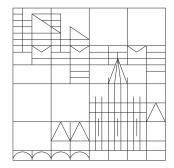
UNIVERSITÄT KONSTANZ

Fachbereich Physik

Prof. Dr. Guido Burkard

Dr. Hugo Ribeiro

http://tinyurl.com/2012qm2



Höhere Quantentheorie und Elektrodynamik Wintersemester 2012/13 - Übungsblatt 6

Ausgabe: 26.11.2012, Abgabe: 03.12.2012, Übungen: 07.12.2012

Aufgabe 16: Fermionische Teilchendarstellung von Operatoren

Sei O einen Einteilchen Operator. Wir definieren den Einteilchen Operator, der auf einem Vielteilchensystem wirkt, als $F(O) = \mathcal{O} = \sum_{s,r} O_{rs} a_r^{\dagger} a_s$ mit $O_{rs} = \langle r|O|s \rangle$. Wir möchten zeigen, dass die Teilchendarstellung der Spinoperatoren

$$S_k = \sum_{s,r} \sigma_{rs}^k a_r^{\dagger} a_s \tag{1}$$

die Drehimpulsalgebra erfüllt. Hier sind σ^k die Pauli Matrizen und $k \in \{x, y, z\}$.

a) Als Vorbereitung leiten Sie zuerst folgende Relation her :

$$[X, YZ] = \{X, Y\}Z - Y\{X, Z\}.$$
(2)

b) Zeigen Sie mit Hilfe von a), dass

$$[\mathcal{A}, \mathcal{B}] = [F(A), F(B)] = F([A, B]). \tag{3}$$

c) Zeigen Sie dann mit Hilfe von b), dass

$$[S_k, S_l] = i\hbar \varepsilon_{klm} S_m. \tag{4}$$

Aufgabe 17: Kohärente Zustände von Fermionen

Betrachten Sie ein fermionisches System mit einem Freiheitsgrad. Um hier einen kohärenten Zustand zu konstruieren, benötigen wir die sogenannten *Grassmann-Variablen*. Dies sind Zahlen, die mit sich selbst und allen fermionischen Operatoren antikommutieren, d.h.

$$\{\xi, \xi\} = \{\xi, c\} = \{\xi, c^{\dagger}\} = 0.$$
 (5)

- a) Überprüfen Sie, dass der Zustand $|\xi\rangle=e^{-\xi c^{\dagger}}|0\rangle$ kein Eigenzustand des Vernichtungsopertors c ist, falls ξ eine komplexe Zahl ist.
- b) Überlegen Sie sich, warum jede Funktion von Grassmann-Variablen linear ist, d.h. $f(\xi) = f_0 + f_1 \xi$.
- c) Zeigen Sie damit, dass, wenn ξ eine Grassmann-Variable ist, $|\xi\rangle=e^{-\xi b^{\dagger}}|0\rangle$ ein kohärenter Zustand ist.

Aufgabe 18: Heisenberg Ferromagnet (Schriftlich)

Wir betrachten ein n-Spin-System (Spin S). Die Dynamik ist durch den folgenden Hamilton Operator beschrieben

$$H = -J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j, \quad J > 0, \tag{6}$$

wobei $\langle i, j \rangle$ bedeutet, dass man nur über die nächsten Nachbarn summiert.

- 1) Welcher Zustand ist der Grundzustand $|G\rangle$ von H?
 - a) Zeigen Sie, dass $|S, S, \ldots, S\rangle$ Eigenzustand ist. Berechnen Sie die Energie dieses Zustands.
 - b) Zeigen Sie, dass $|S, S, ..., S\rangle$ die kleinste Energie hat. (Hinweis: Es ist genug $\langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle \leq S^2$ zu zeigen. Warum?)
 - c) Zeigen Sie, dass H mit S_{tot}^- kommutiert. Was bedeutet das für folgende Zustände $(S_{\text{tot}}^-)^l | S, S, \dots, S \rangle$ mit $l \in [1, n]$.
 - d) Wie sieht der Grundzustand aus? (Beschreiben Sie in Worten).
- 2) Wir suchen jetzt die erste Anregungen. Wir betrachten den Zustand $|i\rangle = |S \dots S 1 \dots S\rangle$.
 - a) Wie kann man $|i\rangle$ von $|G\rangle$ erhalten? (Hinweis: Wie wirkt S_i^- auf $|G\rangle$.)
 - b) Berechnen Sie $H^z|i\rangle$. $H^z=-J\sum_{\langle k,l\rangle}S_k^zS_l^z$ ist die z-Komponente von H. Ist $|i\rangle$ ein Eigenzustand von H^z ?
 - c) Berechnen Sie $H^{\perp}|i\rangle$. Hier $H^{\perp}=-J\sum_{\langle k,l\rangle}S_k^xS_l^x+S_k^yS_l^y$. Ist $|i\rangle$ ein Eigenzustand von H^{\perp} ?
 - d) Benutzen Sie die Fourier Transformation von $|i\rangle$, um H^{\perp} zu diagonalisieren. (Hinweis: $|\mathbf{k}\rangle = \frac{1}{\sqrt{n}} \sum_{i} \mathrm{e}^{-\mathrm{i}\mathbf{k}\cdot\mathbf{r}_{i}} |i\rangle$. Die Summe $\sum_{\langle i,j\rangle} |j\rangle$ lässt sich als $\sum_{\boldsymbol{\tau}} |i+\boldsymbol{\tau}\rangle$ schreiben.)
 - e) Welche Energie hat der Zustand $|\mathbf{k}\rangle$?
- 3) Berechnen Sie $\langle \mathbf{k} | S_i^z S_j^z | \mathbf{k} \rangle$ und $\langle \mathbf{k} | S_i^x S_j^x + S_i^y S_j^y | \mathbf{k} \rangle$. Was machen die Spins?
- 4) Wir suchen jetzt die anderen Anregungen des Systems. Leider ist der Zustand $|\boldsymbol{k},\boldsymbol{k}'\rangle=\frac{1}{n}\sum_{i,j}\mathrm{e}^{-\mathrm{i}(\boldsymbol{k}\cdot\boldsymbol{r}_i+\boldsymbol{k}'\cdot\boldsymbol{r}_j)}S_i^-S_j^-|G\rangle$ kein Eigenzustand von H. Wir brauchen eine andere Methode, um die Energie zu finden.
 - a) Schreiben Sie H mit Hilfe der Holstein-Primakov Transformation. [c.f. Aufgabe 14.] (Hinweis: Benutzen Sie die folgenden Näherungen $S_i^+ = \sqrt{2S}a_i$ und $S_i^- = \sqrt{2S}a_i^{\dagger}$.)
 - b) Benutzen Sie die Fourier Transformationen $a_i^{\dagger} = \frac{1}{\sqrt{n}} \sum_{k} e^{-i\mathbf{k}\cdot\mathbf{r}_i} a_{k}^{\dagger}$ und $a_i = \frac{1}{\sqrt{n}} \sum_{k} e^{i\mathbf{k}\cdot\mathbf{r}_i} a_{k}$, um H zu diagonalisieren.
 - c) Wie lautet die Energie $E(\mathbf{k})$?