UNIVERSITY OF KONSTANZ Department of Physics Prof. Dr. Guido Burkard, Dr. Andrey Moskalenko, Dr. Andor Kormányos

Group theory and symmetries in quantum mechanics Summer semester 2015 - Exercise sheet 2 Distributed: 23.04.2015, Discussion: 28.04.2015

Problem 5: Direct products and induced transformations.

a) A group $G = H \bigotimes K$ is a direct product of groups H and K. Prove that $G/K \cong H$.

b) Prove that for transformations of functions $O(G_a)\psi(\mathbf{r}) = \psi(T(G_a^{-1})\mathbf{r})$ $(G_a \in G)$, induced by an arbitrary group G, the multiplication order is preserved: $G_c = G_a G_b \Rightarrow O(G_c) = O(G_a)O(G_b)$.

Problem 6: Diagonalization of hermitian matrices.

Prove that any hermitian matrix H can be diagonalized by a unitary transformation U.

Problem 7: Group D_3 and quadratic polynomials of x and y.

Consider the representation O of the group D_3 in the basis of functions $\psi_1 = x^2$, $\psi_2 = y^2$ and $\psi_3 = xy$.

a) The matrices $O(R_1)$ and $O(R_2)$ were given in the lecture. Determine also the matrices $O(R_3)$, $O(R_4)$, and $O(R_5)$. Check if $[O(R_3)]^2 = [O(R_4)]^2 = [O(R_5)]^2 = O(E)$ is fulfilled.

b) Determine the matrices $O'(R_1)$ and $O'(R_4)$ considering the orthonormal basis of functions $\phi_1 = 2\sqrt{\frac{2}{\pi}}x^2$, $\phi_2 = \frac{1}{\sqrt{\pi}}(3y^2 - x^2)$ and $\phi_3 = 2\sqrt{\frac{6}{\pi}}xy$. Which difference in the properties do you see: between $O(R_1)$ and $O'(R_1)$? And between $O(R_4)$ and $O'(R_4)$?

