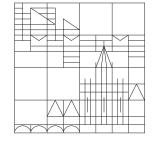
UNIVERSITÄT KONSTANZ

Fachbereich Physik

Prof. Dr. Guido Burkard

http://tinyurl.com/2014qm2



Höhere Quantentheorie und Elektrodynamik Wintersemester 2014/15 - Übungsblatt 2

Ausgabe: 27.10.2014, Abgabe: 3.11.2014, Übungen: 6.11.2014 und 7.11.2014

Aufgabe 4: Clebsch-Gordan-Koeffizienten

Gegeben seien zwei Drehimpulse \mathbf{J}_1 und \mathbf{J}_2 , deren Vektorsumme als Gesamtdrehimpuls $\mathbf{J} = \mathbf{J}_1 + \mathbf{J}_2$ bezeichnet wird. Die Eigenzustände $|j, m, j_1, j_2\rangle$ zu den kommutierenden Observablen \mathbf{J}^2 , J_z , \mathbf{J}_1^2 und \mathbf{J}_2^2 lassen sich nach den Produktzuständen $|j_1, j_2, m_1, m_2\rangle \equiv |j_1, m_1\rangle|j_2, m_2\rangle$ entwickeln,

$$|j, m, j_1, j_2\rangle = \sum_{j'_1, j'_2, m'_1, m'_2} |j'_1, j'_2, m'_1, m'_2\rangle\langle j'_1, j'_2, m'_1, m'_2|j, m, j_1, j_2\rangle.$$

a) Leiten Sie durch geschicktes Anwenden der Leiteroperatoren $J_{\pm} = J_{1\pm} + J_{2\pm}$ eine Beziehung zwischen den Clebsch-Gordan-Koeffizienten zu m und $m \pm 1$ her. Überlegen Sie sich, wie Sie zusammen mit der Relation

$$\sum_{m_1+m_2=m} |\langle j_1, j_2, m_1, m_2 | j, m, j_1, j_2 \rangle|^2 = 1$$

alle Clebsch-Gordan-Koeffizienten zu festen j_1 , j_2 und j bestimmen können.

b) Die Clebsch-Gordan-Koeffizienten zum maximalen $j = j_1 + j_2$ lassen sich nach einem einfachen Verfahren durch wiederholte Anwendung des Absteigeoperators J_- bestimmen. Berechnen Sie

$$C_{1,m_1,\frac{3}{2},m_2}^{j_1+j_2=\frac{5}{2},m_1+m_2}=\langle j_1=1,\ j_2=\frac{3}{2},\ m_1,m_2|j_1=1,\ j_2=\frac{3}{2},\ j=j_1+j_2=\frac{5}{2},\ m=m_1+m_2\rangle$$

$$f \ddot{\text{ur}} - \frac{5}{2} \le m \le \frac{5}{2}.$$

Hinweise:

• Starten Sie mit $|j_1=1, j_2=\frac{3}{2}, j=\frac{5}{2}, m=\frac{5}{2}\rangle$ und benutzen Sie den Absteigeoperator J_- , um $|j_1=1, j_2=\frac{3}{2}, j=\frac{5}{2}, m=\frac{3}{2}\rangle$ zu bekommen. Es gilt

$$J_{\pm} |j,m\rangle = \hbar \sqrt{j(j+1) - m(m\pm 1)} |j,m\pm 1\rangle.$$

- Der Überlapp mit $\langle j_1 = 1, j_2 = \frac{3}{2}, m_1, m_2 |$ ergibt die Clebsch-Gordan-Koeffizienten.
- Beachten Sie, dass die Clebsch-Gordan-Koeffizienten symmetrisch sind, d.h.

$$C_{j_1,m_1,j_2,m_2}^{j,m} = C_{j_1,-m_1,j_2,-m_2}^{j,-m}.$$

Wenden Sie die Tatsache an, dass $\langle j_1, j_2, j, m | j_1, j_2, j', m' \rangle = \delta_{j,j'} \delta_{m,m'}$, um

$$C_{1,m_1,\frac{3}{2},m_2}^{\frac{3}{2},\frac{3}{2}} = \langle j_1 = 1, \ j_2 = \frac{3}{2}, \ m_1,m_2 | j_1 = 1, \ j_2 = \frac{3}{2}, \ j = \frac{3}{2}, \ m = \frac{3}{2} \rangle$$

für die möglichen m_1/m_2 -Kombinationen zu berechnen.

Aufgabe 5: Spin-Orbit-Kopplung (schriftlich)

Ein gebundenes Elektron bewegt sich im elektrostatischen Feld des Kerns. Da es ein intrinsisches magnetisches Moment besitzt, kommt es zu einer Wechselwirkung zwischen dem Spin \mathbf{s} und dem Bahndrehimpuls 1. Wir beschränken uns im Folgenden auf den Fall l=1.

- a) Drücken Sie die Zustände $|l, s, J, M\rangle$ in der Basis des Gesamtdrehimpulses durch die Zustände $|l, m_l, s, m_s\rangle$ aus. Zu diesem Behufe, schlagen Sie die Clebsch-Gordan-Koeffizienten in einer Tabelle¹ nach und berechnen Sie diese zusätzlich mit der Methode aus Aufgabe 4.
- b) Bestimmen Sie die Matrixdarstellung des Gesamtdrehimpulses $\hat{\mathbf{j}}^2$ in der Basis $\{l, m_l, s, m_s\}$. *Hinweis:* Verwenden Sie die Relation aus Aufgabe 1 c).

Aufgabe 6: Potentiale mit einer δ -Distribution

Gegeben ist das Potential $V(x) = -V_0\delta(x/x_0) + U_0\Theta(x)$, wobei $x_0 > 0$ und $V_0 > 0$ gilt, $\delta(x)$ die sogennannte Delta-Distribution bezeichnet und $\Theta(x)$ die sogenannte Theta-Funktion (Heavyside-Funktion, $\Theta(x) = 0$ für x < 0 und $\Theta(x) = 1$ für x > 0) darstellt. Wie groß darf U_0 sein, damit für ein Teilchen der Masse m in diesem Potential noch ein gebundener Zustand existiert? Hinweis: Als eine der Randbedingungen bei x = 0 benutzen Sie die Stetigkeit der Wellenfunktion. Um die andere Randbedingung herzuleiten, integrieren Sie die Schrödinger-Gleichung in einem infinitesimal kleinen Bereich um den Punkt x = 0.

¹http://pdg.lbl.gov/2002/clebrpp.pdf