b, Ũ0) =

Ai(−ε̃z,n)

[
Bi′(Ũ0 − ε̃z,n)−Ai′(Ũ0 − ε̃z,n)

Bi(χn,db)

Ai(χn,db)

]
−Ai′(−ε̃z,n)

[
Bi(Ũ0 − ε̃z,n)−Ai(Ũ0 − ε̃z,n)

Bi(χn,db)

Ai(χn,db)

]
,

(12)

g2(ε̃z,n, d̃b, Ũ0) =

Bi′(−ε̃z,n)

[
Bi(Ũ0 − ε̃z,n)−Ai(Ũ0 − ε̃z,n)

Bi(χn,db)

Ai(χn,db)

]
− Bi(−ε̃z,n)

[
Bi′(Ũ0 − ε̃z,n)−Ai′(Ũ0 − ε̃z,n)

Bi(χn,db)

Ai(χn,db)

]
,

(13)

where χn,db = Ũ0− d̃b− ε̃z,n and Ai′ and Bi′ are the first
derivatives of the Ai and Bi functions.

Once the (normalized) eigenenergy ε̃z,n is found, we
use it to calculate the coefficients c1 to c5. The coefficient
N0 is found by using the normalization of the envelope
function. We note that by solving Eq. (9), we also find a
set of states where the envelope function is not localized
in the Si quantum well but rather in the upper SiGe
barrier underneath the insulating layer. As we discuss it
in Section III, the valley splitting is basically determined
by the ground state localized in the Si quantum well. In
the presence of a magnetic field or interface steps, we also
need to take into account the excited states which have
sizable overlap with the localized ground state in the Si
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FIG. 3. Probability density of the ground state and the first
and second excited states along ẑ. The gray areas mark the
SiGe barriers. The solid lines show the exact envelope func-
tions obtained from Eq. (7) while the eigeneregies are nu-
merically found from Eq. (9); see Fig. 2. The dashed lines
show the approximate ground state envelope function given
by Eq. (15). As expected, the envelope functions are pushed
upwards by increasing the electric field Fz. The parameters
for the quantum dot are the same as noted in the caption of
Fig. 2.

quantum well; see Eqs. (26), (27) and (33). As such, the
states that are localized underneath the insulating layer
do not contribute to the behavior of the valley splitting,
and we neglect them in this paper.

For the ground state of the electron motion along ẑ,
we can simplify the analysis presented above and find
analytic relations. As we show in Appendix A, the (nor-
malized) ground state energy in the regime of a deep

quantum well, Ũ0 � 1, can be expressed up to the lead-
ing order as

ε̃z,0 = r0 − Ũ−1/20 +O(Ũ
−3/2
0 ) (14)

where −r0 ' −2.338 is the smallest root (in absolute
value) of the Ai function. The normalized envelope func-
tion in this case is approximated by,

ψz,0(z̃) ' z
−1/2
0

Ai′(−r0)

Ai(−ε̃z,0)e
−Ai′(−ε̃z,0)

Ai(−ε̃z,0)
z̃
, z̃ > 0

Ai(−z̃ − ε̃z,0) , z̃ ≤ 0

(15)
In Figure 2 we show the obtained energies for the

ground state as well as first few excited states as a func-
tion of the applied electric field. In Figure 3 we also show
the probability density |ψz,n|2 for the ground state and
first two excited states for two different electric fields.
In both figures, a comparison between the numerics and
the analytical relations Eqs. (14) and (15) for the ground
state shows a very good agreement.

We note here that the interface-induced spin-orbit in-
teraction is neglected in our model. Consideration of
this effect has been shown to be essential for explain-
ing the valley-dependent g-factor in silicon quantum dots
[17, 30]. However, as noted in Ref. [30], the matrix el-
ements involved in the spin-orbit interaction are much
smaller than the valley splitting matrix element. This
justifies our omission of the interface-induced spin-orbit
interaction. As we will show in the next sections, the in-
formation stored in the excited states ψz,n≥1 enables us
to obtain the full envelope function ψxyz,0 in a finite mag-
netic field, and also makes it possible to study realistic
cases where there are steps and miscuts at the Si/SiGe
interface.

B. Envelope function in the presence of an in-plane
magnetic field with ideal Si/SiGe interface

Let us now consider a quantum dot with an ideally flat
Si/SiGe interface in the presence of an in-plane magnetic
field B = (Bx, By, 0). We use a gauge for which the
vector potential becomes A = (0, 0, yBx − xBy). By
substituting pz → pz − eAz(B) in Eq. (1), we arrive at
the following form for the Hamiltonian describing the
envelope function,

H = H0(B) +Hpert(B). (16)

where we start from the separable Hamiltonian,

H0(B) =
p2x

2mt
+

1

2
mtω

′2
x (By)x2 +

p2y
2mt

+
1

2
mtω

′2
y (Bx)y2

+
p2z

2ml
− eFzz + U(z) , (17)

and treat the field-induced couplings as a perturbation,

Hpert(B) =−Bx
e

ml
ypz +By

e

ml
xpz −BxBy

e2

ml
xy.

(18)

We note that the confinement frequencies and lengths
along x̂ and ŷ are modified by the magnetic field,

ω′x(By) = ωx

(
1 +

e2B2
y

mtmlω2
x

)1/2

, (19)

ω′y(Bx) = ωy

(
1 +

e2B2
x

mtmlω2
y

)1/2

, (20)

x′0(By) = x0

(
1 +

e2B2
y

4~2
mt

ml
x40

)−1/4
, (21)

y′0(Bx) = y0

(
1 +

e2B2
x

4~2
mt

ml
y40

)−1/4
. (22)

In order to obtain the envelope function from Eq. (16),
we treat H0(B) exactly and apply perturbation theory in
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n αn (10−4T−1) βn (10−4T−1)

1 -9.18 -7.15
2 2.85 2.26
3 -1.38 -1.10

TABLE I. The coefficients αn and βn (in units of inverse
Tesla). Here we used Fz = 15 MV/m (corresponding to z0 =
1.40 nm), x0 = 12 nm, y0 = 15 nm, and Bx = By = 5 T.

Hpert(B). The ground state up to the first order pertur-
bation then reads,

Ψxyz,0(B) = ψ
(0)
xyz,0(B) + ψ

(1)
xyz,0(B), (23)

where,

ψ
(0)
xyz,0(B) =ψx,0(By)ψy,0(Bx)ψz,0 , (24)

and,

ψ
(1)
xyz,0(B) =− iBx

y′0
z0
ψx,0(By)ψy,1(Bx)

nmax∑
n=1

αnψz,n

+ iBy
x′0
z0
ψx,1(By)ψy,0(Bx)

nmax∑
n=1

βnψz,n

−BxByx′0y′0ηψx,1(By)ψy,1(Bx)ψz,0 , (25)

where the number of relevant bound excited states in
the vertical direction for Fz = 15 MV/m is found to be
nmax = 3, see Fig. 2. Here we defined the coefficients,

αn = −1

2
~
e

ml

〈ψz,0|∂/∂z̃|ψz,n〉
Ez,0 − Ez,n − ~ω′y

, (26)

βn = −1

2
~
e

ml

〈ψz,0|∂/∂z̃|ψz,n〉
Ez,0 − Ez,n − ~ω′x

, (27)

η = −1

4

e2

ml

1

~ω′x + ~ω′y
. (28)

We numerically calculate αn and βn using the excited
states ψz,n obtained in Section II A. For a circular dot
we obtain αn = βn. For an elliptical dot with realis-
tic parameters, these coefficients remain close to each
other since the confinement along ẑ in quantum dots
is always stronger than the in-plane confinements. Ta-
ble I shows an example for the values of αn and βn.
With the set of parameters used in Table I, we find
x′0y
′
0η = −8.64 × 10−4T−2. Therefore, (y′0/z0)α1 and

(x′0/z0)β1 in Eq. (25) are one order of magnitude larger
than x′0y

′
0η. In Figure 4 we show the probability density

in the x− z plane in leading order, |ψ(0)
xyz,0(B)|2, as well

as the first order correction, |ψ(1)
xyz,0(B)|2.

C. Envelope function with disordered Si/SiGe
interface

So far, we have studied structures where the interface
between Si and SiGe is perfectly flat and is located at

FIG. 4. Upper panel: The electron probability density of a
quantum dot with an ideal interface in the x − z plane in

leading order, |ψ(0)
xyz,0(B)(x, y = 0, z)|2 (1/nm3); see Eq. (24).

Lower panel: The correction to the probability amplitude in

the x − z plane, |ψ(1)
xyz,0(B)(x, y = 0, z)|2 (1/nm3) due to an

in-plane magnetic field; see Eq. (25). The parameters used
are the same as given in the caption of Table I. The dashed
line in both panels marks the ideally flat Si/SiGe interface.

z = −dt and z = 0. However, during the experimen-
tal fabrication of Si qubit nanostructures, the formation
of miscuts and steps at the interfaces is highly proba-
ble. Such uncontrolled disorder can modify the valley
splitting and its phase, and is considered to be the main
reason that makes the valley splitting a device-dependent
quantity. In Ref. [22], several configurations for the steps
at the interface are considered, and in each case, the en-
velope function is formed from a variational ansatz that
uses a smooth interpolation between the envelope func-
tions far from the step position (i.e. envelope functions
for perfect interface).

In this section, we extend our model to include stair-
like interface steps parallel to the ŷ axis at the upper
Si/SiGe interface as depicted in Figure 6. Our main ob-
jective here is to study how these miscuts influence the
quantum dot envelope wavefunction. Note that disor-
der could also be present at the lower SiGe/Si interface.
However, since the amplitude of the envelope function is
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FIG. 5. Schematic layered structure of a quantum dot with
stair-like disordered Si/SiGe interface.

small at the lower interface, the effects of possible disor-
der is negligible. We also point out that other disorder
configurations at the upper Si/SiGe interface can be an-
alyzed using the same approach.

In silicon, the thickness of each atomic layer is a0/4
where a0 = 0.543 nm denotes the lattice constant. This
indicates that the change in the interface position due to
a few miscuts is much smaller than the total thickness
of the envelope function along ẑ and enables us to use
perturbation theory in order to obtain the electron en-
velope function. We take the z-position of the interface
layer that contains the quantum dot center as the ref-
erence for the position of the barrier interface (e.g., the
layer within [x2, x3] in Fig. 6), and take any change to
the interface position due to the miscuts as a perturba-
tion. We describe the disordered SiGe/Si/SiGe interface
with the step potential

Udis(x, z) = U0θ(−z − dt) + U0θ(z) + Usteps(x, z), (29)

where,

Usteps(x, z) = U0

[
θ(−z)θ(z +

a0
4

)θ(x− x1)θ(x2 − x)

+θ(−z)θ(z +
a0
2

)θ(x1 − x)

−θ(z)θ(z − a0
4

)θ(x− x3)θ(x4 − x)

−θ(z)θ(z − a0
2

)θ(x− x4)
]
. (30)

The Hamiltonian describing the envelope function with
disordered interface at finite in-plane magnetic field can
again be written in the form of Eq. (16) where, in this
case, Eq. (30) is added to the perturbative part of the
Hamiltonian, Eq. (18). The ground-state envelope func-
tion then reads up to the second -order perturbation with
respect to the interface disorders,

Ψdis
xyz,0(B) = N0

[
ψ
(0)
xyz,0(B) + ψ

(1)
xyz,0(B) +D(1)

xyz,0(B)

+D(2)
xyz,0(B)

]
(31)

m γm,0 γm,1 γm,2 γm,3

0 N/A 0.0170 -0.0082 0.0047
1 0.4204 -0.0564 0.0319 -0.0215
2 -0.0353 0.0073 -0.0036 0.0019
3 -0.0214 0.0069 -0.0043 0.0031
4 0.0088 -0.0029 0.0015 -0.0008
5 -0.0001 -0.0001 0.0001 -0.0001
6 -0.0025 0.0010 -0.0006 0.0003
7 0.0025 -0.0012 0.0008 -0.0006
8 0.0004 -0.0002 0.0001 0.0000

TABLE II. The coefficients γm,n. Here we assumed xs1 = −7
nm, xs2 = −2 nm, xs3 = 3 nm, and xs4 = 7 nm. The other
parameters are the same as given in the caption of Table I.
We also find γ′1,0 = 0.3784 and γ′2,0 = 0.0663; see Eq. (38).

where N0 is a normalization constant and D(1)
xyz,0 is the

first-order correction due to the interface disorder that
amounts to

D(1)
xyz,0(B) = ψy,0(Bx)

∑
{m,n}6={0,0}

γm,nψx,m(By)ψz,n,

(32)

for which the coefficients

γm,n =
〈ψx,m(By)ψz,n|Usteps|ψx,0(By)ψz,0〉

E0,z − En,z −m~ω′x
, (33)

shall be calculated numerically. Table II shows examples
for the values of γm,n. Since the out-of-plane confine-
ment is much stronger than the in-plane confinement, the
largest contribution comes from m = 1 and n = 0. More-
over, we observe that by taking up to 4 excited states
ψx,m, the values of γm,n substantially decay. As such,
we can set mmax = 4 as a cutoff in the summation in
Eq. (32).

For the second-order correction due to the interface
disorder, we only keep the leading-order terms to arrive
at (see Apendix C for more detail),

D(2)
xyz,0 'c1ψx,1(By)ψy,0(Bx)ψz,0

+ c2ψx,2(By)ψy,0(Bx)ψz,0, (34)

where the perturbative coefficients c1 and c2 are given
by,

c1 = γ1,0

[
〈ψx,0(By)ψz,0|Usteps|ψx,0(By)ψz,0〉

~ω′x

− 〈ψx,1(By)ψz,0|Usteps|ψx,1(By)ψz,0〉
~ω′x

]
, (35)

c2 = −γ1,0
〈ψx,2(By)ψz,0|Usteps|ψx,1(By)ψz,0〉

~ω′x
. (36)

We now take,

D′xyz,0 = D(1)
xyz,0 +D(2)

xyz,0, (37)
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FIG. 6. The electron probability density in the x − z plane,
|Ψdis

xyz,0(B)(x, y = 0, z)|2 (1/nm3), for a quantum dot with
disordered interface. The locations of the interface steps are
given in the caption of Table II and the other parameters are
the same as given in the caption of Table I. The solid lines
mark the disordered Si/SiGe interface.

that has the same functional form as D(1)
xyz,0 given by

Eq. (32) in which the perturbative coefficients become,

γ′m,n =


γm,n + c1 , {m,n} = {1, 0}
γm,n + c2 , {m,n} = {2, 0}
γm,n , otherwise .

(38)

In Figure 6, we show the electron probability density
in the x− z plane in the presence of interface steps. The
asymmetry around x = 0 in this case is due to the change
of the quantum-dot thickness due to the interface disor-
der. Since in our model the Si quantum well is thicker for
x > 0, the peak of the probability density is also shifted
towards x > 0.

In the next section, we use the envelope functions we
found in this section to study and discuss how the valley
splitting of a quantum dot depends on the electric and
magnetic fields for an ideally flat as well as disordered
Si/SiGe interfaces.

III. DISCUSSION

Within the effective mass theory, the two low-lying val-
ley components of the quantum dot can be written as

|+ z〉 = Ψxyz,0(B)eik0zu+z(r), (39a)

| − z〉 = Ψxyz,0(B)e−ik0zu−z(r). (39b)

Here k0 ' 0.85(2π/a0) describes the Bloch wave vector of
the conduction band minima and u±z(r) are the periodic
parts of the Bloch functions for the ±z valleys in silicon.

We express these functions by a plane wave expansion,

u±z(r) =
∑
G

C±(G)eiG.r, (40)

for which G = (Gx, Gy, Gz) is the reciprocal lattice
vector. The coefficients in this expansion for the two
valleys are related via the time-reversal symmetry rela-
tion C−(G) = C∗+(−G). The wave vectors and their
corresponding coefficients C+(G) for Si are studied in
Ref. [20].

The valley-orbit coupling is given by,

∆vo = 〈+z| − eFzz + U(z)| − z〉. (41)

Note that eFzz = ε0z̃, and given εo � U0 for all practical
values of Fz (see Eq. (50)), the valley-orbit coupling is
strongly dominated by the matrix element of the interface
potential U(z). Indeed, the role of the electric field is to
control and shape ψz, and the contributions from the
matrix element of −eFzz in the valley-orbit coupling can
be neglected [20, 29]. The valley splitting is found from
the above equation by Evs = 2|∆vo| and the valley phase
can be found by

φν = tan−1 [Im(∆vo)/Re(∆vo)] . (42)

A. Electrical dependence of the valley splitting for
an ideal quantum dot

In this section, we consider a quantum dot with an
ideal interface in the absence of a magnetic field and
use the results of Section II A to find the electrical and
interface-potential dependence of the valley splitting and
the valley phase. As depicted in Figure 3, since the elec-
tric field pushes the envelope function towards the upper
SiGe barrier, the probability density of the ground state
at the lower SiGe/Si interface is negligible. Therefore we
take U(z) = U0θ(z) and find that the valley-orbit cou-
pling at zero magnetic field for an ideal quantum dot
becomes,

∆0
vo = U0

∑
G1,G2

[
C∗+(G1)C−(G2)

×
∫ +∞

−∞
e−i(G1−G2+2k0)zθ(z)ψ2

z,0dz

]
.

(43)

To carry on, we note that the terms with G1 6= G2 would
lead to fast oscillations in the integrand that average to
zero. We therefore only consider terms with G1 = G2

and define,

C0 =
∑
G

C∗+(G)C−(G), (44)

which we find to be C0 = −0.2607 using Ref. [20].
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We now take the integration by parts and find for an
ideal quantum dot,

∆0
vo = ∆int + ∆t (45)

Here ∆int is the contribution that comes from the ampli-
tude of ψz,0 at the Si/SiGe interface:

∆int = −i U0C0
2k0z0

∫ +∞

−∞
e−2ik0zδ(z)ψ2

z,0dz , (46)

and ∆t is the contribution that originates from the tail
of ψz,0 inside the barrier,

∆t = −i U0C0
2k0z0

∫ +∞

−∞
e−2ik0zθ(z)2ψz,0ψ

′
z,0dz . (47)

In order to find analytical expressions for these con-
tributions, we use Eqs. (14) and (15) and also use the
expansions given by Eqs. (A8) (note that by using these
equations we assume U0 � ε0 which is valid for all rel-
evant valued for the electric field Fz, see Eq. (50).) We
finally arrive at the result

∆int = −iC0
eFz
2k0

, (48)

and

∆t = −∆int

[
1− 1

2Ũ0

+ i
k0z0√
Ũ0

]−1
. (49)

The last term in the square bracket is a number larger
than 1 (having Fz = 2 to 20 MV/m for a SiGe barrier, we

2 4 6 8 10 12 14 16 18 20
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FIG. 7. |∆int| and |∆t| contributions to the valley-orbit cou-
pling for a SiGe barrier. As explained in the main text,
the dominant contribution to the valley-orbit coupling comes
from the amplitude of the envelope function at the barrier
interface described by |∆int|.

find k0z0/
√
Ũ0 & 5). This indicates that |∆int| is larger

than |∆t| (by nearly a factor of 6.)
We conclude that the valley-orbit coupling (and hence

also the valley splitting) within the leading order scales
linearly with the electric field while it is independent of
the interface potential (as long as U0 � ε0). This linear
dependence is experimentally observed in Ref. [3] for a
SiO2 barrier (that has a much stronger interface potential
U0 = 3 eV compared with SiGe) and it is also predicted
from a theory analysis assuming that the envelope func-
tion has zero amplitude inside the barrier [30].

In addition to the linear-in-electric-field term, here we
find the valley-splitting also has a small nonlinear de-

pendence on the electric field (note that 1/Ũ0 ∝ F
2/3
z ).

This non-linear contribution originates from the penetra-
tion of the envelope function into the barrier, and can be
neglected so long as Ũ0 � 1; this holds provided,

Fz � U0

√
2mlU0

e~
. (50)

For a SiGe barrier with U0 = 150 meV, the right side
of the above inequality becomes ∼ 280 MV/m. This
essentially means for all practically relevant values for
Fz, the valley splitting remains a linear function of the
electric field. In Figure 7, we used Eqs. (48) and (49)
and show |∆int| and |∆t| as a function of the electric
field Fz. The values that we show in the figure are in
agreement with Refs. [21] and [29] where |∆vo| ∼ 200µeV
is reported for Fz = 15 MV/m.

Finally, from Eq. (48) and (49) we find that the valley
phase of a quantum dot with perfect interface up to the
leading order only depends on the interface potential,

φv ' tan−1
[
−~k0√
2mlU0

]
, (51)

that becomes φv ' −0.44π for a SiGe barrier.

B. Magnetic dependence of the valley splitting for
an ideal quantum dot

We now extend the results of the last section by in-
cluding an in-plane magnetic field. As we have shown in
Section II B, the electron envelope function Ψxyz,0 in the
presence of an in-plane magnetic field includes excited
states of the out-of-plane motion ψz,n, see Eq. (23) and
(25). Compared to the ground state ψz,0, the excited
states can have a larger amplitude at the Si/SiGe inter-
face, and penetrate further to the barrier. As such, we
generally expect that the valley splitting should increase
in an in-plane magnetic field. In addition, as one can see
from Figure 3, depending on the electric field, the excited
states can have a sizeable amplitude at the lower SiGe/Si
interface z = −dt. Therefore, we take into account both
upper and lower interfaces and consider a barrier poten-
tial of the form U(z) = U0θ(z) + U0θ(−z − dt). We use
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Eqs. (23) and (25) and find for the valley-orbit coupling,

∆ideal
vo (B, Fz) = ∆0

vo

[
1 +B2

xB
2
yx
′2
0 y
′2
0 η

2
]

+ C0B2
x

(
y′0
z0

)2∑
n,n′

αnαn′

∫ ∞
−∞

e−2ik0zψz,nU(z)ψz,n′dz

+ C0B2
y

(
x′0
z0

)2∑
n,n′

βnβn′

∫ ∞
−∞

e−2ik0zψz,nU(z)ψz,n′dz.

(52)

Using the excited states ψz,n from Section II A, we nu-
merically calculate the above integrals. The coefficients
αn, βn and η are introduced in Section II B and as we
explained there, up to a few Tesla, the terms containing
α and β are strongly dominant over the correction con-
taining η. Therefore, to the leading order, the magnetic
contribution to the valley splitting scales quadratically
with the magnetic field. Moreover, at finite magnetic
fields, the valley splitting becomes dependent on ratio
of the lateral confinement to the electrical confinement,
x′0/z0 and y′0/z0- see Eqs. (21) and (22).

Eq. (52) indicates that for an elliptical quantum dot
at a fixed magnetic field, the valley splitting reaches its
maximal value when the direction of the magnetic field
is perpendicular to the axis with the larger radius. In
the main plot of Figure 8, we show the valley splitting as
a function of magnetic field at a fixed direction. In the
inset plot of the figure, we show the valley splitting as
a function of the direction of the field. We observe that
the valley splitting for a quantum dot with ideal interface
only slightly increases with the magnetic field. This also
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FIG. 8. Main plot: The valley splitting for a quantum dot
with ideal interface at Fz = 15 MV/m as a function of mag-
netic field. Here we have taken B = B(cos(θ), sin(θ), 0) and
set θ = π/4. The size of the quantum dot is the same as indi-
cated in the caption of Table I: x0 = 12 nm and y0 = 15 nm.
Inset plot: The valley splitting at B = 10 T as a function of
direction of the magnetic field.

indicates that the dominant contribution to the valley
splitting remains a linear function of the electric field Fz
at the finite magnetic fields.

C. Valley splitting of a quantum dot with
disordered interface

We now consider a realistic quantum dot with miscuts
and steps at the Si/SiGe interface and aim to study the
valley splitting and its electromagnetic dependence. We
take the interface potential given by Eq. (29) and use
the resulting envelope function Eq. (31). We then find
for the valley-orbit coupling,

∆dis
vo = N2

0 [∆ideal
vo + ∆s + ∆(1) + ∆(2)], (53)

where ∆ideal
vo is the valley-orbit coupling for an ideal in-

terface given by Eq. (52), ∆s is the largest contribution
originating from the interface disorders and reads,

∆s = C0
∫ ∞
−∞

e−2ik0zψ2
x,0(By)ψ2

z,0Ustepsdxdz , (54)

and ∆(1) is a contribution that is first order with respect
to D′xyz,0 and reads,

∆(1) =
∑
m,n

∆(1),{m,n} = 2C0
∑
m,n

γ′m,nfm,n , (55)

where,

fm,n =

∫ ∞
−∞

[
e−2ik0zψx,m(By)ψz,n

×Ustepsψx,0(By)ψz,0

]
dxdz. (56)

The last term, ∆(2), is a small and sub-leading contri-
bution that is second-order with respect to D′xyz,0 and

ψ
(1)
xyz,0. More details on this term can be found in the

Appendix B.
Note that in general we have |∆(2)| � |∆(1)| and
|∆(1)| < |∆vo|, |∆s|. However, as we discuss below, de-
pending on the number and location of interface steps,
|∆vo + ∆s| can become a small number. In this case,
the contribution from ∆(1) becomes (more) important in
determining the valley splitting and its phase.

1. A single step at the interface

Let us now study the structure and effects of ∆s and
∆(1). We begin by considering the simplest case; that is,
when there is only a single step at the interface. We take
the width of the step to be +a/4; the step potential is
then obtained from Eq. (30) by taking xs4 → +∞ and
xs1, xs2 → −∞. We then take xs3 = xs ≥ 0 to be the
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position of the only interface step. From Eq. (54) for a
quantum dot with a single interface step we obtain,

∆1s
s (xs) '−

1

2
∆0
voErfc

(√
2xs/x

′
0(By)

)
×
[
1− e−(a0/2z0)(

√
Ũ0+ik0z0)

]
. (57)

In order to analyze ∆1s
(1), we note that a complete

assessment of this term requires numerical calculations.
However, we can obtain a rough estimation by only con-
sidering the largest contribution to Eq. (55), i.e. the
term corresponding to m = 1 and n = 0. For further
simplicity, we also drop the second-order correction to

the envelope function, D(2)
xyz,0, so that we take γ′1,0 = γ1,0

and N0 = 1. We then arrive at the largest contribution
to ∆(1) due to m = 1 and n = 0,

∆1s
(1),{1,0}(xs) ' −γ1,0∆0

vo

√
2

π
e−2(xs/x

′
0(By))

2

×
[
1− e−(a0/2z0)(

√
Ũ0+ik0z0)

]
,

(58)

in which,

γ1,0 =
ε0

~ω′x(By)

1

2
√

2π
e−2(xs/x

′
0(By))

2

× 1√
Ũ0

[
1− e−(a/2z0)

√
Ũ0

]
. (59)

∆1s
s (xs) and ∆1s

(1),{1,0}(xs) are clearly out of phase with

∆ideal
vo . This can significantly modify and suppress the

valley splitting. Note that ∆1s
s (xs) and ∆1s

(1),{1,0}(xs) are

monotonically decreasing if the interface step is located
further away from the quantum-dot center.

In the left panel of Figure 9 we present the normal-
ized valley splitting as a function of the step location
at B = 0. By neglecting ∆(1) in the valley-orbit cou-
pling (shown in the figure by the solid black line), we
observe, as predicted, that the valley splitting is mono-
tonically decreasing as the interface step moves closer to
the quantum dot center. At x = 0, the valley splitting
is suppressed by 75%. This amount of suppression is re-
ported in Ref. [22] where a variational ansatz is used to
approximate the envelope function in the presence of a
single step. By taking into account the ∆1s

(1),{1,0}(xs) con-

tribution (shown by the dashed-dot red line), we observe
that the valley splitting only becomes further suppressed.

Remarkably, if we numerically calculate ∆1s
(1) from

Eq. (55) and take into account not only the dominant
term corresponding to m = 1 and n = 0 but also the
other terms as well, we observe that the valley splitting
has in fact a non-monotonic behaviour as a function of
the distance between the single interface step and the
quantum dot center. In Appendix D, we discuss in more
detail that this behaviour is due to the out-of-plane ex-
cited states ψz,n≥1.
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FIG. 9. Left panel: The normalized valley splitting for a
quantum dot with single interface step as a function of the
step location. The dashed-dot line is found by using ana-
lytic relations Eqs. (45), (57) and (58) and taking N0 = 1.
The solid lines are deduced from numerical calculation. Right
panel: The valley phase of a quantum dot with a single inter-
face step as a function of the step location. Both panels are
obtained at at B = 0 and Fz = 15 MV/m.

Indeed, the terms ∆ideal
vo , ∆1s

s and ∆1s
(1),{1,0} are origi-

nating from the ground state of the out-of-plane motion,
ψz,0. As it is already shown, the closer the step to the
quantum dot center, the further ∆1s

s and ∆1s
(1),{1,0} sup-

press ∆ideal
vo , until at some point, xs = x1sm , the contribu-

tions due to the terms with n ≥ 1 in Eq. (55) reaches an
equal footing as ∆ideal

vo + ∆1s
s + ∆1s

(1),{1,0}. If the inter-

face step is placed any closer to the quantum dot center,
xs < x1sm , the latter sum continues to decrease whereas
the contributions due to the terms with n ≥ 1 in Eq. (55)
increase due to the increase of the coefficients γm,n≥1.
Therefore, the valley splitting begins to rise.

In the left panel of the Figure 9 we have shown the
valley phase as a function of the step location. Note that
the valley phase, given by Eq. (42), is a π-periodic func-
tion defined within [−π/2, π/2]. Therefore, the sudden
jump of the valley phase that occurs at xs ∼ 0.45x0 can
be removed by subtracting π from the values above the
jump.

Let us now study how the valley splitting scales with
the electric and magnetic fields. As we have shown in Sec.
III A, the valley-orbit coupling for an ideal quantum dot
∆0
vo is a linear function of the electric field. As such, the

∆1s
s term given by Eq. (57) is also linear in electric field.

However, ∆1s
(1) is a non-linear function with respect to the

electric field. Given Eq. (59), the dominant coefficient
γ1,0 scales linearly with the electric field, and this gives
rise to a quadratic scaling of ∆1s

(1),{1,0} with the electric

field (more accurately, if we keep c1 in Eq. (38), it is easy
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to show that ∆1s
(1),{1,0} acquires one more term that is

cubic in the electric field.)
Therefore, in general, the valley splitting for a quan-

tum dot with a single interface is a nonlinear function of
the electric field due to the ∆(1) term as well as the nor-

malization constant N0 ' [1 +
∑
m,n γ

2
m,n]−1/2. In the

upper panel of Figure 10, we show the valley splitting as
a function of the electric field for several locations for the
single interface step.

Since ∆(1) grows with the electric field faster than a lin-

ear function, for xs > x1sm , we expect the valley splitting
should scale sub-linearly by the electric field. The fur-
ther the step is located away from the center, the smaller
∆(1) becomes so that the valley splitting approaches be-
ing a linear function of the electric field. For xs < xm,
the valley splitting is mainly determined from the terms
with n ≥ 1 in ∆(1). Therefore, numerical analysis is re-
quired to find the dependency of the valley splitting on
the electric field.

In order to understand how the valley splitting changes
with an in-plane magnetic field, we note that the con-
finement length x′0(By) is reduced by the magnetic field.
Using Eqs. (21), the effect of the magnetic field to the
evolution of ∆1s

s (xs) and ∆1s
(1),{1,0}(xs) is equivalent as

if x′0 = x0 and xs is located from the center at a larger
distance,

xs → xs

(
1 +

e2B2
y

4~2
mt

ml
x40

)1/4

. (60)

Therefore, we expect that the magnetic field should
always increase the valley splitting if xs > xm. Since the
magnetic field effectively increases xs, the increase of the
valley splitting by the magnetic field is larger at the step
location where the slope of the curve given in the left
panel of Figure 9 is steeper. For xs < xm, the magnetic
field decreases ∆1s

(1),{m,n≥1}(xs) that controls the valley

splitting. However, we observe that the valley splitting
still slightly increases as a function of the magnetic field
due to the increase of ∆ideal

vo + ∆1s
s with the magnetic

field. We display the valley splitting as a function of the
in-plane magnetic field in the lower panel of Figure 10.

2. Two steps at the interface

We now consider a quantum dot with two interface
steps having widths −a0/4 and a0/4. The step potential
is then obtained from Eq. (30) by taking xs1 → −∞ and
xs4 → +∞. For further simplification, we also assume
that the two steps are placed symmetrically around the
center so that we can write −xs2 = xs3 = xs. In this
case, finding the contribution from ∆(1) requires numer-
ical analysis (even only for the term with m = 1 and
n = 1 in Eq. (55).) However, we can still obtain qualita-
tive understanding of the behaviour of the valley splitting
by only considering the effect of ∆s. In order to arrive
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FIG. 10. Upper panel: The normalized valley splitting
for a quantum dot with a single interface step for various
step location at B = 0, as a function of the electric field
strength. Lower panel: The normalized valley splitting as
a function of the in-plane magnetic field. Here we assumed
B = B(cosπ/4, sinπ/4, 0) and Fz = 15 MV/m.

to the extension of Eq. (54) for a quantum dot with two
symmetrically located steps, we integrate over z by parts,
similar to Sec. III A, and neglect the small integral con-
taining ψ′z,0. With this, we arrive at

∆2ss
s (xs) ' −

1

2
∆intErfc

(√
2xs/x

′
0(By)

)
×

[
2− e−ik0a0/2ψz,0(

a0
4z0

)2/ψz,0(0)2

− eik0a0/2ψz,0(− a0
4z0

)2/ψz,0(0)2

]
. (61)

If the steps are located at the center, xs = 0, we
find from the above equation (taking Fz = 15 MV/m)
∆2ss
s (xs = 0) ' (1.93 − 0.18i)∆int that is larger than

∆ideal
vo in Eq. (53) (note that ∆ideal

vo is largely determined
by ∆int; see Eqs. (45) and (52) and Fig. 7.) When
the steps are located away from the center, it reduces
∆2ss
s (xs) so that eventually at some point |∆ideal

vo | be-
comes larger than |∆2ss

s |. As such, we can expect that
the valley splitting of a quantum dot with two symmet-
rically located steps is a also non-monotonic function of
the steps’ location, xs.

This behaviour is clearly shown in the left panel of Fig-
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FIG. 11. Left panel: The normalized valley splitting for a
quantum dot with two interface steps. Right Panel: The
valley phase as a function of the steps’ location. In both
panels we used B = 0 and Fz = 15 MV/m.

ure 11. The dashed-dot line of the figure shows the val-
ley splitting obtained by neglecting ∆(1), using Eqs. (45),
(52) and (61), and setting N0 = 1. The blue line is ob-
tained by numerical calculation with all terms in Eq. (53)
included. We observe that the effect of ∆(1) is to further
suppress the valley splitting as well as shift the step loca-
tion where the valley splitting reaches its minimum. At
this step location, xs = x2ssm ∼ 0.3x0, the valley split-
ting is suppressed by more than 90%. The right panel
of the figure shows how the valley phase is changed as a
function of the step location. As mentioned before, the
sudden jump can be removed by using the π-periodicity
of the valley phase.

We now study the electromagnetic dependence of the
valley splitting for a quantum dot with two symmetri-
cally locates interface steps. Given Fig. 11, away from
x2ssm , the dominant contribution to the valley splitting
is due to ∆ideal

vo and ∆s. As such, we expect the scal-
ing of the valley splitting with the electric field has to
be approximately linear. This behaviour is shown in the
panel (a) of the Figure 12. At the step locations close
to x2ssm , the contribution due to ∆(1) becomes important
so that we can expect a strong non-linear dependency on
the electric field; this is shown in the panel (b) of the
Figure.

In the panel (c) of the figure we show how the valley
splitting is changed by the magnetic field. For xs < x2ssm ,
the valley splitting is mainly controlled by ∆2ss

s . As such,
since this term reduces by the magnetic field, the valley
splitting is also decreasing as well. For xs > x2ssm , ∆ideal

vo is
the dominant contribution to the valley splitting; there-
fore, the magnetic field always increases the valley split-
ting by reducing ∆2ss

s (and ∆(1).) Note that this effect
is stronger for the step locations where the slope of the
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FIG. 12. (a) and (b): Normalized valley splitting as a func-
tion of the step location and electric field at B = 0. (c):
Normalized valley splitting as a function of an in-plane mag-
netic field. Similar to the lower panel of Fig. 10, here we
assumed B = B(cosπ/4, sinπ/4, 0) and Fz = 15 MV/m.

curve shown in left panel of Fig. 11 is steeper.
Finally, we relax the condition of the two steps be-

ing symmetric around the quantum-dot center and use
the step positions xs2 = xLs ≤ 0 and xs3 = xRs ≥ 0 in

FIG. 13. The normalized valley splitting as a function of
position of two interface steps at B = 0 and Fz = 15 MV/m.
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Eq. (30). In Figure 13, we present our result for the nor-
malized valley splitting as a function of the position of
each step. Note that due to the non-symmetric nature of
the step potential, the valley splitting turns out not to
be symmetric with respect to the location of the steps.
We observe that the valley splitting can completely van-
ish in some specific configuration of the interface steps;
this is also predicted in Ref. [22] using a simpler model.
We have also studied the valley splitting for models in-
cluding three and four interface steps, and we observed
qualitatively similar behavior for the valley splitting as
a function of electric and magnetic fields as presented in
this section.

IV. SUMMARY AND CONCLUSIONS

To summarize, the valley splitting is one of the im-
portant properties for the silicon quantum dots that di-
rectly influences the lifetime and scalability of silicon spin
qubits. As such, understanding the behaviour and tun-
ability of the valley splitting is very important. In this
work, we studied how the valley splitting responds to the
electromagnetic field for both ideal and disordered quan-
tum dots. We considered a realistic potential profile for a
SiGe/Si/SiGe quantum dot by taking into account both
lower and upper Si/SiGe interfaces as well the interface
between upper SiGe layer and the insulating layer host-
ing the gate electrodes; see Fig. 1 and Eq. (2). While
so far the out-of-plane electron motion has been studied
by variational methods in a simpler potential model in-
cluding only one Si/SiGe interface, we found the exact
(within effective mass theory) envelope functions of the
ground state as well as the excited states for the out-of-
plane electron motion. This has enabled us to find the
electron envelope function in the presence of finite mag-
netic field as well as interface disorder. In both cases,
the envelope function reflects the coupling between in-
plane to out-of-plane degrees of freedom, see Eqs. (23)
and (31). Our analysis enables us to obtain the coupling
coefficients using perturbation theory, for arbitrary con-
figurations for the interface disorder.

We showed that in an ideal quantum dot, the valley
splitting, within the leading order, always scales linearly
with the out-of-plane electric field; see Fig. 7. More-
over, the valley splitting slightly increases with an ap-
plied in-plane magnetic field due to the coupling to the
out-of-plane excited states; see Figure 8. The presence of
interface disorder can significantly modify and suppress
the valley splitting. We considered a stair-like disordered
interface and studied the suppression of valley splitting
due to the interface miscuts.

For a quantum dot with a disordered interface, we
found that depending on the number and locations of
the interface steps, the valley splitting can scale non-
linearly with the electric field; see the upper panel of
Figure 10 and panels (a) and (b) of Figure 12. If there
is only one miscut at the interface, the magnetic field

always increases the valley splitting, see the lower panel
of Figure 10. However, for multiple interface miscuts,
the magnetic field can both increase or even suppress the
valley splitting, depending on the configuration of the
miscuts, see panel (c) of Figure 12.

In the theory of spin relaxation induced by the valley
coupling, one important set of quantities are the tran-
sition dipole matrix elements between the valley states
[3, 18]. For an ideal quantum dot, the envelope func-
tion has an in-plane mirror symmetry (Fig. 4). This, in
turn, gives rise to vanishing of the in-plane dipole ma-
trix elements. However, the presence of the interface dis-
order can break the in-plane mirror symmetry (Fig. 6).
Our findings for the envelope function in the presence of
disorder now enable the prediction of the dipole matrix
elements as a function of the electromagnetic field. To
our knowledge, the dipole matrix elements have always
been taken as fitting parameters. Future work will be
needed to further develop the theory of spin relaxation
induced by the valley coupling based on a calculation of
the transition dipole matrix elements and valley splitting
in a magnetic field.
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Appendix A: Ground state of a triangular potential
well: A self-consistent approximation

In this appendix, we present our analysis leading to the
ground state energy and wavefunction given by Eqs. (14)
and (15). We first make the reasonable assumption that
the ground state energy is much smaller than the inter-
face potential Ez,0 � U0. This assumption enables us to
neglect the interface between the upper SiGe barrier with
the insulating layer at z = dt. Moreover, since the elec-
tric field pushes the envelope function towards the upper
SiGe barrier, we also neglect the lower SiGe interface at
z = −dt as the probability amplitude in that region is
very small. Therefore, we simplify the full interface po-
tential given by Eq. (2) for the ground state and take it
as U(z) = U0θ(z).

We can then use the confinement length and energy
given by Eqs. (4)-(5) to define the dimensionless quantity,

ζ̃0(z) =

{
Ũ0 − z̃ − ε̃z,0 , z > 0

−z̃ − ε̃z,0 . z ≤ 0
(A1)

We then arrive to the below Schrödinger equation for the
envelope function

d2

dz̃2
ψz,0 − ζ̃0ψz,0 = 0. (A2)
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Inside the silicon layer where z ≤ 0, ψz,0 is given by the
Airy function of the first kind,

ψz,0 = M0z
−1/2
0 Ai(−z̃ − ε̃z,0), z ≤ 0. (A3a)

Let us now consider the form of the eigenstate in-
side the SiGe barrier; the exact solution for the enve-
lope function, up to prefactors, reads Ai(Ũ0 − z̃ − ε̃z,0).
However, in order to find an analytic relation for the
ground state energy, we try to approximate the enve-
lope function in the barrier. If there was no electric field
inside the barrier (i.e. the −z̃ term in ζ̃0(z > 0) was
absent), the eigenstates would have been proportional to

exp(−
√
Ũ0 − ε̃z,0z). Due to the presence of the electric

field, the potential barrier is reduced along z and the
wavefunction can further penetrate into the barrier. To
take this into account, we introduce a parameter λ into
the exponent of the exponentially decaying wavefunction
that allows further penetration into SiGe provided λ < 1.
We thus approximate the wavefunction inside the barrier
by,

ψz,0 'M0z
′−1/2
0 Ai(−ε̃z,0)e−λ

√
Ũ0−ε̃z,0z. z > 0 (A3b)

Using the continuity of the first derivative of ψz,0 at the
z = 0 interface, we can write the penetration parameter
λ as,

λ =
Ai′(−ε̃z,0)

Ai(−ε̃z,0)

1√
Ũ0 − ε̃z,0

, (A4)

We now self-consistently determine the ground state en-
ergy by noting,

ε̃z,0 =
〈ψz,0| d

2

dz̃2 − z̃ + Ũ0θ(z̃)|ψz,0〉
〈ψz,0|ψz,0〉

. (A5)

From the above equation and using Eqs. (A3) and (A4)
we finally arrive at,

(Ũ0 − ε̃z,0)Ai′(−ε̃z,0)Ai2(−ε̃z,0)

=
1

2
Ai3(−ε̃z,0) + Ai′3(−ε̃z,0). (A6)

In order to find the solution of the Eq. (A6), we note

that for the infinite potential well Ũ0 = ∞, the ground
state energy is determined by the smallest root (in ab-
solute value) of the Airy function, −r0 ' −2.3381. This

suggests that for a finite but high potential well Ũ0 � 1,
the solution should remain close to −r0. As such, we
consider a solution of the form,

ε̃z,0 = r0 + δε̃, (A7)

and expand Ai and Ai′ functions around −r0. We keep
terms up to quadratic order in δε̃ to find,

Ai(−ε̃z,0) = −δε̃Ai′(−r0) +O(δε̃3), (A8a)

Ai′(−ε̃z,0) = Ai′(−r0)− 1

2
δε̃2r0Ai′(−r0) +O(δε̃3).

(A8b)

By substituting Eqs. (A8) into Eq. (A6) and keeping

terms up to quadratic order we find Ũ0δε̃
2 = 1 that gives

δε̃ = ±1/
√
Ũ0.

In order to determine which sign is physically ac-
ceptable, we note from Eqs. (A3b) and (A4) that
the wave function decays inside the barrier provided
Ai′(−ε̃z,0)/Ai(−ε̃z,0) > 0. This is satisfied only if δε̃
has a negative sign. In this case, we also find λ < 1,
as expected. Note that if we have kept the expansions in
Eq. (A8) up to the cubic order, we would have found a

correction to the ε̃z,0 of order Ũ
−3/2
0 .

Finally, from the normalization of the envelope func-
tion we find,

M0 =
[
ε̃z,0Ai(−ε̃z,0)2 + Ai′(−ε̃z,0)2

+
1

2
Ai(−ε̃z,0)3/Ai′(−ε̃z,0)

]−1/2
. (A9)

In order to simplify this, we use Eqs. (A7) and (A8) and
find M0 ' 1/Ai′(−r0).

Appendix B: Valley splitting of a disordered
quantum dot in magnetic field: Higher-order terms

In this Appendix, we present the form of the sub-
leading contribution ∆(2) in Eq. (53). Using Eqs. (29)
and (31) we find
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∆(2)(B) = C0

{
B2
x

(
y′0
z0

)2∑
n,n′

αnαn′

∫ ∞
−∞

e−2ik0zψx,0(By)2ψz,nψz,n′Usteps(x, z)dxdz

+B2
y

(
x′0
z0

)2∑
n,n′

βnβn′

∫ ∞
−∞

e−2ik0zψx,1(By)2ψz,nψz,n′Usteps(x, z)dxdz

+B2
xB

2
yx
′2
0 y
′2
0 η

2

∫ ∞
−∞

e−2ik0zψx,1(By)2ψ2
z,0Usteps(x, z)dxd

+
∑

m,n,n′=1

γm,nγm,n′

∫ ∞
−∞

U(z)e−2ik0zψz,nψz,n′dz

+
∑

m,n,m′,n′

γm,nγm′,n′

∫ ∞
−∞

e−2ik0zψz,nψz,n′ψx,m(By)ψx,m′(By)Usteps(x, z)dxdz

}
. (B1)

The perturbative coefficients α, β, η and γ are given
in Sections II B and II C, and using the excited states
ψz,n from Section II A, we can numerically evaluate the
integrals.

Appendix C: Second-order correction to the
envelope function due to the interface disorder

Here we present the complete form of the second or-
der correction due to the interface steps. According to
perturbation theory, we have

D(2)
xyz,0 =

∑
{m′,n′}6={m,n}

∑
{m,n}6={0,0}

γm,nζ
m,n
m′,n′ψx,m′ψz,n′

−
∑

{m,n}6={0,0}

γm,ncm,nψx,m′ψz,n′ , (C1)

where we defined,

ζm,nm′,n′ =
〈ψx,m′ψz,n′ |Usteps|ψx,mψz,n〉
En,z − En′,z + (m−m′)~ω′x

, (C2)

cm,n =
〈ψx,0ψz,0|Usteps|ψx,0ψz,0〉
E0,z − En,z −m~ω′x

. (C3)

In order to arrive to Eq. (34), we only keep the dominant
terms; i.e., in the set of γm,n, we keep γ1,0, and in the

set of ζm,nm′,n′ , we keep ζ1,02,0 and ζ1,00,0 . Finally, in the set of
cm,n, we keep c1,0.

Appendix D: The effect of out-of-plane excited
states in ∆(1)

In this appendix, we explain in more detail the effect
of the excited states ψz,n≥1 to the valley splitting for a
quantum dot with single interface step. The step poten-
tial Eq. (30) in this case becomes,

U1s
steps(x, z) = −U0θ(x− xs)θ(z)θ

(
z − a0

4

)
(D1)

In Section III C, we found the contributions from ∆1s
s and

∆1s
(1),{1,0} are out-of-phase with ∆ideal

vo , therefore, these

terms would monotonically suppress the valley splitting.
Here we show that once the out-of-plane excited states
ψz,n are taken into account, the real part of ∆1s

(1) gives

rise to a non-monotonic behaviour of the valley splitting
as a function of the step location, as shown in left panel
of Fig. 9.

To see this effect, let us integrate Eq. (56) over z by

0 0.2 0.4 0.6 0.8 1
-50

0

50

100

150

200

FIG. 14. Imaginary and real parts of the valley-orbit coupling
for a quantum dot with single interface step at B = 0 and
Fz = 15 MV/m. In order to obtain the dashed-dot lines, we
used ∆ideal

vo from Eq. (45), ∆1s
s from Eq. (57) and ∆1s

(1),{1,0}
from Eq. (58). For the solid lines, we numerically calculated
all contributions in Eq. (53) including terms with n ≥ 1 in
∆1s

(1),{m,n}.
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parts to find,

fm,n ' iU0
1

2k0

∫ ∞
xs

ψx,mψx,0dx

×
[
ψz,n(0)ψz,0(0)− e−ik0a0/2ψz,n(

a0
4

)ψz,0(
a0
4

)
]
, (D2)

where we have neglected the small contributions contain-
ing integral over e−2ik0zψz,nψ

′
z,0 and e−2ik0zψ′z,nψz,0. As

we have shown in Sec. III A, the dominant contribution
in ∆ideal

vo is given by ∆int from Eq. (48) which is an imagi-
nary quantity and is due to the amplitude of the envelope
function at the Si/SiGe interface.

Given Eq. (D2) and Eq. (55), the imaginary part of
∆1s

(1) is in opposite phase with ∆int (note that in Eq. (D2)

we have e−ik0a0/2 = −0.891 − 0.454i.) Therefore, the
closer the step is located to the quantum dot center, the
more the imaginary part of total valley-orbit coupling
is suppressed. On the other hand, the real part of the
valley-orbit coupling is increased when the step is closer
to the center, and at some point it becomes the domi-
nant contribution to the total valley-orbit coupling. We
plot the imaginary and real parts of the valley orbit cou-
pling in Fig. 14. The dashed-dot lines are obtained by
using the analytic relations we obtained in Sec. III C for
D1s
s and D1s

(1),{1,0} whereas the solid lines are found from

numerically evaluating the valley-orbit coupling includ-
ing all terms in ∆1s

(1),{m,n}. We observe that the non-

monotonic behaviour of the valley splitting as a function
of step location can be seen only by taking into account
the out-of-plane excited states ψz,n.
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