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Problem 23: Graphene’s energy levels at the k = 0 point in the empty-lattice approx-
imation.

Consider the lattice of the well-known one-atom thick material, graphene ! (see, e.g.,
http://www.nobelprize.org/nobel prizes/physics/laureates/2010/press.html) There
are two carbon atoms in the unit cell of graphene (denoted by A and B) and they are arranged
into a honeycomb lattice, see Figure 1.

Figure 1

a) What is the point group ggraphene of graphene’s crystal lattice? Using the lattice vectors a1

and a2 shown in Figure 1 find the reciprocal lattice vectors b1 and b2! Sketch the unit cell in the
reciprocal space and the corresponding Brillouin zone!

b) In the so-called empty lattice approximation the eigenstates of the lattice-periodic Hamiltonian
are given by

Ψk =
1

N
eik·reiG(ni)·r

where N is a normalization factor, k is a wave vector in the Brillouin zone, G(ni) = n1b1 + n2b2

is a lattice vector in the reciprocal space and n1, n2 are integers. Note, that uk(r) = eiG(ni)·r is a
lattice-periodic function. In the same approximation the eigenenergies are given by

E(k + G(ni)) =
~2

2m
[k + G(ni)][k + G(ni)].

By choosing n1, n2 appropriately, find the lowest seven eigenenergies at k = 0!

c) Some of the eigenenergies found above are degenerate. Consider now the wave functions corre-
sponding to these degenerate eigenenergies. How do they transform under the symmetry opera-
tions of ggraphene ? Construct a representation of the point group operations using these degenerate
wave functions! Is this a reducible or an irreducible representation? If reducible, which irreducible
representations are contained in it?



Problem 24: Mapping SU(2) −→ SO(3): part 1.

In order to establish a connection between the matrix groups SU(2) and SO(3) we consider the
transformation

r 7−→ r′ ≡ Rr with Ur · σU † = r′ · σ ,

where U ∈ SU(2), r ∈ R3, and σ = (σx, σy, σz)
T denotes the vector of the Pauli matrices.

a) Show that R is a linear operator and that this operator does not change angles and distances
between vectors.
Hint : Consider how the scalar product of two vectors changes under this transformation and use
the property Sp(σiσj) = 2δij. Here and in what follows use the Einstein notation for summation.

b) Show that in the basis of cartesian coordinates the components of R can be written as

Rij =
1

2
Sp

(
σiUσjU

†) .
c) Using a possible parametrization of U by the components of a unit vector n and the angle α
as U = eiαn·σ, show that

Rij = cos 2α δij + sin 2α εijknk + (1− cos 2α)ninj ,

where we use the Einstein notation for summation.
Hint : Use eiαn·σ = 1 cosα + in · σ sinα, σjσk = δjk1 + iεjklσl with εjkl being the Levi-Civita
symbol, and εijkεij′k′ = δjj′δkk′ − δjk′δkj′ .
d) Write R for n = ex, n = ey and n = ez. Which rotations do you get in these cases?

Problem 25: Mapping SU(2) −→ SO(3): part 2.

a) Using 24c show that the matrices R belong to SO(3).
Hint : In order to prove this, you should show that the components of R are real, RTR = 1, and
detR = 1.

b) Differentiating the result of 24c with respect to α at the following points in the parameter
manifold, {α = 0, nx = 1, ny = nz = 0}, {α = 0, ny = 1, nx = nz = 0}, {α = 0, nx = 1, ny = nz =
0}, find a possible form of three generators of SO(3).

c) Argue why the mapping SU(2) −→ SO(3) with U 7−→ R is a homomorphism. I.e. for each
matrix R ∈ SO(3) there is at least one matrix U ∈ SU(2) generating the corresponding rotation,
and arbitrary U1, U2 from SU(2) lead to R(U1U2) = R(U1)R(U2).


