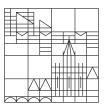
Fachbereich Physik Prof. Dr. Guido Burkard Dr. Stefan Gerlach http://tinyurl.com/2015ik4

Universität Konstanz



Physik IV: Integrierter Kurs (Theoretische Physik) Sommersemester 2015 - Übungsblatt 11

Ausgabe: 1.7., Abgabe: 8.7., Übungen: 10.7.

Aufgabe 27: Der Harmonische Oszillator I

(schriftlich - 8 Punkte)

Mit der für den harmonischen Oszillator aus der Vorlesung bekannten orthonormierten Basis der Eigenzustände $|n\rangle$, mit n=0,1,2,..., des Hamiltonoperators $H=\hbar\omega(a^{\dagger}a+\frac{1}{2})$ zu den Eigenwerten $E_n=\hbar\omega(n+\frac{1}{2})$, sollen die folgenden Größen berechnet werden:

- a) (2 Punkte) Berechnen Sie die Matrizen $\langle n'|\hat{x}|n\rangle$ und $\langle n'|\hat{p}|n\rangle$ mit den Orts- und Impuls-Operatoren \hat{x} und \hat{p} .
- b) (3 Punkte) Berechnen Sie $\langle n'|\hat{x}^2|n\rangle$ und $\langle n'|\hat{p}^2|n\rangle$ und zeigen Sie, dass die Matrixdarstellung von $H = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2$ diagonal ist.
- c) (3 Punkte) Lösen Sie mit Teilaufgabe b) folgenden Widerspruch:
 - 1. Zeigen Sie für 2 beliebige endlich dimensionale Matrizen A und B, dass $\operatorname{Spur}([A,B])=0$ gilt, wobei $\operatorname{Spur}(A)=\sum_i A_{ii}$.
 - 2. Aus der Spurbildung angewendet auf den Orts-Impuls-Kommutator $[\hat{x}, \hat{p}] = i\hbar$ in Matrixdarstellung müsste nach Punkt (1) also in naiver Betrachtung $\hbar = 0$ folgen. Berechnen Sie $\hat{x}\hat{p}$ und $\hat{p}\hat{x}$ mit den unendlich-dimensionalen Matrizen aus a) um zu erklären, weswegen die Folgerung $\hbar = 0$ nicht gilt.

Aufgabe 28: Der Harmonische Oszillator II

Betrachten Sie die sogenannten kohärenten Zustände

$$|\alpha\rangle := |\psi_{\alpha}\rangle = C \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle = C e^{\alpha a^{\dagger}} |0\rangle,$$

die mit einer komplexen Konstante $\alpha = |\alpha|e^{i\delta}$ gebildet werden können. Kohärente Zustände beschreiben das Analogon zu einem klassischen Teilchen im harmonischen Oszillator und haben vielseitige Anwendungen in der Laserphysik und Quantenoptik.

- a) Zeigen Sie, dass $|\alpha\rangle$ Eigenfunktion zum Absteigeoperator a ist. Vermuten Sie, dass a^{\dagger} Eigenfunktionen besitzt?
- b) Welches C > 0 normiert $|\alpha\rangle$ auf 1? Mit diesem C kann $|\alpha\rangle$ geschrieben werden als $|\alpha\rangle = \sum_{n=0}^{\infty} c_n |n\rangle$. Welche Wahrscheinlichkeitsverteilung ergibt $p_n = |c_n|^2$? Drücken Sie diese durch die mittlere Teilchenzahl $\langle \hat{n} \rangle = \langle \alpha | a^{\dagger} a | \alpha \rangle$ aus. Berechnen Sie auch die Varianz $(\Delta n)^2$ der Teilchenzahl.
- c) Wie lautet der zeitabhängige Zustand $|\alpha(t)\rangle$, wenn $|\alpha(t=0)\rangle = |\alpha\rangle$?

 Hinweis: Argumentieren Sie mit der zeitabhängigen Schrödingergleichung und bringen Sie $|\alpha(t)\rangle$ auf die Form $|\alpha(t)\rangle = e^{-i\omega t/2}|\psi_{\alpha(t)}\rangle$.

d) Berechnen Sie den zeitabhängigen Erwartungswert für den Ort

$$\langle x \rangle(t) = \langle \alpha(t) | x | \alpha(t) \rangle.$$

Hinweis: Bringen Sie das Ergebnis auf die Form $\langle x \rangle(t) = 2\lambda |\alpha| \cos(\omega t - \delta)$.

e) Berechnen Sie die Unschärfe $(\Delta x)^2(t) = \langle \alpha(t) | (x - \langle x \rangle(t))^2 | \alpha(t) \rangle$ und (das analog definierte) $(\Delta p)^2(t)$ z.B. durch Ausnutzung von $\langle p \rangle = m \frac{\mathrm{d}}{\mathrm{d}t} \langle x \rangle$ (Ehrenfest-Theorem).

Zeigen Sie damit, dass $|\alpha\rangle$ ein sogenanntes Minimalpaket ist, welches zeitlich nicht auseinander läuft, d.h.

$$\Delta x(t)\Delta p(t) = \frac{\hbar}{2}.$$

Aufgabe 29: Ritzsches Variationsverfahren

Ein Hamiltonoperator H habe den nichtentarteten Grundzustand ψ_0 zur Energie E_0 und angeregte Zustände ψ_i zur Energie $E_i > E_0$. E_1 sei die Energie des ersten angeregten Zustandes, etc.

a) Zeigen Sie, dass folgendes Variationsprinzip gilt:

(i)
$$E_0 = \min_{\psi \in \mathcal{H}} \{ \langle \psi | H | \psi \rangle \mid \langle \psi | \psi \rangle = 1 \}$$

(ii)
$$E_1 = \min_{\psi \in \mathcal{H}} \{ \langle \psi | H | \psi \rangle \mid \langle \psi | \psi \rangle = 1, \langle \psi_0 | \psi \rangle = 0 \}$$

Das Rayleigh-Ritz'sche Näherungsverfahren beruht darauf, eine Form für den Grundzustand als Funktion von Parametern a_1, a_2, \ldots, a_N , also $\psi(x) = \psi(x, a_1, \ldots, a_N)$, anzusetzen und durch Minimierung von $E(a_1, \ldots, a_N) = \langle \psi | H | \psi \rangle / \langle \psi | \psi \rangle$ eine optimale Funktion ψ und eine Abschätzung für E_0 zu bestimmen.

b) Betrachten Sie das Dreieckspotential in einer Dimension:

$$V(x) = \begin{cases} \infty & x < 0 \\ Fx & x > 0 \end{cases}$$

Mit dem Variationsansatz $\psi(x) = xe^{-ax}$ bestimmen Sie das optimale a und die Näherung für E_0 .

Hinweis: $\int_0^\infty x^n e^{-x} dx = n! \quad (n \in \mathbb{N}).$

c) Betrachten Sie das anharmonische Potential $V(x) = \frac{m\omega^2}{2}x^2 + \lambda x^3$. Bestimmen Sie mit Hilfe des Variationsansatzes $\psi(x) = e^{-(x-a)^2/2\sigma^2} = e^{-(\xi-\alpha)^2/2}$ (verschobene Gaussfunktion) den optimalen Parameter a bzw. α .

Hinweis: Verwenden Sie natürliche Einheiten, d.h. $\xi = x/\sigma$, etc. mit $\sigma^2 = \hbar/(m\omega)$.

Erklären Sie das Versagen der Methode für bestimme Werte von λ .