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H I G H L I G H T S
� Using Landauer–Büttiker formalism, the minimal conductivity of monolayer graphene with Rashba spin–orbit couplings was obtained in

continuum and tight binding models.

� Finite and infinite samples are considered.
� For finite samples depending on its orientation with respect to the electrodes, the conductivity can be suppressed compared to that
obtained for infinite samples.

� This effect can be explained by a simple analysis of the boundary conditions.
� Owing to the spin–orbit interactions an oscillation of the conductivity is observed and explained as interference of states corresponding
to different energy pockets of the low energy Fermi surface.
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a b s t r a c t

We study theoretically the minimal conductivity of monolayer graphene in the presence of Rashba spin–
orbit coupling. The Rashba spin–orbit interaction causes the low-energy bands to undergo trigonal-
warping deformation and for energies smaller than the Lifshitz energy, the Fermi circle breaks up into
parts, forming four separate Dirac cones. We calculate the minimal conductivity for an ideal strip of
length L and width W within the Landauer–Büttiker formalism in a continuum and in a tight binding
model. We show that the minimal conductivity depends on the relative orientation of the sample and the
probing electrodes due to the interference of states related to different Dirac cones. We also explore the
effects of finite system size and find that the minimal conductivity can be lowered compared to that of an
infinitely wide sample.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

More than half a century has passed since Landauer derived a
formula for the conductance of two terminal coherent devices [1].
Then 25 years ago Markus Büttiker realized that the two terminal
Landauer formula can be extended to multi-terminal devices [2].
Now, in the literature this approach is commonly called Landauer–
Büttiker formalism. Over the years it becomes the standard tool for
investigating various quantum systems in nanophysics (for a re-
view see Refs. [3–6]). This approach has become an integral part of
theoretical investigations of modern solid states systems such as
graphene [7]. In the last decade different types of graphene na-
nostructures proved to be one of the most technologically pro-
mising and theoretically intriguing solid state systems. The dy-
namics of low energy excitations in graphene is governed by an
effective Hamiltonian corresponding to massless two dimensional
Dirac fermions. Hence many physical quantities such as the con-
ductivity, the quantized Hall response and optical properties are
markedly different from those of conventional two dimensional
electron systems [8]. In bilayer graphene, the interlayer hopping
results in a trigonally warped Fermi surface which breaks up into
four separate Dirac cone at low energies. The signatures of this
novel electronic structure have been studied first experimentally
by Novoselov et al. [9] and theoretically by McCann and Fal'ko [10].
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Graphene samples, despite the vanishing density of states,
show a finite conductivity at the charge neutrality point (at zero
Fermi energy). This feature of massless Dirac fermions, referred to
as minimal conductivity, was intensively studied with the Land-
auer–Büttiker formalism [11–13]. An alternative approach based
on the Kubo formula has also been applied to study this phe-
nomenon in both monolayer and bilayer graphene [14,15]. It was
shown that in monolayer graphene for wide and short junction
the value of the minimal conductivity is e h4/ /0

2σ π= ( ) [11,13]. For
bilayer graphene neglecting trigonal warping the conductivity is

2 0σ σ= , while including splitting of the Dirac cone due to trigonal
warping gives extra contributions to the conductivity, increasing it
to 6 0σ σ= [15]. Later, for finite size of bilayer graphene it was
shown by Moghaddam and Zareyan [16] that the trigonal warping
results in an anisotropic behavior of the minimal conductivity.

Rashba spin–orbit (RSO) interaction arises once the mirror
symmetry of the bulk graphene sample is broken by the substrate
or an applied electric field perpendicular to the graphene sheet.
The strength λ of the RSO coupling is proportional to this electric
field. Photoemission experiments on graphene/Au/Ni(111) het-
erostructure revealed 4λ ∼ meV [17]. Recently, a strong Rashba
effect with spin–orbit splitting of 70 meV has also been observed
for graphene on Fe(110) [18]. Moreover, a non-uniform spin–orbit
coupling of 100 meVλ ≈ induced by Pb monolayer in graphene
has been estimated experimentally by Calleja et al. [19].

Enhanced RSO interaction has a major impact on the transport
properties of graphene derived samples. Recently the transfer
matrix method has been employed to study spin dependent
transport properties of monolayer graphene in the presence of
inhomogeneous RSO coupling [20,21]. An important consequence
of the RSO interaction is that the low-energy behavior of electrons
in monolayer graphene with RSO coupling is related to that of
bilayer graphene with trigonal warping but without RSO interac-
tion [22,23]. Therefore, we expect that the minimal conductivity of
monolayer graphene with RSO interaction shows a similar aniso-
tropic behavior as that obtained for bilayer graphene in Ref. [16].

To see this anisotropic behavior, we calculate the minimal
conductivity using tight binding (TB) calculations and compare it
to results obtained from a continuum model. We study the effects
of finite sample sizes and the crystallographic orientation as well
as the length dependent oscillatory behavior of the minimal con-
ductivity. In our two-terminal calculations, the ballistic scattering
region of monolayer graphene with length L and width W is
contacted by two highly doped regions oriented at angle φ with
respect to the zig-zag direction of the graphene lattice (see Fig. 1).
Doping in the electrodes is achieved by shifting the Fermi energy
with a large potential U0 as it is commonly done in the literature
(see, e.g., Ref. [11]).
Fig. 1. Geometry of a graphene device of length L and width W between two
electrodes doped by potential U0. Electrons incoming from the left lead are re-
flected with amplitudes r and transmitted with amplitudes t. Between the two
contacts we depict the real space structure of the monolayer graphene flake (left
side) and the energy contours in reciprocal space around the K point. The zig-zag
direction of the graphene flake makes an angle φ with the electrode interface (y
direction).
2. Landauer–Büttiker formalism for calculating the
conductivity

In the Landauer–Büttiker approach the conductance of a sam-
ple is given by the transmission probabilities of an electron passing
through it:

G
e
h

t ,
1m n

mn

2

,

2∑= | |
( )

where tmn are the transmission amplitudes between the propa-
gating modes n and m of the left and right electrodes. In what
follows, we calculate the minimal conductivity in the TB model
(for finite W) and compare the results to that obtained in the
continuum model (for W → ∞). Both in TB and continuum models
the transmission amplitudes tmn are calculated by solving the
scattering problem of the system. Then the minimal conductivity
is defined as L W G/σ = ( ) , with the conductance G calculated from
Eq. (1) at the charge neutral point of graphene, i.e., at E 0F = .

2.1. Tight binding model of graphene including RSO coupling

In the TB model the Hamiltonian HTB of monolayer graphene
with RSO coupling can be written as [22–25]

H H H , where 2aTB R0= + ( )
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Here H0 is the Hamiltonian of bulk graphene sheet taking into
account only nearest neighbor hopping, with hopping amplitude γ.
The operator aiσ

† (aiσ) creates (annihilates) an electron in the ith
unit cell with spin s on sublattice A, while bjσ

† (bjσ) has the same
effect on sublattice B and h.c. stands for Hermitian conjugate. The
unit cell is given by the unit vectors a1 and a2 as shown in Fig. 2.
The Hamiltonian HR describes the Rashba spin–orbit interaction
where s s s s, ,x y z= ( ) are the Pauli matrices representing the elec-
tron spin, and , 1, 2μ ν = denote the μν matrix elements of the
Pauli matrices. Here vectors d i j, connect the nearest neighbor
atoms i j, pointing from j to i as shown in Fig. 2, and d is the
distance between them, and dd d /i j i j, ,= are unit vectors.

The strength of the spin–orbit coupling is denoted by λ which
may arise due to a perpendicular electric field or interaction with a
Fig. 2. Geometry of a graphene sheet. The unit vectors of the hexagonal lattice are
a1 and a2, while d a a2 /31 2 1= ( − ) , d a a2 /32 1 2= ( − ) and d a a /33 1 2= ( + ) are vectors
pointing to the neighboring atoms.
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substrate.
Using the standard Green's function techniques [26–28] based

on the Landauer–Büttiker approach we calculate the transmission
amplitudes for armchair and zig-zag orientation of the sample.

2.2. Continuum model of graphene including RSO coupling

The Hamiltonian of the continuum model as a long wave ap-
proximation of the TB Hamiltonian HTB in Eq. (2a) describes low
energy excitations around the K and K′ points. In our previous
publication [22] we showed that starting from the tight-binding
Hamiltonian suggested in Ref. [25] to describe RSO coupling in
monolayer graphene one can arrive at a form of the Hamiltonian
that is unitary equivalent to that of bilayer graphene without RSO
interaction but including the trigonal warping effect due to in-
terlayer hopping [10,15]. In the continuum model the Hamiltonian
HK at the K point of the Brillouin zone (BZ) reads as

⎛

⎝

⎜⎜⎜⎜⎜
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where v d3 / 2F γ= ( ), v d3 / 2λ= ( )λ , p p ipx y= ±± and p p,x y are
momentum operators. The Hamiltonian HK in Eq. (3) is written in
the basis A B A B, , , T(| ↑ 〉 | ↑ 〉 | ↓ 〉 | ↓ 〉) where ,{ ↑ ↓ } refer to spin
orientations. A unitary equivalent result can be obtained around
the Dirac point K′. The four eigenvalues of the Hamiltonian (3) as a
function of the wave number k k kk , cos , sinx y

Tα α= ( ) = ( ) are
given by

⎡⎣ ⎤⎦E v k kk 2 1 with 4an F
n1

2
2 2 2( )β Υ( ) = ± + + + ( − ) ( )λ

±

k k k k k k2 2 4 8 sin 3 , 4b4 2 2 2 4 2 2 3Υ β β β β α= + ( − ) + ( + ) − ( ) ( )λ λ λ

where v v/ /Fβ λ γ= =λ is the dimensionless strength of the spin–
orbit coupling, k d2 /β=λ and n¼1, 2.

Fig. 3 shows the contour plot of the positive and low-energy
band E1

+ and the spectrum along the ky direction. The spectrum has
a threefold symmetry similar to that of bilayer graphene. At
moderate energy, direct hopping between AΨ ↑ and BΨ ↓ leads to
trigonal warping of the constant energy lines about each valley,
but at an energy E less than the Lifshitz energy E / 4L

2 2γβ β= ( + ) the
effect of trigonal warping is dramatic. It leads to a Lifshitz
Fig. 3. (a) Contour plot of the positive and low-energy band E1
+ (in units of λ) around th

center of the pockets has a 2 /3π rotational symmetry. The distance between the center o
four energy bands along the direction ky with kx¼0.
transition [29]: the constant energy line is broken into four
pockets, which we refer to as central and three leg parts. The
Fermi surface is approximately triangle like in the central part and
each leg part it is elliptical. The distances of the center of the leg
parts from the K point are k d2 /SO

2β= (see Fig. 3).
As it has been shown in our previous work [15] the Lifshitz

transition strongly affects the transport properties of monolayer
graphene as well. The anisotropy of the minimal conductivity in
bilayer graphene related to the interference effects between the
leg parts was predicted by Moghaddam et al. [16]. Therefore, in
monolayer graphene including the RSO interaction, we also expect
a strong anisotropy in its conductivity depending on the orienta-
tion of the leg parts with respect to the electrodes. To see this we
calculate the transmission probabilities tmn in Eq. (1) and the
minimal conductivity by solving the scattering problem. If we
consider the short and wide junction limit (W L⪢ ), then the elec-
tronic states can be specified by their energy ε and the transverse
wavenumber q which are conserved during the scattering process.
For a given ε and q there are four solutions for the longitudinal
wave vector kl which satisfies the characteristic equation

H k q Idet , 0K
l

4 ε[ ( ) − ] =( ) , where I4 is the 4�4 identity matrix.
Electronic states in the scattering region ( x L0 ≤ ≤ ) are denoted by

q el l i k x qy
sc sc

lΨ Φ( ) = ( + ), where l
scΦ satisfy relation for all possible

quantum numbers l:

H k q, . 5K
l l l

sc scΦ ε Φ( ) = ( )

The scattering state between the electrodes is then a linear com-
bination of these four electronic states. The longitudinal wave
numbers kL R

n
/ and the corresponding electronic states

q eL R
n

L R
n i k x qy

/ /
L R
n
/Ψ Φ( ) = ( + ) in the left (L) and right (R) leads can be

obtained analogously with a substitution U0ε ε→ − (here U0 is the
potential on the left and right electrodes as indicated in Fig. 1. If
we assume an incident state in the L electrode, then the resulted
scattering state can be written in the form
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where r qn n ( )′ and tmn(q) are the reflection and transmission
e K point for 0.034β = . Wave vector components kx, ky are in units of v3 / Fλ ( ). The
f the pockets and the central Dirac points (points K) is kSO given in the text. (b) The
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amplitudes, respectively, and we introduced the arrow →( ← ) to
label the right (left) propagating electron states in the leads. The
reflection and transmission amplitudes have to be determined
(together with coefficients An) by imposing the continuity condi-
tion of the wave functions at the interfaces x¼0 and x¼L.

Finally, inserting the transmission probabilities tmn(q) into Eq.
(1) we find the conductance G. The summation over the transverse
wave numbers is replaced in a good approximation by the in-
tegration W q/2 d∫π( ) . Then the minimal conductivity reads

L
W

G L q t q2
4

d ,
7m n

mn
0

,

2∫ ∑σ σ= = ( )
( )−∞

∞

where in the first equation the factor 2 corresponds to the valley
degeneracy.
3. Results: the minimal conductivity of monolayer graphene
with RSO interaction

The minimal conductivity as a function of L obtained from the
continuum model and from TB calculations for zig-zag and arm-
chair orientation are shown in Fig. 4.

As described in Ref. [16] the RSO interaction can be character-
ized by a length scale l k/ 1/SO SO

2π λ= ∼ . For short junctions or at
low RSO coupling λ, that is in the limit L l/ 0SO → , the conductivity
for both the armchair and the zig-zag orientation starts with

L l/ 0SO 0σ σ( = ) = . Increasing L l/ SO the conductivity calculated from
the continuum model tends to 3 0σ σ= and 7/3 0σ σ= for the
armchair and the zig-zag orientation, respectively.

In the TB calculation for zig-zag orientation, depicted in Fig. 4a,
the conductivity closely follows that of the continuum model and
tends towards 7/3TB 0σ σ= for longer junctions. Increasing the W L/
ratio the subtle peaks of the TB and continuum models approach
each other. On the other hand, for the armchair orientation, shown
in Fig. 4b, the results of the TB calculation and the continuum
model start to deviate for L l/ 1.1SO⪆ , that is for increased RSO
coupling λ, tending to a markedly lower value 5/2TB 0σ σ= . We also
observe an enhanced oscillatory behavior as the function of L l/ SO as
compared to the calculation done in the zig-zag direction.
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Fig. 4. The conductivity (in units of s0 ) of the junction as a function of length L (in
units of lSO ) for (a) zigzag and (b) armchair orientation in continuum model ob-
tained from Eq. (7) (red lines) and from TB calculation (blue and black lines) with
two different aspect ratios W L/ . The two horizontal dashed lines in Fig. b represent
the upper limit of the conductivity calculated from the continuum model (3 0σ ) and
TB model ( 5

2 0σ ) as described in the text. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
To understand this behavior of the conductivity it is instructive
to consider the orientation of the Fermi surface around the K and
K′ points with respect to the direction of propagation as shown in
Fig. 5. As noted before, trigonal warping due to the RSO interaction
brakes the Fermi surface into a central pocket (dots in Fig. 5d and e
at the K and K′ points) and three extra leg pockets labeled by P1, P2
and P3.

First we explain the oscillatory behavior of the conductivity
shown in Fig. 4b for armchair orientation. In Fig. 5e the zero en-
ergy modes both around the K and K′ points are at the center of
pocket P1, P2 and P3, and at the center of the isotropic Dirac cone.
Out of these four modes two (the central Dirac cone and pocket P3)
have a wave number k¼0 (along the propagating direction) and

for the other two modes the wave numbers are k k3
2 SO= ± (the

centers of pocket P1 and P2 in Fig. 5e). The latter two non-zero
propagating modes explain the oscillatory behavior of the con-
ductivity shown in Fig. 4b. The phase shift between the finite k
propagating modes (accumulated over one period) for an electron
bouncing between the electrodes is m k L3m SOΦΔ = ± , where
m 0, 1, 2= . Then the shortest period of the conductivity is given
by 21Φ πΔ = from which one finds

L
l

2
3

1.15.
8SO

= ≈
( )

This periodicity can be clearly seen in Fig. 4b for both TB and
continuum cases.

In the case of the zig-zag orientation all pockets are centered at
finite k. In both valleys the centers of the central pocket and pocket
P3 are separated by kSO. This gives L l/ 2SO = as the shortest mod-
ulation period in agreement with our data presented in Fig. 4a.

Now we explain the marked discrepancy between the con-
tinuum model and the TB calculations performed in the armchair
orientation. For strong RSO interaction the conductivity calculated
in the tight binding approach can be estimated as follows. In
general each pocket P P,1 2 and P3 shown in Fig. 5 corresponds to
one anisotropic Dirac cone and gives a separate contribution to the
conductivity. In our analysis, however, we do not consider the
effect of the edge channels on the conductivity. In general the
conductance of the bulk states scales with the width of the junc-
tion. Thus, for wide junctions studied in this work, the contribu-
tion of the edge channels to the conductivity is negligible com-
pared to that coming from the bulk states. Then, the total con-
ductivity is given by

n n where
9a

C C
i

i i∑σ σ σ Θ= + ( )
( )

v v
v v

cos sin
4

,
9bi

a i b i

a b

2 2 2 2
0σ Θ Θ Θ σ( ) = ( ) + ( )

( )

and /4C 0σ σ= is the contribution from the central Dirac cone [11]
while iσ Θ( ) is the minimal conductivity related to a single aniso-
tropic Dirac cone. This result was first derived by Nilsson et al. in
Ref. [30]. Note that the same result can be obtained by the general
approach developed in Ref. [13]. Here nC and ni are the number of
open bulk channels for the central Dirac cone and the leg pocket Pi,
respectively. In addition, va and vb are the Fermi velocities along
the two principal axes of the ellipse corresponding to the pocket Pi
with i 1, 2, 3= . In our case v v3b a= [30] for the three legs.Θi is the
angle of the direction of the semi-major axis of the ellipse with
respect to the direction of propagation (see Fig. 5c). One can see
from Fig. 5 that around the K point for armchair orientation

7 /6; 11 /6; /2iΘ π π π= for pocket P1, P2 and P3, respectively, while
for zig-zag orientation 5 /3; /3;iΘ π π π= around the K point, and

4 /3; 2 /3; 0iΘ π π= around the K′ point for the pocket P1, P2 and P3,



Fig. 5. Schematic drawing of (a) zig-zag and (b) armchair edges. Empty circles and dashed lines correspond to the nearest missing sites and bonds to the edge of the ribbon.
(c) The orientation of one pocket (an ellipse) is given by the angle Θ between the propagation direction (k-axis) and the semi-major axis of the ellipse. (d) Orientation of the
pockets P1, P2, and P3 for zig-zag and (e) for armchair edges in the Brillouin zone.
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respectively (see Fig. 5).
We now determine the number of open channels nC and ni in

Eq. (9a). The boundary condition for the system demands that the
wave function at the two edges of the ribbons should be zero at
the empty sites shown schematically in Fig. 5a and b. Thus, in-
cluding the spin we have four equations to satisfy the boundary
conditions. For a given energy ε and wave number k correspond-
ing to the propagating mode the possible transverse modes can be
calculated from the dispersion relation. Graphically it means that
these transverse modes can be obtained by drawing a vertical line
at a given k that intersects the given constant energy ε contour. In
particular, by addressing the minimal conductivity we can con-
sider an energy ε that is infinitesimally close to the charge neu-
trality point, but the energy contour is still well defined. For ex-
ample, for zig-zag orientation at wave number k for which the
vertical line passes through the center of pocket P3 around the K
point there are two transverse modes (the vertical line crosses the
energy contour at two points in Fig. 5d, while for wave number k
for which the vertical line passes through the center of pockets P1
and P2 we have four transverse modes). Hence, it follows that in
the first case the number of open channels n 01 = since the four
boundary conditions cannot be satisfied by two transverse modes.
Similarly, for the central isotropic Dirac cone n 0c = . However, for
the second case n n 11 2= = because we have four transverse
modes. The same is true for the propagating mode k around the K′
point (valley degeneracy). In summary, the open channels for zig-
zag ribbons are n 0C = and n n n2, 01 2 3= = = . From a similar
consideration we find that for armchair orientation n 2C = and
n n n1, 21 2 3= = = . Thus the minimal conductivity of monolayer
graphene with RSO coupling given by (9a) is 7/3 0σ σ= for zig-zag
and 5/2 0σ σ= for the armchair orientation in very good agree-
ment with the TB calculations.

4. Conclusions

We have investigated the minimal conductivity of monolayer
graphene in the presence of Rashba spin–orbit interaction. We
have employed tight binding calculations and a continuum model
to determine the interplay of the crystallographic orientation of
the sample with the anisotropic nature of the minimal con-
ductivity. Contrasting the results obtained for a graphene strip of
finite width to that of an infinitely wide sample, we show that the
boundary condition for a finite flake may, depending on the or-
ientation, reduce the value of the minimal conductivity compared
to that of the infinitely wide. Given the analogy between mono-
layer graphene with RSO coupling and bilayer graphene when
trigonal warping is taken into account, we expect that for certain
orientations the conductivity would be reduced in finite bilayer
samples compared to that obtained for an infinite system. All our
calculations have been performed in the spirit of the Landauer–
Büttiker approach. We hope that our results are a tribute for the
long lasting legacy of this simple yet powerful formalism and to
the memory of Markus Büttiker.
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