UNIVERSITY OF KONSTANZ Department of Physics Prof. Dr. Guido Burkard, Dr. Andrey Moskalenko, Dr. Andor Kormányos

Group theory and symmetries in quantum mechanics Summer semester 2015 - Exercise sheet 10 Distributed: 18.06.2015, Discussion: 23.06.2015

Problem 28: The double groups \bar{D}_2 , \bar{C}_{2v} and \bar{C}_{2h}

Objects with D_2 , C_{2v} and C_{2h} symmetries are shown in the left, middle and right figures, respectively. The single group character table for D_2 reads:

			E	C_2	C'_2	C_2''
x^2, y^2, z^2		A_1	1	1	1	1
xy	R_z, z	B_1	1	1	-1	-1
xz	R_y, y	B_2	1	-1	1	-1
yz	R_x, x	B_3	1	-1	-1	1

while for C_{2v} it is given by

			E	C_2	σ_v	σ'_v
x^2, y^2, z^2	z	A_1	1	1	1	1
xy	R_z	A_2	1	1	-1	-1
xz	R_y, x	B_1	1	-1	1	-1
yz	R_x, y	B_3	1	-1	-1	1

Here σ_v and σ'_v denote mirror reflections.

(a) Consider the character table of D_2 and C_{2v} . Using the Frobenius-Schur criterion find out whether individual irreps are of a), b) or c) type, as discussed in the lecture !

(b) Try to construct the double group character table for \overline{D}_2 and \overline{C}_{2v} ! How many new classes and representations are there in these double groups?

(c) Now consider the group C_{2h} . The character table is given below. How many new classes and representations are there in \bar{C}_{2h} ? What are the dimensions of the new representations?

			E	C_2	σ_h	i
x^2, y^2, z^2	R_z	A_g	1	1	1	1
	z	A_u	1	1	-1	-1
xz, yz	R_y, x	B_g	1	-1	-1	1
	x, y	\mathbf{B}_{u}	1	-1	1	-1

Table 1: Character table of C_{2h} . *i* denotes inversion.

Problem 29: Energy eigenstates and time-reversal

a) Consider a spinless Hamiltonian H. Show that if H is invariant under the time reversal and the energy eigenvalue E_n is non-degenerate, then the corresponding eigenstate Ψ_n is real (apart from an arbitrary complex phase factor)!

b) The wave function of a (one-dimensional) plane wave is $\Psi(x) = e^{ikx}$, where k is the wavenumber. $\Psi(x)$ is the eigenfunction of the Hamiltonian $H = \frac{-\hbar^2 \nabla_x^2}{2m}$. Does this contradict to what we have found in a) ?

c) Suppose a spinless particle is bound in the potential $V(\mathbf{r})$ and that no bound state energy level is degenerate. Show that the expectation value of the angular momentum $\hat{\mathbf{L}}$ is zero for any bound eigenstate!