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We propose a quadrupolar exchange-only spin (QUEX) qubit that is highly robust against charge
noise and nuclear spin dephasing, the dominant decoherence mechanisms in quantum dots. The
qubit consists of four electrons trapped in three quantum dots, and operates in a decoherence-
free subspace to mitigate dephasing due to nuclear spins. To reduce sensitivity to charge noise,
the qubit can be completely operated at an extended charge noise sweet spot that is first-order
insensitive to electrical fluctuations. Due to on-site exchange mediated by the Coulomb interaction,
the qubit energy splitting is electrically controllable and can amount to several GHz even in the
“off” configuration, making it compatible with conventional microwave cavities.

Introduction Electron spin qubits in semiconductor
quantum dots have recently demonstrated their capabil-
ity as components in a working quantum processor [1–
4]. With simple quantum algorithms having now been
demonstrated, there is a strong motivation for building
a large-scale quantum computer using spin qubits due
to their long intrinsic coherence times and fast gate op-
eration times [5–8]. Spin qubits in silicon additionally
benefit from state-of-the-art industrial nanofabrication
techniques for scalability and the possibility of isotopic
enrichment to increase coherence times. While there
are many different implementations of spin qubits, the
exchange-only qubit [9–15] is unique since it can be fully
controlled using dc gate voltage pulses. The decoherence-
free subspace encoding also makes exchange-only spin
qubits insensitive to overall (long-wavelength) magnetic
field fluctuations [9, 16, 17]. However, all experimental
demonstrations until now suffer from decoherence due to
charge noise and local (short-wavelength) magnetic field
gradient (LMFG) noise, thus limiting the performance of
the qubit [12–15, 18].

Protection against charge noise is provided by oper-
ating qubits at a so-called charge noise “sweet spot”, a
point of operation which is first-order insensitive to elec-
tric fluctuations [18–26]. However, the energy splitting at
these sweet spots is too small to couple the qubit to con-
ventional superconducting resonators required for long-
distance entanglement protocols [22, 27–34]. Moreover,
three-spin exchange-only qubits are sensitive to LMFG
noise [26, 35–37], which can arise from fluctuating nu-
clear spins or Meissner expulsion of magnetic fields near
superconducting gates. These gradients limit spin co-
herence times and can result in leakage, i.e., the loss of
information into the non-computational subspace. Ad-
ditionally, while a single exchange-only qubit or hybrid
qubit is insensitive to fluctuations in the overall magnetic
field, an array of exchange coupled exchange-only (hy-
brid) qubits does not benefit from this protection since
each exchange-only qubit can acquire a slightly different
phase.

In this Letter, we propose a quadrupolar exchange-only
spin (QUEX) qubit that allows for universal quantum
computation with high-speed qubit operations and very

FIG. 1. (a) Illustration of a four-electron spin qubit residing
in an electrostatically defined triple quantum dot (TQD). The
four spins are coupled via inter-dot and onsite exchange in-
teraction. The center dot is occupied by two electrons, giving
rise to a large and electrostatically tunable energy splitting.
(b) TQD charge stability diagram as a function of ε and εM .
The optimal operating point is marked by the star.

long coherence times. The QUEX qubit is operated in
the 4 electron regime, with the 4 electrons distributed
on 3 series-coupled semiconductor quantum dots [see
Fig. 1(a)] and is encoded in the low-energy subspace with
total spin S = 0. This encoding makes the QUEX qubit
insensitive to overall (long-wavelength) magnetic fields,
first-order insensitive to LMFG noise [16, 17, 38], and
no global phases are acquired from long-range magnetic
fields, thus there is no desynchronization problem if used
in a large-scale array. Compared to the singlet-singlet
qubit [38], the QUEX qubit offers a simplified architec-
ture requiring only three dots and two detuning param-
eters. As with the exchange-only qubit [9], single-qubit
operations in the QUEX qubit can be driven using either
dc pulses or ac modulation. Compared to the exchange-
only [9–14, 18–23, 26, 39] and the hybrid [26, 40–44]
qubit, the QUEX qubit offers an increased protection
against charge noise [43, 45] due to an extended charge
noise sweet spot. This arises from the addition of the
fourth electron which flattens the energy bands and pro-
vides a qubit energy splitting at the sweet spot which is
electrically controllable and can amount to several GHz
even in the “off” configuration, thus, making it compati-
ble with conventional superconducting resonators. Build-
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FIG. 2. (a) TQD confining potential V (x). The left and
right dots each contain one electron in the ground state (black
level). The middle dot contains two electrons, one of which
can occupy an excited valley state (grey level) EV,C above
the ground state. The electrons are allowed to hop with val-
ley conserving (green), tl,r, and valley non-conserving (blue)
tunneling, t′l,r. Tunneling from the center dot to an excited
valley state (grey dashed) in the outer dots is energetically
unfavorable. (b) Energy level diagram of the center quan-
tum dot filled with two electrons for total spin Sz = 0. The
lowest energy level is the spin-singlet state |sCC〉 in the val-
ley ground state. The first excited state |sCC′〉 + |sC′C〉 is
a triplet-like state and occupies a valley ground and excited
state but its energy is lowered by the electrostatically tunable
onsite Coulomb-exchange coupling Jc.

ing on recent experiments showing that strong coupling
of semiconductor qubits [15, 46–50] to electromagnetic
resonators is feasible, we present an electrically switch-
able two-qubit interaction [34] making use of the large
and strongly tunable qubit splitting.

Qubit design A defining feature of the QUEX qubit
is its use of the valley degree of freedom in Si to achieve
an energy splitting that is compatible with conventional
superconducting cavities with 4− 10 GHz resonance fre-
quencies. The QUEX qubit is implemented in a TQD
that contains a total of four electrons in the (1,2,1) charge
configuration [see Figs. 1 and 2(a)]. Here (NL, NC , NR)
denote the number of electrons confined in each of the
three dots. For later convenience we define the dipolar
detuning ε ≡ (VL−VR)/2 and the quadrupolar detuning
εM ≡ VC − (VL + VR)/2 [see Fig. 2 (a)].

Silicon quantum dots typically have relatively large or-
bital energies Eorb = 3− 5 meV [51, 52]. In contrast, the
smaller valley splittings EV,C = 20 − 250µeV are com-
patible with microwave frequency photons (1 GHz ∼ 4.2
µeV) [51, 53]. In the QUEX qubit, the valley degree of
freedom plays a crucial role in the middle dot, as it adds a
level that can be treated as an additional fourth pseudo-
dot. An external (homogeneous) magnetic field with Zee-
man splitting EZ � EV,C � Eorb energetically separates
states according to Sz. The QUEX qubit resides in the
two lowest energy levels in the S = Sz = 0 subspace with

the two following logical spin qubit states [38, 54]

|0〉 = |sLR〉 |sCC〉 (1)

|1〉 =
1√
3

(|sLC′〉 |sCR〉+ |sLC〉 |sC′R〉). (2)

Here, |sµν〉 denotes the singlet state formed by two elec-
trons in orbitals µ and ν with µ, ν = L,C,C ′, R where L
(R) reside in the left QD (right QD) and C, (C ′) reside
in the lower (upper) valley in the center QD. Note that
both qubit states are constructed using only two-electron
singlet states making them resilient to LMFG.

We describe the dynamics of the QUEX qubit by the
following effective Hamiltonian

H = J0 |0〉 〈0|+ (J1 + EV,C − JC) |1〉 〈1|+ Jxσ+ + J∗xσ−,
(3)

with the qubit raising and lowering operator σ+ = |0〉 〈1|
and σ− = σ†+ = |1〉 〈0|. Here, J0 and J1 are real-valued
and Jx complex-valued exchange couplings from vir-
tual tunneling processes to states with a (2,2,0), (2,1,1),
(1,3,0), (0,3,1), (1,1,2) and (0,2,2) charge configuration,
EV,C is the valley splitting in the center QD, and JC is
the onsite Coulomb-exchange coupling between the elec-
trons occupying the center QD. The phase of Jx depends
on the phase an electron acquires by consecutively tun-
neling from the lower to the excited valley state on the
center dot via an intermediate state on the left or right
dot (see Fig. 2). For later convenience, we can also write
Jµ =

∑
ν J

ν
µ with µ = 0, 1, x and ν = l, l′, r, r′ where

J lµ (JLµ ) denotes exchange coupling via valley conserving
(non-conserving) tunneling of an electron from the center
QD to the left QD and similarly for Jrµ (JRµ ) to the right
QD. The qubit splitting for |Jx| � |EV,C − JC | is given
by

ωq ≈ (J1 + EV,C − JC − J0) +
|Jx|2

2(J1 + EV,C − JC − J0)
.

(4)

The explicit expressions for the exchange parameters and
a detailed derivation of the effective Hamiltonian (A31)
can be found in A.
Initialization and Readout Figures 3(a)-(b) illustrate

the initialization protocol. To prepare the system in state
|init〉 = |sLL〉 |sRR〉 the detuning parameter εM is set
such that the (2,0,2) charge configuration is the ground
state [Fig. 3 (a)]. Due to the large single dot exchange
splittings, the two electron ground state in the left and
right dots is a singlet [55] and can be prepared with high
fidelity [56]. Adiabatic tuning of εM into a configura-
tion where the (1,2,1) charge configuration is the ground
state [Fig. 3(b)] maps |init〉 → |1〉 through spin conserv-
ing tunneling events. Readout is performed in reverse,
i.e., by detecting the tunneling of the electrons from the
center dot to the left and right dots. Tunneling of |1〉
to the (2,0,2) ground state is allowed, but tunneling of
|0〉 to the (2,0,2) ground state is Pauli blocked, similar
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FIG. 3. Protocol for initializing the QUEX qubit: First the
(2,0,2) charge configuration regime (a) is prepared by load-
ing the left and right QD with two electrons in the spin-up
and spin-down state of the lowest valley. (b) Adiabatic tun-
ing from the (2,0,2) to the (1,2,1) charge state directly maps
|init〉 → |1〉. Readout is performed by reversing the initializa-
tion sequence, as described in the main text.

to singlet-triplet readout in double dots [55]. Charge de-
tection therefore provides a fast and high fidelity readout
scheme.

Decoherence properties The Si/SiOx and Si/SiGe sys-
tems appear to be most favorable for the experimen-
tal realization of the QUEX qubit due to their large,
and somewhat tunable, valley splitting. Since the four
spin encoding of the QUEX is resilient to fluctuating
LMFG noise [38] an implementation in natural silicon
is still possible without significantly decreasing the deco-
herence time. The QUEX qubit possesses a full charge
noise sweet spot where the qubit is first order insen-
sitive to charge fluctuations in both detuning param-
eters ε, εM [see Figs. 4 (a)-(b)]. From the condition
∂εωq = ∂εMωq = 0 and assuming |tl| = |t′l|, |tr| = |t′r|,
and symmetric charging energies, we find a double sweet
spot at ε = 0 and εM = (Jc − EV,C)/2 − EC . Impor-
tantly, the sweet spot of the QUEX qubit is very flat
compared to the conventional exchange-only qubit, i.e.,
reduced by 1 − k(EV − JC)/Echarge with the zero-bias
splitting EV − JC and k > 1, therefore protecting it sig-
nificantly better against charge noise. Numerical simula-
tions shown in Fig. 4 (c) predictdephasing times on the
scale of several hundreds of microseconds using realistic
parameters, one order of magnitude larger than predic-
tions for the conventional exchange-only qubit [22, 26].
A full study for the general case tl 6= t′l and tr 6= t′r yields
qualitatively similar results (see Sec. E).

Single-qubit operations Arbitrary single-qubit gates
can be implemented by pulsing the exchange interac-
tions, Jνµ . Assuming valley-orbit conserving and non-
conserving tunneling to be equal (tl = t′l and tr = t′r),
the Hamiltonian (A31) can be rewritten as

Hq =
1

8
(2J l0 − 3J l1 + 2Jr0 − 3Jr1 + 8EV,C − 8JC)σz

+
1

4

√
3√
8

(J l0 + J l1 − Jr0 − Jr1 )σx. (5)

Here, we introduced the Pauli operators σz = |0〉 〈0| −
|1〉 〈1| and σx = σ+ + σ−. Therefore, pulsing J lq =
Jrq results in pure (and fast) z-rotations while pulses

with J lq 6= Jrq yield rotations around a tilted axis [57].

FIG. 4. (a) Qubit splitting ω as a function of the (a) dipo-
lar detuning ε and (b) quadrupolar detuning εM . The stars
in (a) and (b) mark the sweet spots where ∂ωq/∂ε = 0 and
∂ωq/∂εM = 0. For comparison the energy gap ωEO of the con-
ventional exchange-only qubit (gray lines) is added with iden-
tical parameter settings that show steeper derivatives, thus,
higher susceptibility to charge noise. (c) Qubit dephasing
time Tϕ as a function of ε and εM for (c) t′l = t′r using real-
istic parameters (see appendix). The simulation shows that
Tϕ > 100µs if the qubit is operated at the charge noise sweet
spot. (d) Schematic of the microwave resonator mediated
two-qubit coupling. A cavity with resonance frequency ωres

is coupled to the center dot with an effective charge-cavity
coupling rate gc,i. Each qubit is simultaneously driven at a
frequency ωD,i.

Experimentally, the exchange interaction can either be
controlled through detuning [55] or tunnel barrier con-
trol [18, 24, 25, 58]. Barrier control has the advantage
that it operates the qubit at the charge noise sweet spot,
thus, mitigating decoherence from charge noise during
the exchange pulse. This statement, however, is only
valid for tl ≈ t′l and tr ≈ t′r since otherwise the po-
sition of the sweet spot depends on the tunneling and
moves during the qubit operation. In the latter case, one
can combine barrier control with tilting control to com-
pensate for the shift of the sweet spot. Similar pulsing
schemes are commonly implemented to cancel crosstalk
between electrostatic gates [59].

A more natural way of implementing single-qubit ro-
tations in the QUEX qubit is to modulate the exchange
coupling, Jνµ → Jνµ + jνµ cos (ωD + φ) analogous to the
resonant exchange (RX) qubit [12, 19, 26]. In a frame
rotating with the drive frequency ωD, and neglecting fast
oscillations at 2ωD, the Hamiltonian (A31) can be writ-
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ten in its eigenbasis as

Hq =
1

2
(ωq − ωD)σz +

J1
x

2

(
eiφ |1〉 〈0|+ e−iφ |0〉 〈1|

)
.

(6)

Here, the phase φ can be used to adjust the
qubit rotation axis. Experimentally, this can real-
ized by parametric modulation of either the detun-
ing parameters, ε, εM , or the tunneling couplings,
tl,r and t′l,r. The time for a Rabi flip is τ−1

x ∝
Aq ∝ jx [Jx∂(J1 − J0)/∂q − (J1 − J0)∂Jx/∂q] /(2ωq),
where Aq denotes the amplitude of the driving of the pa-
rameter q ∈ {ε, εM , tl,r, t′l,r} . Using realistic parameters
we find AεM ≈ 0.13µeV, thus, τx = 30 ns while driv-
ing at the charge noise double sweet spot (see Sec. F).
Modulation of the tunnel barrier has the additional ben-
efit of providing a dynamic sweet spot, where the Rabi
drive is first-order insensitive to fluctuations in detuning,
∂J1

x/∂q = 0. Recent experiments show that charge noise
affecting the Rabi frequency significantly reduces the
number of coherent exchange oscillations [18]. Thanks
to the naturally large energy splitting of the qubit ωq
counter-rotating terms are small and off-resonant tran-
sitions are strongly suppressed, making strong driving
feasible.

Two-qubit interaction Exchange-only qubits are lim-
ited to short-ranged, exchange-based operations requir-
ing complex pulse sequences [9, 16, 17, 60, 61]. The
QUEX qubit, with its large and tunable energy split-
ting, enables near-resonant coupling to high frequency
resonators giving rise to new entanglement generation
protocols [62]. We now describe a resonantly-driven,
cavity-mediated two-qubit entanglement protocol [28, 31,
32, 34, 63].

For this setup a superconducting cavity with resonance
frequency ωres is capacitively coupled to the electrostatic
potential VC at the center QD while VC of each qubit is
simultaneously modulated with frequency ωD ≈ ωq and
phase φ [see Fig. 4 (d)]. Thus, VC → VC(t) = V 0

C +
V 1
C cos(ωD +φ) + gc(a+ a†). Here a† (a) creates (annihi-

lates) a cavity photon with frequency ωres, and gc ∝
√
Z

is the charge-photon coupling strength and Z is the char-
acteristic impedance of the resonator [15, 48, 50, 64]. The
effect of VC(t) on each qubit is described by the Hamil-
tonian (see Sec. G)

Hint = ωresa
†a+ gσx(a+ a†) + Ω cos(ωD + φ)σx, (7)

where the second term describes the qubit-cavity inter-
action with coupling strength g = gc 〈0| ∂VCHq(VC) |1〉
and the last term induces a spin-flip with Rabi frequency
Ω = V 1

C 〈0| ∂VCHq(VC) |1〉. Following the protocol de-
scribed in Ref. [34], Hamiltonian (7) generates “red” and
“blue” sideband transitions for the particular choice of
Ω = ±(ωres − ωD) and ωD = ωq

H∓(g, φ) =
g

2

(
e±iφa†σ∓ + e∓iφaσ±

)
. (8)

An entangling controlled-Z (CZ) gate is constructed us-
ing pulses of “red” and “blue” sideband transition gates
S∓(φ, τ) ≡ exp[−itH∓(g, φ)] combined with single-qubit
rotations [34]. Using experimentally feasible parame-
ter settings, a CZ gate is possible within τ ≈ 340 ns
(see appendix). For this implementation it is essen-
tial to be able to tune the qubit near resonance to ful-
fill Ω = ±(ωres − ωD) while simultaneously matching
ωD = ωq, therefore, requiring a large and controllable
qubit splitting. Alternative two-qubit coupling schemes
include exchange-based interaction [60, 61] and capacita-
tive coupling [41, 65].
Discussion In summary, we have proposed a

quadrupolar exchange (QUEX) spin qubit that uses the
spin of four electrons in a TQD and gives rise to a
large controllable qubit splitting. Since the large energy
gap suppresses the susceptibility to charge noise and the
qubit can be fully operated at a charge noise sweet spot
we predict dephasing times exceeding ∼ 100µs allowing
for a high quality qubit implementation. A symmetric
readout and initialization protocol can be used to per-
form fast and high fidelity measurements. Together with
the proposed cavity-mediated, long-distance entangling
protocol, these properties render the QUEX qubit suit-
able for implementation in a large-scale quantum infor-
mation processing architecture.
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Appendix A: Derivation of the effective Hamiltonian for the quadrupolar exchange-only qubit

In this section we present a derivation of the effective Hamiltonian which describes the setup discussed in the main
text consisting of three linearly arranged quantum dots (QDs). The dots are occupied with a total of four electrons
and are electrostatically tuned such that the (1,2,1) charge configuration is energetically favorable. Here, (l,m, n)
denotes the charge configuration with l electrons in the left, m electrons in the center, and n electrons in the right
dot. For our theoretical model we use an extended Hubbard model (t− J model) [66, p. 25] which includes intra-dot
and inter-dot charging energies, the direct Coulomb exchange interaction between two electrons occupying the same
dot with different valley-orbit quantum numbers, and a valley-orbit non-conserving tunneling between the dots (see
section B).

Our proposed system is described by the following Hamiltonian

H = H0 +Hch +Htun (A1)

where H0 contains the quantum dot orbital energies εiα and the chemical potentials Vi, Hch the intra-dot (internal)
charging energies Ciα,iβ , Kiα,iβ and the inter-dot (external) charging energies Ciα,jβ , Kiα,jβ with i 6= j, and Htun the
tunneling matrix elements tiα,jβ ,

H0 =
∑
i,α

(εiα + Vi)(niα,↑ + niα,↓), (A2)

Hch =
∑
i,j

∑
α,β

∑
σ,σ′

(
Ciα,jβc

†
iα,σc

†
jβ,σ′cjβ,σ′ciα,σ +Kiα,jβδσσ′c

†
iα,σc

†
jβ,σ′ciα,σcjβ,σ′

)
, (A3)

Htun =
∑
i6=j

∑
α,β

∑
σσ′

tiα,jβδσσ′c
†
iα,σciβ,σ′ . (A4)

Here, the indices i, j = L,C,R refer to the QD, the indices α, β = v0, v1 to the valley-orbit, and σ, σ′ =↑, ↓ label the

electron spin. In this notation, niα,σ = c†iα,σciα,σ is the number operator and c†iα,σ (ciα,σ) creates (annihilates) an

electron in QD i (i=L,C,R) occupying orbital α (α = 1, 2) with spin σ (σ =↑, ↓). Vi is the dot potential affected by the
electrostatic gates Vi, EV,i ≡ εiv0 − εiv1 is the valley-orbital splitting, Ciα,iβ and Kiα,iβ denote the onsite (internal)
Coulomb and Coulomb-exchange energies of two electrons occupying the same dot, and Ciα,jβ and Kiα,jβ with
i 6= j describe the Coulomb and Coulomb-exchange interaction between electrons occupying different dots. These
parameters, Ciα,jβ , Kiα,jβ , and tiα,jβ are given by computing the corresponding single- and two-particle matrix
elements of the electronic wavefunctions (see subsection B) or are experimentally accessed by fitting the parameters
to transport or cavity measurements [59, 67]. Note, that the above Hamiltonian directly enforces spin-conserving
tunneling and Coulomb interaction through the Kronecker delta δσσ′ . This is justified by the relatively small spin-
orbit interaction in silicon. Restricting ourselves to the situation where the (1,2,1) charge configuration is energetically
favorable and considering large orbital spacings for the left and right dot, i.e. strong confinement of the electrons,
we find that the excited valley-orbital levels in the outer two QDs are frozen out. Assuming symmetric confinement
potentials and small dot sizes (charge distribution in different orbitals is small compared to the electron-electron
repulsion), we find Ui ≡ Ciα,iβ ≈ Ciα′,iβ′ , Ui,j ≡ Ciα,jβ ≈ Ciα′,jβ′ for α, α′, β, β′ = v0, v1, and JC ≡ Kiv0,iv1 = K in

iv1,iV0

while Kiα,iα = 0. To introduce the same notation as used in the main paper, we now omit the orbital index if α = v0

and use Q′ if α = v1 for Q = L,C,R. Hence, there are four relevant tunneling amplitudes in the regime of our interest

tl ≡tL,C +KL,C = t∗C,L +K∗C,L, (A5)

t′l ≡tL,C′ +KL,C′ = t∗C′,L +K∗C′,L, (A6)

tr ≡tC,R +KC,R = t∗R,C +K∗R,C , (A7)

t′r ≡tC′,R +KC′,R = t∗R,C′ +K∗R,C′ , (A8)

where tl,(r) and t′l,(r) describe valley-orbit conserving and non-conserving tunneling between the left (right) QD and

the center QD renormalized by the Coulomb-exchange interaction. In a linear array the tunneling matrix element
t13 ≡ tL,R+KL,R = t∗R,L+K∗R,L ≈ 0 between the left and right dot is small and neglected for all analytical calculations
in this supplement.

For later convenience, we also define the dipolar-detuning, ε = (VL − VR)/2, and the quadrupolar detuning,
εM = VC − (VL + VR)/2. An applied magnetic field sets the quantization axis (z) of the qubit and allows for a
separate analysis of each subspace spanned by the states with total spin S = |S| ≡ |

∑
µ Sµ| and Sz. Note, that the

z-projection of the spin is given by the direction of the magnetic field and not by the geometric coordinate system
x, y, z of the quantum dot system.
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The quadrupolar exchange-only spin qubit is implemented in the (1,2,1) charge configuration using the logical spin
qubit states [38, 54]

|0〉 = |sLR〉 |sCC〉

=
1√
2

(
c†Lv0,↑c

†
Cv0,↑c

†
Cv0,↓c

†
Rv0,↓ − c

†
Lv0,↓c

†
Cv0,↑c

†
Cv0,↓c

†
Rv0,↑

)
|vac〉 (A9)

|1〉 =
1√
3

(|sLC′〉 |sCR〉+ |sLC〉 |sC′R〉)

=
1

2
√

3

(
c†Lv0,↑c

†
Cv0,↑c

†
Cv1,↓c

†
Rv0,↓ + c†Lv0,↑c

†
Cv0,↓c

†
Cv1,↑c

†
Rv0,↓

− 2c†Lv0,↑c
†
Cv0,↓c

†
Cv1,↓c

†
Rv0,↑ − 2c†Lv0,↓c

†
Cv0,↑c

†
Cv1,↑c

†
Rv0,↓

+ c†Lv0,↓c
†
Cv0,↑c

†
Cv1,↓c

†
Rv0,↑ + c†Lv0,↓c

†
Cv0,↓c

†
Cv1,↑c

†
Rv0,↑

)
|vac〉 (A10)

both residing in the S = 0 subspace of the four electron system and forming a decoherence-free subspace (DFS)

qubit [9, 54]. Here, |vac〉 denotes the vacuum state, |sµν〉 = (|↑〉µ |↓〉ν − |↓〉µ |↑〉ν)
√

2 denotes the spin singlet state

between electrons in orbitals µ and ν with µ, ν = L,C,C ′, R where L (R) reside in the left (right) dot and C, (C ′)
reside in the lower (upper) orbital in the center dot. There are two additional (leakage) states with the same total
spin and charge configuration

|0+〉 = |sLR〉 |sCC′〉 , (A11)

|0++〉 = |sLR〉 |sC′C′〉 (A12)

occupying excited valley-orbit levels in the center dot. There are no direct hopping matrix elements between the states
|0〉, |1〉, |0+〉, and |0++〉 and their Hamiltonian is given in the basis {|0〉 , |1〉 , |0+〉 , |0++〉} by the diagonal matrix

H0
(1,2,1) = diag(0, EV,C − Jc, EV,C , 2EV,C). (A13)

However, coherent tunneling of the electrons couples states with (1,2,1) charge configuration to states with different
charge occupations, i.e, states with (2,2,0), (2,1,1), (1,3,0), (0,3,1), (1,1,2) and (0,2,2) charge configuration, each
energetically separated at least by the non-local nearest neighbor Coulomb repulsion Uij . Considering only the lowest
energy states within these charge configurations, we have to take the following 10 states with their respective energy
into consideration;

|(2, 1, 1)1〉 = |sLL〉 |sCR〉 , withE4 = ε− εM + U1 − U2 + U2,3, (A14)

|(2, 1, 1)2〉 = |sLL〉 |sC′R〉 , withE5 = ε− εM + U1 − U2 + U2,3 + EV,C , (A15)

|(1, 1, 2)1〉 = |sLC〉 |sRR〉 , withE6 = −ε− εM + U3 − U2 + U1,2, (A16)

|(1, 1, 2)2〉 = |sLC′〉 |sRR〉 , withE7 = −ε− εM + U3 − U2 + U1,2 + EV,C , (A17)

|(1, 3, 0)1〉 = |sLC′〉 |sCC〉 , withE8 = ε+ εM + 2U2 − U1,2 + U2,3 + EV,C − JC , (A18)

|(1, 3, 0)2〉 = |sLC〉 |sC′C′〉 , withE9 = ε+ εM + 2U2 − U1,2 + 2U2,3 + 2EV,C − JC (A19)

|(0, 3, 1)1〉 = |sCC〉 |sC′R〉 , withE10 = εM − ε+ 2U2 + 2U1,2 − U2,3 + EV,C − JC (A20)

|(0, 3, 1)2〉 = |sCR〉 |sC′C′〉 , withE11 = εM − ε+ 2U2 + 2U1,2 − U2,3 + 2EV,C − JC (A21)

|(2, 2, 0)〉 = |sLL〉 |sCC′〉 , withE12 = 2ε+ U1 − 2U1,2 + U2,3 + EV,C + JC (A22)

|(0, 2, 2)〉 = |sCC′〉 |sRR〉 , withE13 = −2ε+ U3 + 2U1,2 − U2,3 + EV,C + JC , (A23)

In the remainder of the derivation of the effective Hamiltonian we neglect the influence of |(2, 2, 0)〉 and |(0, 2, 2)〉
since they only contribute terms of the order ∼ t2l,(L)t

2
r,(R) [26]. However, we take these terms into consideration for

numerical calculations.
The effective low-energy subspace in the (1,2,1) charge regime can be approximated via a Schrieffer-Wolff transfor-

mation in the limit tl,r, tL,R � |Ui − Ui,j ± ε± εM |. The resulting effective Hamiltonian in the (1,2,1) subspace with
S = Sz = 0 is given as follows

Heff =


J0,0 J̃0,1 J̃0,2 0

J̃∗0,1 J1,1 + EV,C − JC J1,2 J̃1,3

J̃∗0,2 J1,2 J2,2 + EV,C J̃2,3

0 J̃∗1,3 J̃∗2,3 J3,3 + 2EV,C

 . (A24)
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For the relevant exchange couplings we find the following analytic expressions

J0,0 =− 1

4

(
|tl|2

E4
+
|tr|2

E6
+
|t′l|2

E10
+
|t′r|2

E8

)
, (A25)

J̃0,1 =− 1

4

√
3

8

(
t∗l t
′
l

E4
+

t∗l t
′
l

E4 + JC − EV,C
+
t∗l t
′
l

E10
+

t∗l t
′
l

E10 + JC − EV,C

− t′∗r tr
E6
− t′∗r tr
E6 + JC − EV,C

− t′∗r tr
E8
− t′∗r tr
E8 + JC − EV,C

)
, (A26)

J1,1 =− 3

8

(
|tl|2

E5 + JC − EV,C
+

|tl|2

E10 + JC − EV,C
+

|t′l|2

E4 + JC − EV,C
+

|t′l|2

E11 + JC − EV,C

+
|tr|2

E7 + JC − EV,C
+

|tr|2

E8 + JC − EV,C
+

|t′r|2

E6 + JC − EV,C
+

|t′r|2

E9 + JC − EV,C

)
, (A27)

while for the higher excitation couplings we refer to Section H. We note, that Ji,j = J li,j + J l
′

i,j + Jri,j + Jr
′

i,j , where

Jqi,j ∝ |tq|2 are real parameters and describe a Heisenberg-type exchange interaction between states occupying the

same valley, while J̃i,j = J̃l,(i,j) + J̃r,(i,j), where J̃p,(i,j) ∝ t∗ptp′ with p = l, r and p′ = l′, r′ are complex parameters
and describe valley-orbit non-conserving exchange. Since the degeneracy of the (1,2,1) charge states is lifted due
to the valley-orbit splitting EV,C and the intra-dot direct Coulomb exchange Jc, we use a second Schrieffer-Wolff
transformation assuming Ji,j � ||EV,C − Jc| − EV,C | to find the dynamics in the qubit subspace {|1〉 , |0〉}. Defining

J0 ≈J0,0 +
|J̃0,2|2

J0,0 − J2,2
(A28)

J1 ≈J1,1 +
|J1,2|2

J1,1 − J2,2
+

|J̃1,3|2

J1,1 − J3,3
(A29)

Jx ≈J̃0,1 +
J̃0,2J1,2(J0,0 + J1,1 − 2J2,2)

2(J0,0 − J2,2)(J1,1 − J2,2)
(A30)

we find for the qubit Hamiltonian the same expressions as used in the main text,

Hq = J0 |0〉 〈0|+ (J1 + EV,C − JC) |1〉 〈1|+ Jx |1〉 〈0|+ J∗x |0〉 〈1| (A31)

with the qubit splitting

ωq =
√

(J1 + EV,C − JC − J0)2 + |Jx|2 ≈ (J1 + EV,C − JC − J0) +
|Jx|2

2(J1 + EV,C − JC − J0)
. (A32)

We note that Jx couples the two logical qubit states |0〉 and |1〉 and is tunable through electrical control of the tunnel
barrier or the detuning parameters. Moreover, J1 ∼ EV,C − JC � Jx is dominated by the valley-orbit splitting and
Coulomb exchange, therefore “always-on”, giving rise to a large zero-bias splitting.

Appendix B: Molecular orbital analysis

In this section we support our analysis using a full Hund-Mullikan orbital calculation. Following Ref. [33, 68], the
triple quantum dot is modeled by a potential of the form

V(x, y) =


mω2

dot

2

[
− 1

48a
2
l cl
(
c3l − 6cl − 8

)
+ x4

a2l
− 2(cl−3)x3

3al
− (cl − 1)x2

]
x < 0

mω2
dot

2

[
− 1

48a
2
l cl
(
c3l − 6cl − 8

)
+ x4

a2r
− 2(cr+3)x3

3ar
+ (cr + 1)x2

]
x ≥ 0

(B1)

which separates into three harmonic wells of frequency ~ωdot = Eorb (see Fig. 5). Here, al,(r) is the distance between
the left (right) and the center quantum dot and the parameter |cl,(r)| < 1 phenomenologically describes the slope in
energy between the left (right) dot and center dot. The cl,r are related to the detuning parameters by

cl = −6(ε− εM )

a2
lmω

2
dot

, (B2)

cr = −6(ε+ εM )

a2
rmω

2
dot

. (B3)
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FIG. 5. Modeling of the triple quantum dot in the 2DEG using the harmonic square wells of Eq. (B1). The x-axis is aligned
along the triple dot axis, the y-axis is perpendicular in the 2DEG plane, and the z-axis is perpendicular to the plane. The
following parameters have been chosen: al = ar = 41.2 nm, cl = cr = 0, and Eorb = 6 meV.

In this model, the height of the tunnel barrier hl,r is given by the inter-dot distance hl,r ∝ al,r.
In the effective mass (EM) approximation the orbital ground state electron wavefunctions of a multi-valley system

with valley ξ = z, z̄ residing in quantum dot q = l, c, r is given by [69–75]

χξsq (x, y, z) = Φsorb(x, y)×Ψ(z)× uξ(x, y, z)× eikξz

≈ e
iaqy

2l2
B e
− (x−aq)2+y2

2R2
q

√
πRq

× e−
z2

2d2

√
2π1/4

√
d
× 1× eikξz. (B4)

Note, that setting uξ(x, y, z) = const does not affect our results since all relevant energies vary slowly with respect
to the lattice site, therefore, all matrix elements are averaged over several periods of the Bloch function. Here, the
first factor describes the orbital confinement in the xy-plane at x-positions al, ac = 0, ar with quantum dot radius
Rq = ~/

√
mEorb,q < al, ar, and the magnetic length lB =

√
~/eB. The remaining factors describe the confinement

along z-direction in a quantum well with length d � Rq, with z-valley position kξ = ±k0 in k-space. The electronic
quantum dot wavefunction of a multi-valley system in the first excited orbital state can similarly be approximated
by [69, 70, 74–80].

χξpq (x, y, z) = Φporb(x, y)×Ψ(z)× uξ(x, y, z)× eikξz

≈ [(x− aq) + iy]
e
iaqy

2l2
B e
− (x−aq)2+y2

2R2
q

√
πR2

q

× e−
z2

2d2

√
2π1/4

√
d
× 1× eikξz. (B5)

In realistic devices, however, miscuts, atomistic steps at the interface, or other effects couple the valley and orbital
degrees of freedom. In general, the valley-orbit coupling can be described in the basis of each dot {χzsq , χz̄sq , χzpq , χz̄pq }
by [75, 77, 81]

HVO,q =
1

2


0 ∆VOs,q ∆Oz,q ∆V s,q

∆∗VOs,q 0 ∆V p,q ∆Oz̄,q

∆∗Oz,q ∆∗V p,q 2Eorb,q ∆VOp,q

∆∗V s,q ∆∗Oz̄,q ∆∗VOp,q 2Eorb,q

 = H0
VO,q +H1

VO,q, (B6)

where H0
VO,q contains only the diagonal elements and H1

VO,q only off-diagonal elements. Here, ∆VOs (∆VOp) is the

intra-orbit inter-valley coupling of the ground (excited) state, ∆O,ξ denotes the inter-orbit intra-valley coupling of the
ξ = z, z̄ valley, and ∆V s (∆V p) describes the inter-orbit inter-valley coupling between the orbital ground (excited)
states. The eigenstates of the Hamiltonian (B6) are calculated in two steps. First, a SW transformation is applied to
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block-diagonalize H̃VO,q = eSHVO,qe−S with |∆V s,∆V p,∆Oz,∆Oz̄| � Eorb,q. Thus, we obtain (up to a energy shift)

H̃VO,q ≈
1

2


−2Es,q ∆̃VOs,q 0 0

∆̃∗VOs,q 2Es,q 0 0

0 0 2(Eorb,q − Ep,q) ∆̃VOp,q

0 0 ∆̃∗VOp,q 2(Eorb,q + Ep,q)

 , (B7)

in the basis of the valley-orbit mixed states |ϕξoq 〉 = e−S |χξoq 〉 with o = s, p and ξ = z, z̄. The anti-hermitian matrix

S is set by the SW condition [S,H0
VO,q] = −H1

VO,q. Note, that in general the mixing between s- and p-orbitals is
different for z and z̄ valley which we will find useful below. The complex valley-orbit coupling of the ground state

∆̃VOs,q = |∆̃VOs,q|eiφ
v
q now defines the valley-splitting hV,q = |∆̃VOs,q| and the phase of the valley pseudo-spin φvq

(similarly for the p-orbitals). The orbital splittings Es,q, Ep,q � |∆̃VOs,q|, |∆̃VOp,q| are neglected in the remainder of
the supplement.

In a second step, we diagonalize the s-orbital 2 × 2-block using the basis transformation |ϕξsq 〉 → (|ϕξsq 〉 ∓
eiφ

v
q |ϕξ̄sq 〉)/

√
2 and similarly for the p-orbitals. The electron wavefunctions are then given by

|ϕ0s
q 〉 =(e−S |χzsq 〉 − eiφ

v
q e−S |χz̄sq 〉)/

√
2, (B8)

|ϕ1s
q 〉 =(e−S |χzsq 〉+ eiφ

v
q e−S |χz̄sq 〉)/

√
2, (B9)

|ϕ0p
q 〉 =(e−S |χzpq 〉 − eiφ

v
p,qe−S |χz̄pq 〉)/

√
2, (B10)

|ϕ1p
q 〉 =(e−S |χzpq 〉+ eiφ

v
p,qe−S |χz̄pq 〉)/

√
2, (B11)

(B12)

with φvp,q = arg(∆̃VOp,q) being the valley pseudo-spin phase of the p-orbital. The set of wavefunctions introduced

above ϕ ≡ {ϕ0s
l , ϕ

0s
c , ϕ

0s
r , ϕ

1s
l , ϕ

1s
c , ϕ

1s
r , ϕ

0p
l , ϕ

0p
c , ϕ

0p
r , ϕ

1p
l , ϕ

1p
c , ϕ

1p
r }T , however, is unsuitable for further calculations

due to finite overlaps

Σαβij =

∫
d3rϕα∗i (r)ϕβj (r) 6= δijδαβ . (B13)

Enforcing the orthonormalization conditions yields a new set of wavefunctions
Φ ≡ {Φ0s

l ,Φ
0s
c ,Φ

0s
r ,Φ

1s
l ,Φ

1s
c ,Φ

1s
r ,Φ

0p
l ,Φ

0p
c ,Φ

0p
r ,Φ

1p
l ,Φ

1p
c ,Φ

1p
r }T that is uniquely given by

Φ = Σ−1/2ϕ (B14)

for sufficiently small overlaps
∑
i,α |Σ

α6=β
i6=j | < |Σ

α=β
i=j | = 1. There are different ways to determine the matrix Σ−1/2,

e.g., using the maximally localized Wannier orbitals [82], by a Gram-Schmidt orthonormalization procedure [83], and
by symmetric singular value decomposition [84]. Here, we used the method of symmetric singular value decomposition
which maintains the symmetry of the wavefunctions and imposed the least deformation relative to the original wave-
functions in the least-squares sense. Note that for large inter-dot distances Φ→ ϕ, thus, both sets of wavefunctions
are identical.

With this toolbox of orthonormalized wavefunctions we can now calculate the matrix elements of the Hamilto-
nian (A2)-(A4) in the basis given by Eqs. (A9)-(A12) and Eqs. (A14)-(A23)

tiα,jβ =

∫
d3rΦα∗i (r) [K(r) + V(r)] Φβj (r), (B15)

Ciα,jβ =

∫
d3r1

∫
d3r2Φα∗i (r1)Φβ∗j (r2)

U0

|r1 − r2|
Φβj (r2)Φαi (r1), (B16)

Kiα,jβ =

∫
d3r1

∫
d3r2Φα∗i (r1)Φβ∗j (r2)

U0

|r1 − r2|
Φβj (r1)Φαi (r2). (B17)

Here, K = (−i~∇ − eA)2/2m contains the kinetic terms in the presence of a magnetic field B = ∇ ×A using the
symmetric gauge A = B(−y, x, 0)T /2, and V is the potential given in Eq. (B1). To compute the Coulomb integrals
Eqs. (B16)-(B17) we approximated U0

|r1−r2| ≈
U0√

(x1−x2)2+(y1−y2)2
in the 2D limit d � R. These integrals can be

evaluated analytically but yield rather unwieldy expressions (not shown here).
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FIG. 6. Absolute value of the valley-conserving tl (red) and the valley-non-conserving t′l (blue) tunnel matrix element between
the left and the center dot. At the dip of the blue and red curve the tunneling amplitude is reduced by interference effects.
For the simulation the following parameter settings are used; the quantum dot radius R = 8.17 nm (corresponds to an orbital
energy of Eorb ≈ 6 meV), the magnetic length lB = 55 nm (corresponds to a magnetic field B ≈ 210 mT), the two-electron
charging energy Echarge = 3 meV, the valley phases φv

l = 0.4π and φv
r = −0.4π, and valley-orbit parameters [see Eq. (B6)]

∆V s,q = ∆V p,q = 0.2 meV and ∆Oz,q = ∆Oz̄,q = 0.3 meV. Note, that in our simulation the tunnel barrier is set by al and does
not precisely match the inter-dot distance in experimental setups.

Appendix C: Achievability of the condition tl = t′l and tr = t′r

As discussed in the main text, the decoherence properties are best under the condition |tl| = |t′l| and |tr| = |t′r|
since in this case the qubit is also robust against charge noise during the pulse sequences (dynamic sweet spot). Here
we show that this condition is realizable in experiments.

There are two main effects which lead to finite transition amplitudes between a valley ground state and a valley
excited state necessary for a finite t′l,r. The first effect is valley-orbit mixing resulting from imperfect interfaces in the
heterostructure. This effect mixes the valley and orbital levels and gives rise to a finite overlap between the electronic
wavefunctions. The mixing degree is usually very small, and only a few percent are predicted [77]. Considering
only this effect yields only very small valley non-conserving tunneling amplitudes |t′l| � |tl| and |t′r| � |tr|. The
second effect arises from local differences in the orientation of the z-valleys due to atomistic steps in the interface.
The atomistic interface steps locally change the orientation of the valley pseudo-spin giving rise to a phase difference
between valley pseudo-spin of electrons at different lateral position [75]. As a result, the valley pseudo-spins in the
different quantum dots can have completely different phase factors φvq with q = l, c, r. Setting φvc = 0, atomistic steps
give rise to |tl| ∼ |t′l tan(φvl /2)| and |tr| ∼ |t′r tan(φvr/2)| which yields identical tunnel couplings for φvl = φvr = π/2.
The phases φvl and φvr are mostly set by the geometry of the interface [53]. Tuning can be achieved by changing the
position of the electron wavefunctions either by moving the quantum wells by the electrostatic gates or by adjusting
the tunnel-barriers. [69, 75]. Refs. [85–87] also show that external magnetic and electric fields provide control over the
valley splitting. However, this only weakly affects the phase of the pseudo-spin. A second control mechanism relies
on the valley-orbit mixing making use of the fact that the tunneling matrix element between the dots depends on the
orbital level. This leads to a difference in the spatial dependence of the tunneling amplitude as seen in Fig. 6. Here,
|t′l| � |tl| and |t′r| � |tr| is possible even for φvl 6= φvr .

Appendix D: Electric dipole moment

With the orthonormalized wavefunctions (B14) we can also calculate the interaction between the qubit and the
electromagnetic field. The interaction Hamiltonian in the dipole approximation reads [22]

Hdip = eE(x̂) · x̂ (D1)
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FIG. 7. Transition matrix element e x01 = 〈0| x̂ |1〉 of the position operator (D2) as a function of detuning parameters for (a) a
constant electric field E(x̂) = E||êx and (b) for the electric field E(x̂) = E sign(x̂)||êx. For the simulation the same parameters
are used as in the main text; tl = tr = 25µeV and |t′l| = |t′r| = 20µeV and arg(t′l) = arg(t′r) = −π/2 which corresponds to the
interdot distance al = ar = 41.2 nm in Fig. 6.

where E(x̂) is the position dependent electric field. Following Ref. [33] the dipole transitions are described by the
matrix elements of the position operator

x̂ =
∑
i,j

∑
α,β

∑
σ

xiα,jβc
†
iα,σcjβ,σ. (D2)

Analogously to Eq. (B15), we find

xiα,jβ =

∫
d3rΦα∗i (r)r(r)Φβj (r). (D3)

Fig. 7 (a) shows the resulting dipole interaction

e x01 = e 〈0| x̂ |1〉 (D4)

between the two qubit states considering a constant electric field aligned in x-direction E(x̂) = E||êx. This corresponds
to an architecture where the qubit is connected via the gate VL to the cavity. In Fig. 7 (b) the results are shown if the
qubit is connected via the plunger gate VC . In our model this corresponds to E(x̂) = E sign(x̂)||êx with sign(x) = x

|x| .

As expected, there is a small dipole [Fig. 7 (a)] and quadrupole [Fig. 7 (b)] moment near the location of the double
sweet spot, therefore, protecting the qubit against charge noise. Note, that the dipole and quadrupole moment do
not completely vanish due to the choice |tl| > |t′l| and |tr| > |t′r|.

Appendix E: Qubit decoherence for tl 6= t′l and tr 6= t′r

In this section we show that the extended sweet spot described in the main text still exist in the general case tl 6= t′l
and tr 6= t′r. Evidence for the existence of the charge noise double sweet spot is given in Fig. 8 (b) which shows a
dephasing time Tϕ on the same order as for the location of the double sweet spot defined in the main text for the case
tl = t′l and tr = t′r in Fig. 8 (a). While this does not proof the existence of a double sweet spot, it does show that
one can find working points that are equally protected as in the case tl = t′l and tr = t′r. The exact location of these
sweet spots, however, depends on the tunneling couplings, tl, t

′
l, tr, and t′r and is given by the conditions

∂εωq = 0, (E1)

∂εMωq = 0. (E2)
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FIG. 8. Qubit dephasing time Tϕ as a function of ε and εM for (a) tl = t′l and (b) tl > t′l. We used the following parameter
settings in (a); tl = t′l = 25µeV, tr = t′r = 15µeV, Ui = U = 3 meV, Ui,j = UC = 1 meV, JC = 100µeV, and EV,C = 150µeV.
And in (b) we used the parameter settings; tl = 22µeV, t′l = 11µeV, tr = 15µeV, t′r = 7.5µeV, Ui = U = 3 meV,
Ui,j = UC = 1 meV, JC = 100µeV, and EV,C = 150µeV. The simulations indicate the presence of a charge noise double sweet
spot with Tϕ > 100µs for both parameter settings.

These equation cannot be solved analytically in the general case, but we found numerical solutions in the (1,2,1)
charge configurations regime for a large set of parameters.

Appendix F: Single qubit operations

In this section we estimate the single-qubit operation time of the QUEX qubit under the effect of periodic driving
VC(t) = V 0

C+V 1
C cos (ωD + φ) of the center gate voltage VC ∼ εM . Using Eqs. (B2) and (B3) one can calculate directly

the resulting matrix element between the qubit states from the modulation via Eqs. (B15) and (A1). Assuming the
inter-dot distance al = 41.2 nm, a driving voltage V 1

C = 1.2 mV, a lever arm α = 0.1 meV/mV [59], and ε = 0 and
εM = −25µeV (corresponding to the charge noise double sweet spot), we find the Rabi frequency AεM ≈ 0.13µeV.
For this choice of parameters, the gate time is estimated to be τx = 2π~/AεM ≈ 30 ns as shown in the main text.

Appendix G: Entangling distant QUEX qubits

In this section we estimate the entangling time between two QUEX qubits connected via a shared microwave
resonator. The entangling pulse sequence described in the main text is given by [34]

UCZ = Ra,z

(
π√
2

)
S+
a (π, φ)S−b (

π

2
, 0)S−b (π

√
2,
π

2
)S−b (

π

2
, 0)Ra,z

(
π√
2

)
S+
a (π, φ). (G1)

Here S±q (φ, τ) ≡ exp(−iHq,±(g, φ)τ/~) are “red” and “blue” sideband transition gates of qubit q generated by the
Hamiltonian [26, 34]

H± =
g

2

(
e∓iφa†σ∓ + e±iφaσ±

)
. (G2)

One way to realize this interaction requires driving the qubits with V 1
C cos(ωDt+ φ) at the qubit transition frequency

ωD = ωq while the qubits are coupled to the resonator via their electric dipole with strength ga = gb = g. The

interaction Hamiltonian between a single qubit and the cavity in the rotating frame defined by Ur1 = e−iωDt(a
†a+σz/2)

neglecting rapidly oscillating terms is

Hrf = ∆0a
†a+ g

(
eiφaσ+ + e−iφa†σ−

)
+ Ωσy, (G3)
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with the effective resonator frequency ∆0 ≡ ωD − ωres and the Rabi frequency of the qubits Ω ≡ |gV 1
C/∆0|. Trans-

forming the Hamiltonian (G3) into a second rotating frame Ur2 = e−it(∆0a
†a+Ωσy) and subsequently applying the

rotation Urot = eiπσx/4, one obtains [34]

Hdrf =
g

2

[
eiφe−i(∆0−Ω)tσ+a+ e−iφei(∆0−Ω)tσ−a

† + e−iφei(∆0+Ω)tσ+a
† + eiφe−i(∆0+Ω)tσ−a

]
+ i

g

2
σz(e

iφe−i∆0ta− e−iφei∆0ta†) (G4)

Applying the rotating wave approximation for the particular choices Ω = ±∆0 and neglecting rapidly oscillating terms,
one obtains the Hamiltonian (G2) which enables side-bamd transitions. For this second rotating wave approximation
to be valid and therefore minimizing the error, one greatly benefits from the large tunability of the energy gap of the
QUEX qubit.

The qubit-resonator coupling is induced by connecting the center gate to the resonator VC → VC(t) = V 0
C +αV0(a+

a†). Analogously to the procedure for the single-qubit Rabi oscillations (see Sec. F), the coupling strength is given by

g = α 〈0|H |1〉 (G5)

where H depends on VC via H0 and Htun and where α is the lever arm between the real applied voltage on the center
gate and the subsequent changes in the potential (B1), and [29]

V0 = ~ωres

√
Z0

~π
(G6)

denotes the zero-field fluctuation amplitude of the resonator.
Considering ωres = 10 GHz and using realistic parameters [64] (extrapolated to 10 GHz) we find V0 ≈ 70.7µV.

Assuming α = 0.1 meV/mV and εM = 20 meV allows us to estimate the qubit-resonator coupling strength g =
2π × 6.4 MHz and the Rabi frequency (see Sec. F) Ω = AεM = 2π × 110 MHz. The final gate time [34] is then

τ =
(
3 +
√

2
)
π/g + 2τz ≈ 339 ns assuming a single-qubit z-rotation gate time τz ≈ 5 ns. Note that the gate is

performed while operating at the charge noise sweet spot with respect the dipolar detuning ε. Faster gates can be
achieved by moving away from the sweet spot.
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Appendix H: Higher excitations exchange parameters

In this section we provide all exchange coupling terms for completeness. The explicit expressions are given by

J̃0,2 =
1

2

(
− t′lt

∗
l

4
√
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+
t′lt
∗
l

4
√
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+
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4
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∗
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4
√
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+
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′∗
r

4
√
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′∗
r

4
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′∗
r
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− trt

′∗
r

4
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)
, (H1)
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√
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8E4 + JC − EV,C
−

√
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−
√
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with the energies Ei given in Eq. (A23).
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