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TWO-PULSE EXPERIMENTS
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Chapter 14

Wave-Mixing Spectroscopy

In extension of the optical Stark effect pump–probe experiments discussed
in the previous chapter, we now want to present a more general analysis
of two-pulse wave-mixing experiments. The model configuration is shown
schematically in Fig. 14.1.

In general, one cannot consider all systems as spatially homogeneous
because the light fields will be absorbed most strongly at the crystal sur-
face where the beams enter and the two beams will in general propagate
in different directions. The induced polarization will act in a spatially in-
homogeneous way as a source term for Maxwell’s equations describing the
fields. Thus in general one has to determine a two-point density matrix of
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Fig. 14.1 Schematics of two-pulse experiments: Two successive pulses called pump and
probe pulse with a delay time τ propagate in the directions kp and kt through the sample.
The DTS is measured in the direction kt of the test pulse, the FWM is measured in the
direction 2kp − kt of the beam diffracted from the lattice induced by the two pulses.
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What do you measure 

in which directions:

‣ kt   for pump-probe experiment

‣ 2kt - kp  for four wave mixing

‣ 2kp - kt  for photon echo
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INHOMOGENEOUS POLARISATION

Caused by inhomogeneous spatial absorption =>
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the form

ρij(rp, rt, t) = 〈ψ†
j (rt, t)ψi(rp, t)〉 . (14.1)

Introducing center-of-mass and relative coordinates R = (mirp +
mjrt)/(mi +mj) and r = rp−rt and a Fourier transformation with respect
to the relative coordinate r, one gets the Wigner distribution

ρij(R,k, t) =
1
V

∫

d3reik·rρij(R, r, t) . (14.2)

With these distributions one can calculate the optically induced polariza-
tion,

P (R, t) =
∑

k

dvcρcv(R,k, t) + c.c. . (14.3)

This polarization enters into Maxwell’s equations describing the dynamics
of the light field as it propagates through the sample. Obviously, the deter-
mination of the Wigner functions and the resulting electromagnetic fields
is considerably more involved in comparison with calculations of the den-
sity matrices in spatially homogeneous situations. As an alternative to the
Wigner functions, one can also use density matrices which depend on two
momenta

ρij(kp,kt, t) = 〈a†
j,kt

(t)ai,kt(t)〉 , (14.4)

from which the information about the spatial variation can be obtained. In
a single band, e.g., the distribution function at the spatial coordinate R is

n(R,k, t) =
∑

K

ρ(
1
2
K + k,−1

2
K + k, t)eiR·K . (14.5)

The advantage is that it is often much easier to formulate the equations of
motion in momentum space than in real space. So far, these off-diagonal
density matrices in K-space have been used successfully mainly for quantum
wires, where the complications due to the angles between the two momenta
do not exist. In thin samples however, where propagation effects and spatial
inhomogeneities are of minor importance, one can calculate the resulting
electromagnetic field which propagates in a certain direction by adiabatic
approximations from the calculations for spatially homogeneous fields.

center of mass coordinate
relative coordinate
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Wigner distribution:

Induced polarisation:

Another approach:

Distribution function at spatial coordinate R in a single band:
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(t) ai,kp(t)�
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THIN SAMPLES
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14.1 Thin Samples

In order to understand why the transmitted light in thin samples is pro-
portional to the polarization field, we consider Maxwell’s wave equation

∂2E
∂t2

− c2

n2
0

∆E = −4π
∂2P

∂t2
" 4πω2P , (14.6)

where n0 is the refractive index of the unexcited crystal. The polarization
formally constitutes an inhomogeneity. The field E can be calculated by a
solution of the homogeneous equation plus an integral over the Green’s func-
tion of the homogeneous field equation folded with the inhomogeneous po-
larization term. As for the calculations of the retarded Liénhard-Wiechert
potentials in electrodynamics, this term reduces to the retarded polariza-
tion integral, in which the actual time is replaced by the retarded time
t − Rn/c, where R is the distance between the coordinate of the polar-
ization and that of the resulting field. In thin samples, these retardation
effects are very small, the integral reduces to a weighted spatial average of
the polarization term over the sample. In other words, the field caused by
the polarization in the medium is proportional to the spatially homogeneous
polarization.

For optically thin samples, we generalize the considered two-pulse laser
light field which excites the sample by introducing the two propagation
directions by means of two wave vectors kp and kt. A spatial variation of
the amplitudes is not considered. This way, we can write

E(t) = Ep(t)e−i
(

ωpt−kp·r
)

+ Et(t − τ)e−i
[

ωt(t−τ)−kt·r
]

= eikp·r
[

Ep(t)e−iωpt + Et(t − τ)e−iωt(t−τ)eiφ
]

, (14.7)

where we introduced the phase φ = (kt − kp) · r. With such an excitation
field the calculated induced polarization will also depend on the phase

P (t, τ, φ) =
∑

k

dvcρcv,k(φ) + c.c. ∝ Etransm . (14.8)

The polarizations induced by the two delayed parts of the field (14.7) form
a transient lattice with the lattice vector kp−kt. The field will be diffracted
from this lattice into multiple orders determined by the factor eikp·reinφ.
For n = 1, one gets the propagation vector kt, that is in the direction of
the delayed test pulse (see Fig. 14.1). This is the pump–probe situation
analyzed for the excitonic optical Stark effect in Chap. 13. For n = 2, one

Calculations in this case from homogeneous fields by adiabatic approximation

Statement: scattered field is proportional to the induced polarisation

Resulting field can be defined 
from Maxwell equation

Solution: homog. solution + ∫ P · Green function of hom. eq.

≈ weighted spatial average of polarisation

Resulting field can be defined 
from Maxwell equation

Resulting field can be defined 
from Maxwell equation

Resulting field can be defined 
from Maxwell equation
Resulting field can be defined 
from Maxwell equation

=> Etransm ~ P(t, ∆t)
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ADIABATIC APPROXIMATION
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Excitation field
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analyzed for the excitonic optical Stark effect in Chap. 13. For n = 2, one

Induced polarisation
lattice with lattice vector 

January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Wave-Mixing Spectroscopy 271

14.1 Thin Samples

In order to understand why the transmitted light in thin samples is pro-
portional to the polarization field, we consider Maxwell’s wave equation

∂2E
∂t2

− c2

n2
0

∆E = −4π
∂2P

∂t2
" 4πω2P , (14.6)

where n0 is the refractive index of the unexcited crystal. The polarization
formally constitutes an inhomogeneity. The field E can be calculated by a
solution of the homogeneous equation plus an integral over the Green’s func-
tion of the homogeneous field equation folded with the inhomogeneous po-
larization term. As for the calculations of the retarded Liénhard-Wiechert
potentials in electrodynamics, this term reduces to the retarded polariza-
tion integral, in which the actual time is replaced by the retarded time
t − Rn/c, where R is the distance between the coordinate of the polar-
ization and that of the resulting field. In thin samples, these retardation
effects are very small, the integral reduces to a weighted spatial average of
the polarization term over the sample. In other words, the field caused by
the polarization in the medium is proportional to the spatially homogeneous
polarization.

For optically thin samples, we generalize the considered two-pulse laser
light field which excites the sample by introducing the two propagation
directions by means of two wave vectors kp and kt. A spatial variation of
the amplitudes is not considered. This way, we can write

E(t) = Ep(t)e−i
(

ωpt−kp·r
)

+ Et(t − τ)e−i
[

ωt(t−τ)−kt·r
]

= eikp·r
[

Ep(t)e−iωpt + Et(t − τ)e−iωt(t−τ)eiφ
]

, (14.7)

where we introduced the phase φ = (kt − kp) · r. With such an excitation
field the calculated induced polarization will also depend on the phase

P (t, τ, φ) =
∑

k

dvcρcv,k(φ) + c.c. ∝ Etransm . (14.8)

The polarizations induced by the two delayed parts of the field (14.7) form
a transient lattice with the lattice vector kp−kt. The field will be diffracted
from this lattice into multiple orders determined by the factor eikp·reinφ.
For n = 1, one gets the propagation vector kt, that is in the direction of
the delayed test pulse (see Fig. 14.1). This is the pump–probe situation
analyzed for the excitonic optical Stark effect in Chap. 13. For n = 2, one

directions of different orders of diffracted field: 
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gets the propagation vector 2kt − kp, etc. This is the direction of the first
diffracted order in a degenerate four-wave mixing configuration.

The name four-wave mixing originates from the fact, that one generally
has to consider a total of four different E-fields, three incident and a scat-
tered field. Here, we discuss only the so-called degenerate case where two
fields are combined into the pump beam. Hence, the pump counts twice,
whereas probe and transmitted fields count only once.

We numerically evaluate the resulting polarization for various values of
the phase. In actual calculations, the polarization has to be obtained for
only a few phase values. Because of the periodicity in φ, we extract from
this knowledge the n-th order Fourier transform of the polarization

Pn(t, τ) =
∫ 2π

0

dφ

2π
P (t, τ, φ)einφ . (14.9)

This evaluation of the polarization in various directions without treating
the spatial inhomogeneity explicitly is called an adiabatic approximation.
Alternatively, one can expand the density matrix ρ =

∑

n ρneiφn and cal-
culate the equations of motion for the various components successively.

To discuss pump-probe experiments, we have to calculate P1(t, τ). The
spectrum of the transmitted light is given by |P1(ω, τ)|2. Because the trans-
mitted field in the test pulse direction kt is not background-free, one often
measures a differential signal by subtracting the spectrum |P 0

t (ω)|2 for the
test field alone.

In Chap. 13, we already discussed the example of the excitonic optical
Stark effect. Here, we now show a case where the modifications of the
interband continuum are studied. Specifically, we discuss the results of a
low-intensity experiment according to Leitenstorfer et pal. on GaAs with a
two color titanium sapphire laser. The pump pulse was tuned to 150 meV
above the band edge and had a duration of 120 fs. In the differential
transmission spectrum of the delayed probe pulse with a duration of 25 fs
tuned 120 meV above the gap, one sees, at negative time delays an increased
transition probability around the spectral position of the pump pulse due
to Pauli blocking.

Due to excitonic enhancement above the populated states and to a mi-
nor degree due to band-gap shrinkage, an induced absorption is observed
above the spectral position of the pump pulse. A remarkably sharp fea-
ture is present in the earliest probe spectrum which seems to contradict the
time–energy uncertainty relation. Above a delay of 100 fs the build up of
the first LO-phonon cascade structure is seen clearly followed by a struc-

n = 1 into direction kt

n = 2 into direction 2kt − kp

adiabatic approximation: 

5
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PUMP-PROBE EXPERIMENT

k1
�exck2

[CSO]

Transmitted light spectrum: 
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transition probability around the spectral position of the pump pulse due
to Pauli blocking.

Due to excitonic enhancement above the populated states and to a mi-
nor degree due to band-gap shrinkage, an induced absorption is observed
above the spectral position of the pump pulse. A remarkably sharp fea-
ture is present in the earliest probe spectrum which seems to contradict the
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(−|P 0
t (ω)|2)

Pump:  Eg+150 meV, 1.67 eV; 
             duration 120 fs;
             spectral width 15 meV
 

Eg = 1.52 eV (GaAs)

Probe:  Eg+120 meV, 1.64 eV; 
             duration 25 fs;
             spectral width 70 meV

Oscillators with discrete
energy distribution: 

Oscillators with continuum
energy distribution: 

�ωLO = 36 meV

Phonon oscillation time 115 fs
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LEITENSTORFER’S EXPERIMENT
VOLUME 78, NUMBER 19 P HY S I CA L REV I EW LE T T ER S 12 MAY 1997

exploited to suppress disturbing influences of the light-
hole (lh) band.
Free electron-hole pairs are generated, exciting the

sample [17] with Gaussian light pulses of a duration of
120 fs and an energetic width of 15 meV. The central
photon energy of 1.67 eV is substantially higher than the
band-gap energy of 1.52 eV. As a consequence, the carri-
ers initially possess large kinetic energies: Excitation out
of the heavy-hole (hh) band yields an electron distribu-
tion centered at an excess energy of 135 meV and a hh
distribution about 15 meV. For the transition from the
lh to the conduction band more similar effective masses
lead to initial energies of 90 and 60 meV, respectively.
The carrier dynamics is probed with weak pulses of a du-
ration of 25 fs, a spectral width of 70 meV, and a cen-
tral photon energy of 1.64 eV. Both pump and probe
pulses are circularly polarized with a photon spin of 11
�s1�. In GaAs, the hh band belongs to projections of
the total angular momentum of jz � 6

3
2 , the lh band to

jz � 6
1
2 , and the conduction band to sz � 6

1
2 [18]. Ex-

citing with s1, we generate spin-polarized electrons with
opposite projections of sz for the transitions out of the
two valence bands. This spin alignment persists on time
scales substantially longer than the range of the present
study [19]. Because of the selection rules, the absorp-
tion changes seen by the probe essentially originate from
the carriers generated involving the hh band. The probe
pulses are analyzed in a double monochromator after hav-
ing passed through the sample. The spectral resolution is
set to 6 meV. A two-color Ti:sapphire laser provides per-
fectly synchronized pulse trains for excitation and prob-
ing. Employing a differential lock-in technique for the
detection of the transmission changes, the sensitivity of
our setup is limited only by the shot noise of the photon
current of the probe pulses.
In Fig. 1 we present energy resolved transmission

changes DT�T measured at delay times tD ranging from
0 to 500 fs. The excitation density of 8 3 1014 electron-
hole pairs per cm3 is held low to keep CC scattering
inefficient. At tD � 0 fs, a well-pronounced peak (no
LO) of increased transmission is seen at a probe photon
energy of 1.66 eV. The spectral hole is slightly redshifted
with respect to the excitation spectrum (dashed) and an
induced absorption appears around a probing energy of
1.68 eV. This phenomenon is related to the excitonic
enhancement of the absorption continuum and will be
discussed below. At time delays of 40 and 80 fs, a
shoulder belonging to the electrons which have emitted
one LO phonon arises in the energy range from 1.59
to 1.64 eV. This feature is energetically much broader
than the initial bleaching peak, clearly demonstrating that
energy does not have to be conserved in the scattering
events on such an early time scale. It has to be stressed
that in the Boltzmann limit a distinct minimum between the
initial distribution and the phonon satellite should exist
at any delay time. In fact, experimentally this minimum

FIG. 1. Spectrally resolved transmission changes DT�T in
GaAs (lattice temperature TL � 15 K) measured for different
time delays tD at a carrier density of 8 3 1014 cm23. The
excitation spectrum is shown as a dashed line.

appears beyond tD � 100 fs at an energy of 1.63 eV.
Interestingly, the start of this process coincides roughly
with the end of the first LO phonon cycle 115 fs after the
maximum of the pump pulse. After 200 fs the first replica
�21 LO� at 1.62 eV exhibits a width equal to the original
maximum: The system has “remembered” its history.
The electrons which initially had experienced collisions
without energy conservation have now been transferred
to the peak. The driving force of this memory effect
is quantum interference working constructively in the
center of each replica and destructively outside. However,
there is still no well-defined separation between the first
and second phonon satellite. At a probing energy of
1.59 eV, a minimum between these two maxima cuts in
after approximately 300 fs. This delay corresponds to
the formation time of the first replica extended by an
additional LO oscillation period. For tD � 400 fs, the
second satellite �22 LO� has also narrowed. Obviously,
the total time elapsed since the original excitation is
not the true criterion for memory effects to be observed:
In a cascading process, e.g., the subsequent emission of
phonons, the quantum phenomena repeat themselves. As
a result of the system memory, quantum kinetic features
are important on much longer time scales than expected
from the uncertainty principle simply by taking into
account the energies exchanged.
To work out more clearly the basic physics seen in

the experiment, we adopt results from a simplified model
which allows, however, an analytical solution. Based
on the Tomonaga-Luttinger model, Meden et al. [20]

3734

Short time delays ( < 100 fs):
energy conservation violation

Longer time delays (> 100 fs):
memory effects of the system
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QUANTUM KINETIC IN ELECTRON-PHONON 
INTERACTION
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nonlinear, coherent analysis

Boltzmann kineticsExperiment

! =-100,-40,0,40,80,120,160 fs

!

Boltzmann kinetics

=-80,-40,0,40,80,120 fs

Linear, incoherent analysis

Quantum kinetics

= -100,-40,0,40,80,120,160 fs!

nonlinear, coherent analysis

1.58 1.581.6 1.61.62 1.621.64 1.641.66 1.661.68 1.68

Energy (eV) Energy (eV)

a

b

c

d

Fig. 14.2 Measured (a) and calculated DTS spectra in various approximations for delay
times ranging from −100 fs to 160 fs. (b) Incoherent analysis with Markovian scattering
kinetics, (c) Coherent analysis with Markovian scattering kinetics, (d) Coherent analysis
with non-Markovian quantum kinetics. [The measured spectra are according to Fürst et
al. (1996), the calculated spectra are according to Schmenkel et al. (1998).]

ture due to two successive phonon emission processes at still later times. In
these experiments, only 8 ·1014cm−3 carriers have been excited, so that the
relaxation kinetics was dominated by LO-phonon scattering. We present in
Fig. 14.2 the calculated differential transmission spectra for three approx-
imations to the relaxation kinetics. In the second figure, the test spectra
have been calculated in the Markovian limit of the LO-phonon relaxation
kinetics by inserting the population distributions calculated for the pump
pulse into the Bloch equations for the test pulse. This incoherent analysis
fails to explain the sharp spectral features at the high energy cross-over
from reduced to induced absorption at early time delays. We note further
that the build-up of the first and particularly the second peak of the phonon
cascade occurs in this theoretical formulation faster than in the experiment.
If one replaces the incoherent analysis by a coherent one, i.e., if one treats
only one set of Bloch equations for the two pulses together and determines
the polarization in the kt direction at the end, one sees that the sharp spec-
tral features at the cross-over point and at earliest delays are now present as

Experiment by Fürst, Leitenstorfer et al. 1996, theory by Schmenkel et al. 1998 
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FOUR-WAVE MIXING: 
LO-PHONONS QUANTUM KINETICS

Time-integrated four-wave mixing signal 
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in the experimental spectra. If one uses finally the delayed non-Markovian
quantum kinetics of the phonon scattering, the time scale of the build-up of
the phonon peaks now also agrees with the experiment. Thus, the analysis
of this experiment shows clearly the need for the coherent determination of
the test-beam polarization and for the non-Markovian quantum relaxation
kinetics.

Next, we discuss a femtosecond four-wave mixing experiment of Wegener
et pal. on GaAs in which for the first time the LO-phonon quantum beats
have been seen superimposed on the exponentially decaying time-integrated
four-wave mixing signal. The time-integrated four-wave mixing signal is
theoretically determined by

∫ +∞
−∞ dt|P2(t, τ)|2. There is also the possibility

to measure instead the time-resolved signal |P2(t, τ)|2, both as a function
of the real time t and the delay time τ , or the frequency-resolved signal
|P2(ω, τ)|2. The quantum beats, which are clearly seen in the experimental
and theoretical time-integrated four-wave mixing signals, are due to the
phonon oscillations in the integral kernel of the non-Markovian scattering
integrals. The two pulses had a duration of 14 fs and had the form of a
hyperbolic secans

E0(t) = E0
1

cosh(t/∆t)
. (14.10)

As a residual Coulomb scattering was also present under the experimental
conditions, we use, in addition to the dephasing by phonon scattering, an
excitation-induced phenomenological damping in the form γ = γ0 + γ1n(t),
where n(t) is the number of carriers at time t. The carrier frequency of the
two pulses was degenerate and was tuned to the exciton resonance.
As Fig. 14.3 shows, one gets a nearly perfect agreement between the ex-
periment and the quantum kinetic calculations. Naturally, the oscillations
are only present in a non-Markovian version of the dephasing kinetics. The
time-integrated four-wave mixing signals show on the exponential decay an
oscillation with the frequency (1 + me/mh)ω0, which can be understood as
the beating frequency of two interband polarization components coupled by
the coherent exchange of an LO-phonon between conduction-band states.
These observed phonon beats are a clear manifestation of the delayed quan-
tum kinetics.

Finally, we want to mention that the quantum kinetics used to analyze
originally the two described experiments has been derived by nonequilib-
rium Green’s functions. In the weak coupling theory, the integral kernel
of the resulting scattering integrals is expressed in terms of retarded and
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Fig. 14.3 Measured (solid lines) and calculated (dashed lines) time-integrated four-wave
mixing signals for three excitation densities (1.2×1016 cm−3 (top curve), 1.9×1016 cm−3

(middle curve) and 6.3× 1016 cm−3 (bottom curve)) with LO-phonon scattering. [After
Bányai et al. (1995).]

advanced electron Green’s functions of the state k and k+q coupled by the
exchange of a phonon. These spectral functions are again determined in
the mean-field approximation like the time- evolution function Tij,k,q(t, t′)
for the phonon-assisted density matrices. As the mean-field terms do not
couple the states k and k+q, the result of both theories on this level is
identical.

14.2 Semiconductor Photon Echo

The photon echo is a special example of a four-wave mixing experiment; it is
the optical analogon of Hahn’s (1950) famous spin echo in nuclear magnetic
resonance. For the experimental observation of the photon echo, the system
is excited by a sequence of two pulses that are separated in time by τ . At
the time 2τ the system spontaneously emits a light pulse in the four-wave
mixing direction, the photon echo. This phenomenon is known from atoms,
where it occurs in systems with sufficient inhomogeneous broadening.

In semiconductors, photon echoes can be obtained, e.g., at excitonic
resonances if the system is inhomogeneously broadened. This case is very
similar to the atomic system and can be understood accordingly. More
interesting is the situation of the intrinsic semiconductor photon echo that
also occurs in systems without any inhomogeneous broadening relying on

Pump & Probe: 
sech2-shaped 
with FWHM width 
14.2 fs & 87 meV
 
Exponential decay with 
oscillations with frequency 
(1 +me/mh)ωLO

Phenomenological damping: 
1

T2
= γ0 + γ1n(t)

dephasing by phonons
Coulomb scattering 

n: density of carriers

n = 1.2× 1016cm−3

n = 1.6× 1016cm−3

n = 6.3× 1016cm−3
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QUANTUM BEATS ASSISTED BY PHONONS

ω ω�

Observed oscillations in decay:
 „beating of interband-polarisation
components with frequency      und
       ... connected by coherent LO - 
phonon scattering”   [EPQK]

ω
ω�

Resonant band states: 

�ω� = �2k�2/2µ+ E�
g

�ω = �2k2/2µ+ E�
g

µ =
memh

me +mh

renormalised band gap 

�2(k�2 − k2)/2me = �ωLO =⇒ ωosc = ω� − ω = (1 +me/mh)ωLO
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SPIN ECHO (BEFORE PHOTON ECHO)

en.wikipedia.org/wiki/Spin_echo
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SPIN ECHO SIGNAL

en.wikipedia.org/wiki/Spin_echo
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SEMICONDUCTOR PHOTON ECHO
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Photon echo from time-resolved
 4-wave mixing trace: dashed lines 
without Coulomb interaction [CSO]

Excitonic photon echo: 
inhomogeneous broadened system

Instrinstic photon echo:
dynamics of interband continuum
observed in 2kp- kt direction 

Analytical result: first order of  Et
and second order of Ep polarisation:
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With the initial condition n = 0 and P = 0 we have K = 1, or

n =
1
2
(1 ±

√

1 − 4|P |2) . (13.5)

Eq. (13.5) shows that the density is completely determined by the polar-
ization. This is only true for a fully coherent process, or in the language of
quantum mechanics, for virtual excitations. These excitations of the atom
vanish if the field is switched off, whereas real excitations would stay in the
system and would decay on a much longer time scale determined by the
carrier lifetime. From Eqs. (13.2) - (13.5) one can again derive the results
of Chap. 2 (see problem 13.2).

Next, we turn to the coherent Bloch equations of the semiconductor
which have been derived in Chap. 12, see Eqs. (12.19). Here, we omit all
damping and collision terms, an approximation which is clearly not valid
for resonant excitation, where real absorption occurs. With nk = nc,k =
1 − nv,k, we can write Eqs. (12.19) as

i
dPk

dt
= ek Pk − (1 − 2nk)ωR,k (13.6)

dnk

dt
= i(ωR,kP ∗

k − ω∗
R,kPk) , (13.7)

where !ek is the pair energy renormalized by the exchange energy

!ek = !(ee,k + eh,k) = Eg +
!2k2

2m
− 2

∑

k′

Vk−k′nk′ (13.8)

and ωR,k is the effective Rabi frequency, Eq. (12.18).
Note, that there is a complete formal analogy between the two-level

atom equations (13.2) – (13.3) and the semiconductor equations (13.6) –
(13.7) for each k-state, except for the renormalizations of the pair energy
and of the Rabi frequency, which mix the k-states in a complicated way.
From this analogy, we get immediately the conservation law

nk =
1
2
(1 ±

√

1 − 4|Pk|2) . (13.9)

If the fields are switched on adiabatically only the minus sign in Eq. (13.9)
can be realized and the relations 0 ≤ nk ≤ 1/2 and 0 ≤ |Pk|2 ≤ 1/2 hold.
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Use conservation law  
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carrier lifetime. From Eqs. (13.2) - (13.5) one can again derive the results
of Chap. 2 (see problem 13.2).

Next, we turn to the coherent Bloch equations of the semiconductor
which have been derived in Chap. 12, see Eqs. (12.19). Here, we omit all
damping and collision terms, an approximation which is clearly not valid
for resonant excitation, where real absorption occurs. With nk = nc,k =
1 − nv,k, we can write Eqs. (12.19) as

i
dPk

dt
= ek Pk − (1 − 2nk)ωR,k (13.6)

dnk

dt
= i(ωR,kP ∗

k − ω∗
R,kPk) , (13.7)

where !ek is the pair energy renormalized by the exchange energy

!ek = !(ee,k + eh,k) = Eg +
!2k2

2m
− 2

∑

k′

Vk−k′nk′ (13.8)

and ωR,k is the effective Rabi frequency, Eq. (12.18).
Note, that there is a complete formal analogy between the two-level

atom equations (13.2) – (13.3) and the semiconductor equations (13.6) –
(13.7) for each k-state, except for the renormalizations of the pair energy
and of the Rabi frequency, which mix the k-states in a complicated way.
From this analogy, we get immediately the conservation law

nk =
1
2
(1 ±

√

1 − 4|Pk|2) . (13.9)

If the fields are switched on adiabatically only the minus sign in Eq. (13.9)
can be realized and the relations 0 ≤ nk ≤ 1/2 and 0 ≤ |Pk|2 ≤ 1/2 hold.
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the specific properties of interband continuum of the electron–hole excita-
tions.

To analyze the intrinsic photon echo in semiconductors, we start from
the coherent semiconductor Bloch equations (13.6) – (13.7). In order to
obtain analytic results, we want to solve the Bloch equations in first order
of the weak pulse Et and in second order of the strong pulse Ep, to com-
pute the leading contribution to the signal in the direction 2kp − kt. To
keep our analytical analysis as simple as possible, we ignore all dissipative
contributions in the semiconductor Bloch equations. These contributions
could be included, but they would make our equations more complicated.
To eliminate the population nk, we use the conservation law, Eq. (13.9).
Since we restrict our overall result to be of third order in the field ampli-
tude, we expand Eq. (13.9) as in Eq. (13.18) and keep only the lowest-order
term. The resulting equation for the interband polarization is

i!
d

dt
Pk = !εk Pk −

∑

k′

Vk′Pk+k′ − 2
∑

k′

Vk′ |Pk+k′ |2Pk

+2
∑

k′

Vk′Pk+k′ |Pk|2 − dcv E(1 − 2|Pk|2) . (14.11)

This equation can be simplified, making again use of the known solutions
of the Wannier equation (10.35)

!εk ψλ,k −
∑

k′

Vk′ψλ,k+k′ = !ελ ψλ,k . (14.12)

Expanding the interband polarization,

Pk =
∑

λ

ψλ,k Pλ

Pλ =
∑

k

ψ∗
λ,k Pk , (14.13)

inserting into Eq. (14.11), multiplying by ψ∗
λ′,k and summing over k, we

obtain
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Solution procedure can be shown on simplified equation:
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i!
d

dt
Pλ = !ελPλ − 2

∑

k,k′

Vk′

∑

λ′λ′′λ′′′

ψ∗
λ,k

(

ψ∗
λ′,k+k′ψλ′′,k+k′

−ψ∗
λ′,k ψλ′′,k+k′

)

ψλ′′′,k(Pλ′
)∗Pλ′′

Pλ′′′

−dcv E ψ∗
λ(0) + 2 dcv E

∑

k

∑

λ′λ′′

ψ∗
λ,k ψ∗

λ′,k ψλ′′,k(Pλ′
)∗Pλ′′

. (14.14)

Here, we used
∑

k

ψ∗
λ,k = ψ∗

λ(r = 0) = ψ∗
λ(0) . (14.15)

We solve Eq. (14.14) using perturbation theory, keeping the results
which are first-order in Et and second order in Ep. For simplicity, we
assume that no temporal overlap exists between the two pulses. Hence, we
can choose a time t0 so that the first pulse is gone and the second one has
not come yet. Since the explicit form of Eq. (14.14) is somewhat lengthy,
we show our solution procedure for the simpler equation

i
dP

dt
= ε P + E + a|P |2E + b|P |2 P , (14.16)

which has the same basic structure as Eq. (14.14). To obtain the solution
in first order of Et, we drop all nonlinearities and solve

i
dP

dt
= ε P + Et , (14.17)

with the initial condition that P vanishes before the pulse Et arrives. For
the time t0 after the first pulse Et is gone and the second pulse Ep has not
yet arrived, we obtain by integrating Eq. (14.17)

P (t0) = −i e−iεt0 Et(ε) . (14.18)

Here,

Et(ε) =
∫ t0

−∞
dt Et(t) eiεt , (14.19)

which is the Fourier transform of Et at the frequency ε since Eτ (t) = 0 for
t > t0.

Solving for first order of Et:
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Here,
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Polarisation for time to, when Et is gone and Ep not arrived yet
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Polarisation after arriving of Ep:
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For the integration over the second pulse, we use the polarization (14.18)
as an initial condition. To obtain a result, which is of second order in Ep,
we solve the equation iteratively. First, we use again Eq. (14.17) to get

P (0)(t) = −i e−iεt

[

Et(ε) +
∫ t

t0

dt′ Ep(t′) eiεt′
]

, (14.20)

and then we iterate the Eq. (14.18) once:

i
dP (1)

dt
= ε P (1) + Ep + a|P (0)|2Ep + b|P (0)|2P (0) . (14.21)

Since the pulses propagate in different directions,

Et/p ∝ exp(ikt/p · r) , (14.22)

and we are interested only in the contribution which propagates in the
direction 2kp−kt, we pick out from Eq. (14.21) only those terms which are
proportional to Ep Ep E∗

t , before we perform the final integration.
Following this procedure with the full equation (14.14), we obtain

P (t)
!3

|dcv|2dcv
= −2i

∑

k

∑

λλ′λ′′

ψλ(0)ψ∗
λ,k ψλ′(0)ψ∗

λ′,k ψ∗
λ′′(0)ψλ′′,k E∗

t (λ′)

×
∫ t

t0

dt′ e−iελ(t−t′)+iελ
′t′ Ep(t′)

∫ t′

t0

dt′′ e−iελ′′(t′−t′′) Ep(t′′)

− 2
∑

kk′

∑

λλ′λ′′λ′′′

Vk−k′ψλ(0)ψ∗
λ,k ψ∗

λ′′ (0)ψλ′′,k′ ψ∗
λ′′′ (0)ψλ′′′,k

×
[

ψλ′(0)ψ∗
λ′,k′ − ψλ′(0)ψ∗

λ′,k

]

E∗
t (λ′)

∫ t

t0

dt′ e−iελ(t−t′)+iελ′ t′

×
∫ t′

t0

dt′′ e−iελ′′ (t′−t′′)Ep(t′′)
∫ t′

t0

dt′′′ e−iελ′′′(t′−t′′′)Ep(t′′′) ,

(14.23)

where E(λ) = E(ελ). The first term in Eq. (14.23), which does not vanish
when the Coulomb matrix element Vk is set to 0, describes the response of an
inhomogeneous set of independent oscillators. The last term in Eq. (14.23)
is due to the exchange terms in the semiconductor Bloch equations. It
has been shown by Lindberg et al. (1992), that these exchange terms
contribute considerably to the excitonic part of the semiconductor photon
echo. Since these considerations are beyond the scope of this book, we

By iteration:
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Direction of interest: 
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refer the interested reader to the original literature listed at the end of this
chapter.

For our analytical evaluations, we concentrate on the much simpler case
when the excitation frequency is above the band gap, well within the inter-
band absorption continuum. In this case, we treat the Coulomb interaction
perturbatively. We neglect the Coulomb interaction in the wave functions
and keep it only in the exchange contributions as multiplying matrix ele-
ment in the sums, so that

ψλ,k ! δkλ and ψλ(0) ! 1 . (14.24)

The states are essentially free particle states and consequently the eigen-
values ελ are basically

!ελ ! Eg +
!2

2m
λ2 . (14.25)

The signal (14.23) takes the form

P (t)
!3

|dcv|2dcv
= −2i

∑

λ

E∗
t (λ) e−iελt

[
∫ t

t0

dt′ Ep(t′) eiελt′
]2

− 2
∑

λλ′

Vλ−λ′ E∗
t (λ′) e−iελt

∫ t

t0

dt′
[

1 − ei(ελ−ελ′)(t−t′)
]

×
∫ t′

t0

dt′′ Ep(t′′) eiελt′′
∫ t′

t0

dt′′′ Ep(t′′′)eiελ′ t′′′ . (14.26)

If we assume simple δ-function pulses,

Et(t) = Et δ(t + τ)
Ep(t) = Ep δ(t) , (14.27)

then

Et(λ) = Et e−iελτ , (14.28)

and, for t > t0, we obtain for the first term in Eq. (14.26):

P(1)(t) ∝ E∗
t E2

p

∑

λ

e−iελ(t−τ) ∝ E∗
t E2

p δ(t − τ) . (14.29)
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Considering only term                          :

First term of P(t):
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Hence, the polarization and therefore also the field emitted in the direction
2kp − kt peaks at a delayed time τ , which is equal to the temporal separa-
tion of the two pulses. This is the signature of the photon echo. Thus, the
first term of Eq. (14.26) describes the photon echo of the semiconductor
continuum states. The second term in Eq. (14.26) gives a nonecho contri-
bution, which is caused by the exchange terms in the semiconductor Bloch
equations. We do not analyze this term any further in this chapter and
refer the interested reader to Lindberg et al. (1992) for more details.

At the end of this section, we show an example of the numerical evalu-
ations of the full semiconductor Bloch equations for the photon echo con-
figuration discussed here (Koch et al. 1992). These numerical evaluations
were done for 120 fs (FWHM) pulses which excite a CdSe sample at the 1s-
exciton resonance. Since the short pulses are spectrally broad they excite
also the higher exciton states, as well as the lower part of the ionization
continuum. The 1s-exciton is, however, dominant and contributes to the
total signal like a single oscillator. Additionally, many-body effects like
the band-gap renormalization can also become important since they may
completely modify the resonance conditions.

In Fig. 14.4, we show the numerically computed time resolved signal
in photon echo direction for two 100 fs (FWHM) pulses with 400 fs delay
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Fig. 14.4 Time-resolved signal in photon echo direction for excitation at the exciton
resonance. The dephasing time is 200 fs, the time delay is 400 fs, and the pulse FWHM
is 100 fs for both pulses. The peak value of the dipole coupling energy of the second pulse
is dcv E2 = 0.1 ER, where the exciton binding energy ER = 16 meV in CdSe. The peaks
of the pulses are marked by arrows. The lower parts of the figures show the renormalized
band edge (EG−E0

G)/ER as function of time. Here, E0
G is the unrenormalized band edge.

In Figs. (a) – (c), the peak amplitude of the first pulse is changed: (a) dcv E1 = 0.03 ER,
(b) dcv E1 = 0.06 ER, and (c) dcv E1 = 0.1 ER. [From Koch et al. (1992)]

Shift =
EG − E0

G

ER

EG : renormalised band edge

E0
G : unrenormalised band edge

ER : exciton binding energy (16meV in CdSe)
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