UNIVERSITY OF KONSTANZ Department of Physics Dr. Andrey Moskalenko

Group theory and symmetries in quantum mechanics Summer semester 2017 - Exercise sheet 11 Distributed: 15.07.2017, Discussion: 19.07.2017 and 20.07.2017

Problem 29: One Casimir invariant for the fundamental representation of SU(n).

The so-called "quadratic" Casimir constant c for the fundamental representation of the SU(n) group is determined via $\sum_{a} (T_a T_a)_{ij} = c \, \delta_{ij}$.

a) Using the completeness relation for the generators T_a of this group show that

$$c = \frac{n^2 - 1}{2n} \; .$$

b) What is the particular result for the case of SU(2)? How it is related to the spin value?

Problem 30: Representations of SU(2).

a) Prove that the representations (2) and (2^*) of SU(2) are equivalent.

Hint : Make use of the matrix $\sigma_2 \equiv \sigma_y$ and the exponential form of the group elements.

b) What is the fundamental weight?

c) What are simple roots?

d) What is the relation between q^1 for an arbitrary representation and the spin (total angular momentum) s?

e) Convince yourself that there is exactly one representation for any positive integer dimension d.

f) Decompose $(2)\otimes(2)\otimes(2)$ into the direct sum of irreducible representations.

Problem 31: Representations of SU(3).

a) Consider the representations (q^1, q^2) of SU(3). Their dimensions are given by

$$d(q^{1}, q^{2}) = \frac{(q^{1}+1)(q^{2}+1)(q^{1}+q^{2}+2)}{2}$$

Do we have representations with any positive integer dimension $d = 1, 2, 3 \dots$?

b) Consider the representation (3^*) having the generators $-T_a^*$. Prove that the weights of (3^*) have the opposite sign prefactor with respect to the weights of (3).

- c) Explain why $(3^*) = (0, 1)$.
- d) Construct the weight diagram for the representation (3, 0).