UNIVERSITY OF KONSTANZ Department of Physics Dr. Andor Kormányos, Prof. Dr. Guido Burkard

Group theory and symmetries in quantum mechanics Summer semester 2016 - Exercise sheet 8 Distributed: 20.06.2016, Discussion: 24.06.2016

Problem 22: Mapping $SU(2) \longrightarrow SO(3)$: part 1.

In the following two excises we investigate the relation between the matrix groups SU(2) and SO(3). In order to establish a connection between SU(2) and SO(3) we consider the transformation

$$\mathbf{r} \longmapsto \mathbf{r}' \equiv R\mathbf{r} \quad \text{with} \quad U\mathbf{r} \cdot \boldsymbol{\sigma} U^{\dagger} = \mathbf{r}' \cdot \boldsymbol{\sigma} ,$$

where $U \in SU(2)$, $\mathbf{r} \in \mathbb{R}^3$, and $\boldsymbol{\sigma} = (\sigma_x, \sigma_y, \sigma_z)^{\mathrm{T}}$ denotes the vector of the Pauli matrices.

a) Show that R is a linear operator and that this operator does not change angles and distances between vectors.

Hint: Consider how the scalar product of two vectors changes under this transformation and use the property $\text{Sp}(\sigma_i \sigma_j) = 2\delta_{ij}$. Here and in what follows use the Einstein notation for summation.

b) Show that in the basis of cartesian coordinates the components of R can be written as

$$R_{ij} = \frac{1}{2} \mathrm{Sp} \left(\sigma_i U \sigma_j U^{\dagger} \right)$$

c) Using a possible parametrization of U by the components of a unit vector **n** and the angle α as $U = e^{i\alpha \mathbf{n} \cdot \boldsymbol{\sigma}}$, show that

$$R_{ij} = \cos 2\alpha \, \delta_{ij} + \sin 2\alpha \, \epsilon_{ijk} n_k + (1 - \cos 2\alpha) n_i n_j$$

where we use the Einstein notation for summation.

Hint: Use $e^{i\alpha \mathbf{n}\cdot\boldsymbol{\sigma}} = \mathbb{1}\cos\alpha + i\mathbf{n}\cdot\boldsymbol{\sigma}\sin\alpha$, $\sigma_j\sigma_k = \delta_{jk}\mathbb{1} + i\epsilon_{jkl}\sigma_l$ with ϵ_{jkl} being the Levi-Civita symbol, and $\epsilon_{ijk}\epsilon_{ij'k'} = \delta_{jj'}\delta_{kk'} - \delta_{jk'}\delta_{kj'}$.

d) Write R for $\mathbf{n} = \mathbf{e}_x$, $\mathbf{n} = \mathbf{e}_y$ and $\mathbf{n} = \mathbf{e}_z$. Which rotations do you get in these cases?

Problem 23: Mapping $SU(2) \longrightarrow SO(3)$: part 2.

a) Using 22c show that the matrices R belong to SO(3).

Hint : In order to prove this, you should show that the components of R are real, $R^{T}R = 1$, and $\det R = 1$.

b) Differentiating the result of 22c with respect to α at the following points in the parameter manifold, $\{\alpha = 0, n_x = 1, n_y = n_z = 0\}, \{\alpha = 0, n_y = 1, n_x = n_z = 0\}, \{\alpha = 0, n_x = 1, n_y = n_z = 0\}, \text{find a possible form of three generators of SO(3).}$

c) Argue why the mapping $SU(2) \longrightarrow SO(3)$ with $U \longmapsto R$ is a homomorphism. I.e. for each matrix $R \in SO(3)$ there is at least one matrix $U \in SU(2)$ generating the corresponding rotation, and arbitrary U_1, U_2 from SU(2) lead to $R(U_1U_2) = R(U_1)R(U_2)$.