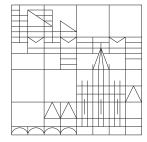
UNIVERSITÄT KONSTANZ

Fachbereich Physik

Prof. Dr. Guido Burkard

http://tinyurl.com/2014qm2



Höhere Quantentheorie und Elektrodynamik Wintersemester 2014/15 - Übungsblatt 9

Ausgabe: 15.12.2014, Abgabe: 12.01.2014, Übungen: 15.01.2014 und 16.01.2014

Aufgabe 25: Austauschenergie (schriftlich)

Gegeben sei ein fermionischer Zustand $|n_1, \ldots, n_r, \ldots\rangle$. Zeigen Sie, dass die Matrixelemente des Zweiteilchenwechselwirkung-Operators in zweiter Quantisierung V als

$$\langle n_1, \dots, n_r, \dots | V | n_1, \dots, n_r, \dots \rangle = \frac{1}{2} \sum_{r_1, r_2} \left(\langle r_1, r_2 | v | r_1, r_2 \rangle - \langle r_1, r_2 | v | r_2, r_1 \rangle \right) n_{r_1} n_{r_2}$$

geschrieben werden können. Das Matrixelement $\langle r_1, r_2 | v | r_2, r_1 \rangle$ heißt Austauschenergie.

Aufgabe 26: Zwei-Teilchen-Potential in der Wellenvektor-Basis

Sei $v(\boldsymbol{x}_1 - \boldsymbol{x}_2)$ ein Zwei-Teilchen-Wechselwirkungspotential, welches invariant unter Verschiebung ist. Die Fourier-Transformation ist im Volumen $\Lambda = L^3$ durch

$$\tilde{v}_{\Lambda}(\boldsymbol{k}) = \int_{\Lambda} \mathrm{d}\boldsymbol{x} \mathrm{e}^{-\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{x}} v(\boldsymbol{x})$$

definiert. Man definiert auch die dazugehörende periodische Fourier-Reihe

$$v_{\Lambda}(\boldsymbol{x}) = \frac{1}{L^3} \sum_{\boldsymbol{k}} e^{i\boldsymbol{k}\cdot\boldsymbol{x}} \tilde{v}_{\Lambda}(\boldsymbol{k}),$$

mit $\mathbf{k} = (2\pi n_1/L, 2\pi n_2/L, 2\pi n_3/L)$ und $n_i \in \mathbb{Z}$.

a) Zeigen Sie, dass in zweiter Quantisierung die Wechselwirkung die folgende Form hat:

$$V = \frac{1}{2L^3} \sum_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}} \tilde{v}_{\Lambda}(\mathbf{k}) a_{\mathbf{k}_1 + \mathbf{k}}^{\dagger} a_{\mathbf{k}_2 - \mathbf{k}}^{\dagger} a_{\mathbf{k}_2} a_{\mathbf{k}_1}. \tag{1}$$

b) Berechnen Sie $\tilde{v}_{\Lambda}(\mathbf{k})$ für die Coulomb-Wechselwirkung, wobei Sie den Grenzfall $L \to \infty$ betrachten.

Hinweis: verwenden Sie zuerst $v(\boldsymbol{x}) = e^2 e^{-\alpha |\boldsymbol{x}|}/(4\pi\epsilon_0 |\boldsymbol{x}|)$ und führen dann den Grenzübergang $\alpha \to 0$ durch.

c*) (Jellium-Modell) Betrachten Sie in erster Quantisierung die Hamilton-Funktion eines System, dass aus N Elektronen (N ist groß) im Volumen $\Lambda = L^3$ und dem positiv geladenen Hintergrund mit der Dichte $\rho = N/\Lambda$ besteht. Überzeugen Sie sich davon, dass dann in zweiter Quantiserung der Term mit $\mathbf{k} = 0$ in Gl. (1) verschwindet.

Aufgabe 27: Paarkorrelationen für Bosonen

Nehmen wir an, dass wir N freie Bosonen im Volumen V haben. Die Paarverteilungsfunktion $G^{(2)}(\mathbf{r} - \mathbf{r}')$ wird als

$$G^{(2)}(\mathbf{r} - \mathbf{r}') \equiv \left(\frac{N}{V}\right)^2 g(\mathbf{r} - \mathbf{r}') = \langle \Phi | \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r}) | \Phi \rangle,$$

definiert, wobei $|\Phi\rangle$ den Vielteichenzustand bezeichnet, in dem sich die Bosonen befinden.

- a) Wie lautet $G^{(2)}(\mathbf{r} \mathbf{r}')$ im Zustand, bei dem es N/2 Bosonen mit Wellenvektor \mathbf{k}_1 und N/2 Bosonen mit Wellenvektor \mathbf{k}_2 gibt, wobei $\mathbf{k}_1 \neq \mathbf{k}_2$ gilt? Beobachten Sie für diesen Zustand Bunching oder Antibunching, wenn N groß ist?
- b) Berechnen Sie $G^{(2)}(\mathbf{r} \mathbf{r}')$ für den kohärenten Zustand

$$|\alpha\rangle_{\mathbf{k}} = e^{\alpha a_{\mathbf{k}}^{\dagger} - \alpha^* a_{\mathbf{k}}} |0\rangle$$
 ,

wobei Sie $\langle N \rangle = \langle a_{\bf k}^{\dagger} a_{\bf k} \rangle$ anstatt N in der Definition von $G^{(2)}({\bf r}-{\bf r}')$ verwenden. Wie sieht es bei diesem Zustand mit Bunching oder Antibunching aus? Geben Sie eine einfache physikalische Interpretation Ihrer Antwort.

Fröhliche Weihnachten und einen guten Rutsch ins neue Jahr!

