Theoretical seminar on optical properties of semiconductors

EXCITONS IN NANOSTRUCTURES

Julia Hildmann

17 May 20II

CONTENT

I. Repetition
II. Excitons in quantum wells
III. Excitons in quantum wires
IV. Excitons in quantum dots

OPTICAL POLARISATION

Polarisation in second quantisation:

$$
\mathbf{P}(t)=\int d^{3} r\left\langle\hat{\psi}^{\dagger}(\mathbf{r}, t) e \mathbf{r} \hat{\psi}(\mathbf{r}, t)\right\rangle
$$

With the field operators in the Bloch functions basis: $\hat{\psi}(\mathbf{r}, t)=\sum_{\lambda, \mathbf{k}} a_{\lambda, \mathbf{k}}(t) \psi_{\lambda}(\mathbf{k}, \mathbf{r})$

$$
\mathbf{P}(t)=\sum_{\lambda, \lambda^{\prime}, \mathbf{k}, \mathbf{k}^{\prime}}\left\langle a_{\lambda, \mathbf{k}}^{\dagger} a_{\lambda^{\prime}, \mathbf{k}^{\prime}}\right\rangle \underbrace{\int d^{3} r \psi_{\lambda, \mathbf{k}}^{*}(\mathbf{r}) e \mathbf{r} \psi_{\lambda^{\prime}, \mathbf{k}^{\prime}}(\mathbf{r})}_{\simeq \delta_{\mathbf{k}, \mathbf{k}^{\prime}} \mathbf{d}_{\lambda, \lambda^{\prime}}}=\sum_{\lambda, \lambda^{\prime}, \mathbf{k}}\left\langle a_{\lambda, \mathbf{k}}^{\dagger} a_{\lambda^{\prime}, \mathbf{k}}(t)\right\rangle \mathbf{d}_{\lambda, \lambda^{\prime}}
$$

Pair function:

$$
\begin{array}{r}
P_{\lambda \lambda^{\prime}, \mathbf{k},}(t)=\left\langle a_{\lambda, \mathbf{k}}^{\dagger} a_{\lambda^{\prime}, \mathbf{k}}(t)\right\rangle \rightarrow P_{v c, \mathbf{k},}(t)=\left\langle a_{v, \mathbf{k}}^{\dagger} a_{c, \mathbf{k}}(t)\right\rangle \\
\text { with } \lambda=v \& \lambda^{\prime}=c
\end{array}
$$

EQUATION OF MOTION FORTHE PAIR FUNCTION

Interaction with light in dipole approximation:

$$
\mathcal{H}_{I}=\int d^{3} r \hat{\psi}^{\dagger}(\mathbf{r})(-e \mathbf{r}) \cdot \mathcal{E}(\mathbf{r}, t) \hat{\psi}(\mathbf{r}) \simeq-\sum_{\mathbf{k}} \mathcal{E}(t)\left(a_{c, \mathbf{k}}^{\dagger} a_{v, \mathbf{k}} d_{c v}+h . c .\right)
$$

Electron Hamiltonian:

$+\frac{1}{2} \sum_{\mathbf{k}, \mathbf{k}^{\prime}, \mathbf{q} \neq \mathbf{0}} V_{q}\left(a_{c, \mathbf{k}+\mathbf{q}}^{\dagger} a_{c, \mathbf{k}^{\prime}-\mathbf{q}}^{\dagger} a_{c, \mathbf{k}^{\prime}} a_{c, \mathbf{k}}+a_{v, \mathbf{k}+\mathbf{q}}^{\dagger} a_{v, \mathbf{k}^{\prime}-\mathbf{q}}^{\dagger} a_{v, \mathbf{k}^{\prime}} a_{v, \mathbf{k}}+2 a_{c, \mathbf{k}+\mathbf{q}}^{\dagger} a_{v, \mathbf{k}^{\prime}-\mathbf{q}}^{\dagger} a_{v, \mathbf{k}^{\prime}} a_{c, \mathbf{k}}\right)$

Dynamics of interband polarisation function (from Haisenberg equation of motion):

„,MASSAGING"THE EQUATION FOR POLARISATION

Quasi-equilibrium:

$$
n_{c, \mathbf{k}}(t) \rightarrow f_{c, k}
$$

$$
n_{v, \mathbf{k}}(t) \rightarrow f_{v, k}
$$

$$
\hbar\left[i \frac{d}{d t}-\left(e_{c, k}-e_{v, k}\right)\right] P_{v c, \mathbf{k}}(t)=\left(f_{c, \mathbf{k}}-f_{v, \mathbf{k}}\right)\left[d_{c v} \mathcal{E}(t)+\sum_{\mathbf{q} \neq \mathbf{k}} V_{|\mathbf{k}-\mathbf{q}|} P_{v c, \mathbf{q}}\right]
$$

Recipe to solve:

make Fourier transform into frequency domain, solve equation, find the result by back transformation into time domain (already seen in free carrier case)

Unexcited crystal: $\quad f_{c, k} \equiv 0 \quad f_{v, k} \equiv 1$
Fourier transform into frequency domain:

$$
\left[\hbar \omega-E_{g}-\frac{\hbar^{2} k^{2}}{2 m_{r}}\right] P_{v c, \mathbf{k}}(\omega)=-\left[d_{c v} \mathcal{E}(\omega)+\sum_{\mathbf{q} \neq \mathbf{k}} V_{|\mathbf{k}-\mathbf{q}|} P_{v c, \mathbf{q}}(\omega)\right]
$$

Fourier transform into real space:

$$
\left[\hbar \omega-E_{g}+\frac{\hbar^{2} \nabla_{\mathbf{r}}^{2}}{2 m_{r}}+V(r)\right] P_{v c}(\mathbf{r}, \omega)=-d_{c v} \mathcal{E}(\omega) \delta(\mathbf{r}) L^{3}
$$

WANNIER EQUATION IN 2D CASE

Solve first homogeneous equation:

$$
-\left[\frac{\hbar^{2} \nabla_{\mathrm{r}}^{2}}{2 m_{r}}+V(r)\right] \psi_{\nu}(\mathrm{r})=E_{\nu} \psi_{\nu}(\mathrm{r}) \quad \text { Wannier equation }
$$

2D exciton bound state energies:

$$
E_{n}=-E_{0} \frac{1}{(n+1 / 2)^{2}} \text { with } n=0,1, \ldots \left\lvert\, \begin{array}{r}
-4 E_{0} / 25 \\
-4 E_{0} / 9 \\
-4 E_{0}
\end{array}-\square \begin{aligned}
& - \\
& \mathrm{n}=0, \mathrm{~m}=0
\end{aligned} \quad \begin{aligned}
& \mathrm{n}=2 ; \mathrm{m}=0, \pm 1, \pm 2 \\
& \mathrm{n}=1 ; \mathrm{m}=0, \pm 1
\end{aligned}\right.
$$

2D exciton wave functions:

$$
\psi_{n, m}(\mathrm{r})=\sqrt{\frac{1}{\pi a_{0}^{2}\left(n+\frac{1}{2}\right)^{3}} \frac{(n-|m|)!}{[(n+|m|)!]^{3}}} \rho^{|m|} e^{-\frac{\rho}{2}} L_{n+|m|}^{2|m|}(\rho) e^{i m \phi}
$$

The normalised wave function for ionisation continuum in 2D:

$$
\begin{aligned}
\psi_{k, m}(\mathbf{r}) & =\frac{(i 2 k r)^{|m|}}{(2|m|)!} \sqrt{\frac{\pi k}{\mathcal{R}\left(1 / 4+|\lambda|^{2}\right) \cosh (\pi|\lambda|)} \prod_{j=0}^{|m|}\left[\left(j-\frac{1}{2}\right)^{2}+|\lambda|^{2}\right]} \\
& \times e^{\frac{\pi|\lambda|}{2}} e^{-i k r} F\left(|m|+\frac{1}{2}+i|\lambda| ; 2|m|+1 ; 2 i k r\right) \frac{e^{i m \phi}}{\sqrt{2 \pi}}
\end{aligned}
$$

WAVE FUNCTIONS FOR EXCITONS IN 2D

OPTICAL SPECTRUM

To solve the inhomogeneous equation for the polarisation: $\quad P_{v c}(\mathbf{r}, \omega)=\sum_{\nu} b_{\nu} \psi_{\nu}(\mathbf{r})$
Put the ansatz into inhomogeneous equation for P, find coefficients b, make many Fourrier transforms:

$$
P(\omega)=-2 L^{3} \sum_{\nu}\left|d_{c v}\right|^{2}\left|\psi_{\nu}(\mathbf{r}=0)\right|^{2} \mathcal{E}(\omega)\left[\frac{1}{\hbar \omega-E_{g}-E_{\nu}}-\frac{1}{\hbar \omega+E_{g}+E_{\nu}}\right]
$$

Known relation:

$$
\chi(\omega)=\frac{\mathcal{P}(\omega)}{\mathcal{E}(\omega)}=\frac{P(\omega)}{L^{3} \mathcal{E}(\omega)}
$$

Electron-Hole Pair susceptibility:

$$
\chi(\omega)=-2 \sum_{\nu}\left|d_{c v}\right|^{2}\left|\psi_{\nu}(\mathbf{r}=0)\right|^{2}\left[\frac{1}{\hbar \omega-E_{g}-E_{\nu}}-\frac{1}{\hbar \omega+E_{g}+E_{\nu}}\right]
$$

probability to find electron and hole in the same unit cell

OPTICAL SPECTRUM IN 2D CASE

The resonant part of the optical susceptibility in 2D case:
$\chi(\omega)=-\frac{\left|d_{c v}\right|^{2}}{L_{c} \pi a_{0}^{2} E_{0}}\left[\sum_{n=0}^{\infty} \frac{2}{(n+1 / 2)^{3}} \frac{E_{0}}{\hbar \omega-E_{g}-E_{n}}+\int d x \frac{x \mathrm{e}^{\pi / x}}{\cosh (\pi x)} \frac{E_{0}}{\hbar \omega-E_{g}-E_{0} x^{2}}\right]$

2D Elliott formula (absorption spectrum):

$$
\begin{aligned}
& \alpha(\omega)=\alpha_{0}^{2 D} \frac{\hbar \omega}{E_{0}}\left[\sum_{n=0}^{\infty} \frac{4}{(n+1 / 2)^{3}} \delta\left(\Delta+\frac{1}{(n+1 / 2)^{2}}\right)+\Theta(\Delta) \frac{\mathrm{e}^{\pi / \sqrt{\Delta}}}{\cosh (\pi \sqrt{\Delta})}\right] \\
& \quad \text { Normalised detuning: }
\end{aligned}
$$

$$
\Delta=\left(\hbar \omega-E_{g}\right) / E_{0}
$$

ABSORPTION SPECTRUM FOR 2D SEMICONDUCTORS

Coulomb enhancement factor:

$$
C(\omega)=\frac{e^{\pi / \sqrt{\Delta}}}{\cosh (\pi / \sqrt{\Delta})} \quad \stackrel{\Delta}{\longrightarrow} 2
$$

NOTES ON EXCITONS IN 2D NANOSTRUCTURES

* The theoretical description is very close to the 3D case
* The absorption line of the Is exciton is better resolved than in 3D case, but the further excited exciton states are more ,,dissolved" in the absorption spectrum of free carriers
* The absorption at the band gap edge is enhanced by the Coulomb interaction

WANNIER EQUATION IN ID CASE

$-\left[\frac{\hbar^{2} \nabla_{\mathrm{r}}^{2}}{2 m_{r}}+V(r)\right] \psi_{\nu}(\mathrm{r})=\boldsymbol{E}_{\nu} \psi_{\nu}(\mathrm{r}) \quad$ Wannier equation
In ID case we have to replace the Coulomb potential with envelope averaged potential in a quantum wire (radius R):

$$
V(\mathbf{r}) \rightarrow V^{1 D}(z)=\frac{e^{2}}{\epsilon_{0}} \frac{1}{|z|+\gamma R}
$$

ID exciton bound state energies:

$$
E_{\lambda}=-E_{0} \frac{1}{\lambda^{2}} \quad \text { from boundary }
$$

ID exciton wave functions:

$$
f_{\lambda}(|z|)=N_{\lambda} W_{\lambda, 1 / 2}\left(\frac{2(|z|+\gamma R)}{\lambda a_{0}}\right)
$$

The normalised wave function for ionisation continuum in ID:

$$
f_{k}(\zeta)=\left(\frac{e^{\pi|\lambda|}}{2 \pi}\right)^{1 / 2} \frac{D_{0}^{(2)} W^{(1)}(\zeta)-D_{0}^{(1)} W^{(2)}(\zeta)}{\left(\left|D_{0}^{(1)}\right|^{2}+\left|D_{0}^{(2)}\right|^{2}\right)^{1 / 2}}
$$

OPTICAL SPECTRUM FOR ID SEMICONDUCTORS

Optical susceptibility in ID case:

$$
\chi(\omega)=-2\left|d_{c v}\right|^{2} \sum_{\lambda}\left|f_{\lambda}(\alpha \gamma R)\right|^{2}\left[\frac{1}{\hbar \omega-E_{g}-E_{\lambda}}-\frac{1}{\hbar \omega+E_{g}+E_{\lambda}}\right]
$$

With only resonant contributions:

$$
\begin{aligned}
\chi(\omega)=-\frac{2}{E_{0}}\left|d_{c v}\right|^{2} & {\left[\sum_{\lambda}\left|N_{\lambda} W_{\lambda, 1 / 2}^{2}\left(2 \gamma R / \lambda a_{0}\right)\right|^{2} \frac{E_{0}}{\hbar \omega-E_{g}-E_{\lambda}}+\right.} \\
& \left.+\frac{2}{a_{0}} \int_{0}^{\infty} d x \frac{\mathrm{e}^{\pi / x}}{2 \pi} \frac{\left|D_{0}^{(2)} W^{(1)}-D_{0}^{(1)} W^{(2)}\right|^{2}}{\left|D_{0}^{(1)}\right|^{2}+\left|D_{0}^{(2)}\right|^{2}} \frac{E_{0}}{\hbar \omega-E_{g}-E_{0} x^{2}}\right]
\end{aligned}
$$

Absorption coefficient:

$$
\begin{aligned}
\alpha(\omega)=\frac{4 \pi \omega}{n c} \frac{2}{E_{0}}\left|d_{c v}\right|^{2}\left[\sum_{\lambda}\left|N_{\lambda} W_{\lambda, 1 / 2}^{2}\left(2 \gamma R / \lambda a_{0}\right)\right|^{2} \pi \delta(\Delta\right. & \left.-E_{\lambda} / E_{0}\right)+ \\
& \left.+\frac{1}{\pi a_{0}} \frac{\left|D_{0}^{(2)} W^{(1)}-D_{0}^{(1)} W^{(2)}\right|^{2}}{\left|D_{0}^{(1)}\right|^{2}+\left|D_{0}^{(2)}\right|^{2}} \frac{\sqrt{\Delta}}{2 \sqrt{\Delta}}\right]
\end{aligned}
$$

ABSORPTION SPECTRUM FOR ID SEMICONDUCTORS

Sommerfeld factor:

$$
C(\omega)=\frac{e^{\pi / \sqrt{\Delta}}}{8} \frac{\left|D_{0}^{(2)} W^{(1)}-D_{0}^{(1)} W^{(2)}\right|^{2}}{\left|D_{0}^{(1)}\right|^{2}+\left|D_{0}^{(2)}\right|^{2}}<1 \text { for all } \hbar \omega>E_{g}
$$

The pick in absorption from ID free carrier of states is suppressed due to Cpulomb interaction. The band gap energy cannot be defined from absorption spectra

NOTES ON EXCITONS INID NANOSTRUCTURES

* The theoretical description starts from general Wannier equation, but requieres special treatment
* The absorption line of the 2 s exciton is well resolved, the Is state does not contribute to the optical spectrum due to odd parity.
* The high excited states in a quantum wire are described by odd wave functions, therefore do not have any fingerprints in the spectra.
* The absorption at the band gap edge is reduced by the Coulomb interaction

QUANTUM DOTS: OD CASE

Approximation for the electron wave function:

$$
\qquad \psi(\mathbf{r})=\zeta(\mathbf{r}) \mathbf{u}_{\lambda}(\mathbf{k} \simeq \mathbf{0}, \mathbf{r})
$$

ϵ_{1}
ϵ_{2}

Boundary conditions: $\quad \psi(r \geq R)=0$

Hamiltonian for excitons in quantum dots:

$$
\begin{aligned}
\mathcal{H} & =\mathcal{H}_{e}+\mathcal{H}_{h}+V_{e e}+V_{h h}+V_{e h} \quad\left({ }^{* *}\right) \\
\mathcal{H}_{e} & =-\frac{\hbar^{2}}{2 m_{e}} \int d^{3} r \hat{\psi}_{e}^{\dagger}(\mathbf{r}) \nabla^{2} \hat{\psi}_{e}(\mathbf{r})+E_{g} \int d^{3} r \hat{\psi}_{e}^{\dagger}(\mathbf{r}) \hat{\psi}_{e}(\mathbf{r}) \\
\mathcal{H}_{h} & =-\frac{\hbar^{2}}{2 m_{h}} \int d^{3} r \hat{\psi}_{h}^{\dagger}(\mathbf{r}) \nabla^{2} \hat{\psi}_{h}(\mathbf{r}) \\
V_{e e} & =\frac{1}{2} \iint d^{3} r d^{3} r^{\prime} \hat{\psi}_{e}^{\dagger}(\mathbf{r}) \hat{\psi}_{e}^{\dagger}\left(\mathbf{r}^{\prime}\right) V\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \hat{\psi}_{e}\left(\mathbf{r}^{\prime}\right) \hat{\psi}_{e}(\mathbf{r}) \quad V_{h h}=V_{e e}(e \rightarrow h) \\
V_{e h} & =-\iint d^{3} r d^{3} r^{\prime} \hat{\psi}_{e}^{\dagger}(\mathbf{r}) \hat{\psi}_{h}^{\dagger}\left(\mathbf{r}^{\prime}\right) V\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \hat{\psi}_{h}\left(\mathbf{r}^{\prime}\right) \hat{\psi}_{e}(\mathbf{r})
\end{aligned}
$$

EXCITON STATES IN QUANTUM DOTS

Ansatz for exciton wave function:

$$
\left|\psi_{e h}\right\rangle=\iint d^{3} r_{e} d^{3} r_{h} \psi_{e h}\left(\mathbf{r}_{e}, \mathbf{r}_{h}\right) \hat{\psi}_{e}^{\dagger}\left(\mathbf{r}_{e}\right) \hat{\psi}_{h}^{\dagger}\left(\mathbf{r}_{h}\right)|0\rangle
$$

Inserting this state representation into Hamiltonian (***) gives:

$$
\begin{aligned}
\mathcal{H}_{e}\left|\psi_{e h}\right\rangle=- & \frac{\hbar^{2}}{2 m_{e}} \int d^{3} r\left[\nabla^{2} \hat{\psi}_{e}^{\dagger}(\mathbf{r})\right] \underline{\hat{\psi}_{e}(\mathbf{r})} \int d^{3} r_{e} \int d^{3} r_{h} \psi_{e h}\left(\mathbf{r}_{e}, \mathbf{r}_{h}\right) \underline{\hat{\psi}_{e}^{\dagger}\left(\mathbf{r}_{e}\right)} \hat{\psi}_{h}^{\dagger}\left(\mathbf{r}_{h}\right)|0\rangle \\
+ & E_{g} \int d^{3} r \hat{\psi}_{e}^{\dagger}(\mathbf{r}) \underline{\hat{\psi}_{e}(\mathbf{r})} \int d^{3} r_{e} \int d^{3} r_{h} \psi_{e h}\left(\mathbf{r}_{e}, \mathbf{r}_{h}\right) \hat{\psi}_{e}^{\dagger}\left(\mathbf{r}_{e}\right)
\end{aligned} \hat{\psi}_{h}^{\dagger}\left(\mathbf{r}_{h}\right)|0\rangle
$$

General note:

$$
\begin{gathered}
\hat{\psi}_{e}(\mathbf{r}) \hat{\psi}_{e}^{\dagger}\left(\mathbf{r}_{e}\right)=\delta\left(\mathbf{r}-\mathbf{r}_{e}\right)-\hat{\psi}_{e}^{\dagger}\left(\mathbf{r}_{e}\right) \hat{\psi}_{e}(\mathbf{r}) \quad \text { and } \hat{\psi}_{e}(\mathbf{r})|0\rangle=0 \\
\Rightarrow \mathcal{H}_{e}\left|\psi_{e h}\right\rangle= \\
\iiint d r d r_{e} d r_{h}\left[\nabla^{2} \hat{\psi}_{e}^{\dagger}(\mathbf{r})\right] \delta\left(\mathbf{r}-\mathbf{r}_{e}\right) \psi_{e h}\left(\mathbf{r}_{e}, \mathbf{r}_{h}\right) \hat{\psi}_{h}^{\dagger}\left(\mathbf{r}_{h}\right) \\
+E_{g} \iiint d r d r_{e} d r_{h} \hat{\psi}_{e}^{\dagger}(\mathbf{r}) \delta\left(\mathbf{r}-\mathbf{r}_{e}\right) \psi_{e h}\left(\mathbf{r}_{e}, \mathbf{r}_{h}\right) \hat{\psi}_{h}^{\dagger}\left(\mathbf{r}_{h}\right)= \\
\\
\iint d r_{e} d r_{h}\left[\left(\nabla^{2}+E_{g}\right) \psi_{e h}\left(\mathbf{r}_{e}, \mathbf{r}_{h}\right)\right] \hat{\psi}_{e}^{\dagger}\left(\mathbf{r}_{\mathbf{e}}\right) \hat{\psi}_{h}^{\dagger}\left(\mathbf{r}_{h}\right)
\end{gathered}
$$

EQUATION FORTHE EXCITON WAVE FUNCTION

$\left[-\frac{\hbar^{2}}{2 m_{e}} \nabla_{e}^{2}-\frac{\hbar^{2}}{2 m_{h}} \nabla_{h}^{2}-V\left(\mathbf{r}_{\mathbf{e}}, \mathbf{r}_{\mathbf{h}}\right)\right] \psi_{e h}\left(\mathbf{r}_{\mathbf{e}}, \mathbf{r}_{\mathbf{h}}\right)=\left(E-E_{g}\right) \psi_{e h}\left(\mathbf{r}_{\mathbf{e}}, \mathbf{r}_{\mathbf{h}}\right)$

$$
\psi_{e h}\left(\mathbf{r}_{\mathbf{e}}, \mathbf{r}_{\mathbf{h}}\right)=0 \text { if }\left|\mathbf{r}_{e}\right|>R \quad \text { or } \quad\left|\mathbf{r}_{h}\right|>R
$$

Blueshift of absorption frequency for smaller quantum dot sizes

Simultaneous excitation at 365 nm

Size-dependent emission

SINGLE PARTICLES STATES

Approximation for exciton wave function: $\quad E_{e h, n l m}=E_{e, n l m}+E_{h, n l m}$
Use Schrödinger equation to find eigenvalues: $\mathcal{H}\left|\psi_{e}\right\rangle=E_{e}\left|\psi_{e}\right\rangle$
Apply ansatz:

$$
\left|\psi_{e}\right\rangle=\int d^{3} r \zeta_{e}(\mathbf{r}) \hat{\psi}_{e}^{\dagger}(\mathbf{r})|0\rangle
$$

Single electron eigenvalue equation:

$$
-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2} \zeta_{e}(\mathbf{r})=\left(E_{e}-E_{g}\right) \zeta_{e}(\mathbf{r})
$$

Wave functions for single electron in a quantum dot (the same applies for single hole states, just exchange the index and

$$
\zeta_{e, n l m}(\mathrm{r})=\sqrt{\frac{2}{R^{3}}} \frac{j_{l}\left(\alpha_{n l} r / R\right)}{j_{l+1}\left(\alpha_{n l}\right)} Y_{l, m}(\Omega)
$$ exclude band gap energy from calculations)

$$
j_{l}\left(\alpha_{n l}\right)=0 \quad \text { for } \quad n=1,2, \cdots
$$

$\psi_{e h}\left(r_{e}, r_{h}\right) \simeq \zeta_{100}\left(r_{e}\right) \zeta_{100}\left(r_{h}\right)+$ other states

$$
\begin{aligned}
E_{e, n l m} & =E_{g}+\frac{\hbar^{2}}{2 m_{e}} \frac{\alpha_{n l}^{2}}{R^{2}} \\
E_{h, n l m} & =\frac{\hbar^{2}}{2 m_{h}} \frac{\alpha_{n l}^{2}}{R^{2}}
\end{aligned}
$$

DIPOLETRANSITIONS

To know optical response, we need to know dipole moment matrix elements:

$$
\hat{\boldsymbol{P}}=\int d^{3} r \sum_{i, j=e, h} \hat{\psi}_{i}^{\dagger}(\mathbf{r}) e \mathbf{r} \hat{\psi}_{j}(\mathbf{r})=\int d^{3} r e \mathbf{r}[\underbrace{\hat{\psi}_{e}^{\dagger}(\mathbf{r}) \hat{\psi}_{e}(\mathbf{r})+\hat{\psi}_{h}(\mathbf{r}) \hat{\psi}_{h}^{\dagger}(\mathbf{r})}+\underbrace{\hat{\psi}_{e}^{\dagger}(\mathbf{r}) \hat{\psi}_{h}^{\dagger}(\mathbf{r})+\hat{\psi}_{h}(\mathbf{r}) \hat{\psi}_{e}(\mathbf{r})}]
$$

Intraband transitions

Interband transitions: creation and annihilation
$\int d^{3} r e \mathbf{r} \hat{\psi}_{e}^{\dagger}(\mathbf{r}) \hat{\psi}_{h}^{\dagger}(\mathbf{r})=\mathbf{d}_{c \nu} \sum_{n l m} a_{n l m}^{\dagger} b_{n^{\prime} l^{\prime} m^{\prime}}^{\dagger} \int d^{3} R \zeta_{n l m}^{*}(\mathbf{R}) \zeta_{n^{\prime} l^{\prime} m^{\prime}}(\mathbf{R})=\mathbf{d}_{c \nu} \sum_{n l m} a_{n l m}^{\dagger} b_{n l m}^{\dagger}$
$\hat{\psi}_{h}(\mathbf{r})=\sum_{n l m} \psi_{n l m}^{h}(\mathbf{r}) b_{n l m}$
Intraband transition dipole moment matrix elements:

$$
n \neq n^{\prime} ; \quad l-l^{\prime}=0, \pm 1 ; \quad m-m^{\prime}=0, \pm 1
$$

BLOCH EQUATIONS FOR SINGLE EXCITON

Assume two level system - ground state and exciton state:

$$
H=\hbar \omega_{e}|e\rangle\langle e| \quad\left(\omega_{o}=0\right)
$$

Interaction with light:

$$
H_{I}=-\mu_{e o}|e\rangle\langle o|-\mu_{o e}|o\rangle\langle e|
$$

Density matrix:

$$
\mu_{i j}=\mathbf{d}_{i j} \cdot \mathcal{E}(t)
$$

$\rho=\rho_{o o}|o\rangle\langle o|+\rho_{e e}|e\rangle\langle e|+\rho_{e o}|e\rangle\langle o|+\rho_{o e}|o\rangle\langle e|$

Dynamics of density matrix elements:

$$
\mathrm{i} \hbar \frac{\partial}{\partial t} \rho=\left[H+H_{I}, \rho\right]
$$

Solution:

$$
\begin{aligned}
\rho_{e e} & =1-\rho_{o o} \\
\mathrm{i} \hbar \frac{\partial}{\partial t} \rho_{e o} & =\mu_{e o}\left(\rho_{e e}-\rho_{o o}\right)+\hbar \omega_{e} \rho_{e o}=\mathrm{i} \hbar \frac{\partial}{\partial t} \rho_{o e}^{*}
\end{aligned}
$$

OPTICAL SPECTRA FOR QUANTUM DOTS

Linear polarisation:
$P_{\text {lin }}=d_{o e} \rho_{e o}+c . c$.

$$
\chi_{l i n}=P_{l i n}(\omega) / \mathcal{E}(\omega)
$$

To the first order of the field and with phenomenological damping constant:

$$
\frac{\partial}{\partial t} \rho_{o e}^{(1)}=-\left(i \omega_{e}+\gamma_{e}\right) \rho_{o e}^{(1)}+i d_{o e} \frac{\mathcal{E}(t)}{\hbar}
$$

Linear optical susceptibility: $\quad \chi_{l i n}=\frac{i}{\hbar} \sum_{e}\left|d_{o e}\right|^{2}\left[\frac{1}{\gamma_{e}+i\left(\omega_{e}-\omega\right)}+\frac{1}{\gamma_{e}-i\left(\omega_{e}+\omega\right)}\right]$

Linear absorption coefficient

$$
\alpha_{l}(\omega)=\frac{4 \pi \omega}{\hbar c \sqrt{\epsilon_{2}}} \sum_{e}\left|d_{o e}\right|^{2} \frac{\gamma_{e}}{\gamma_{e}^{2}+\left(\omega_{e}-\omega\right)^{2}}
$$

(a) Helium-"real atom"
s-shell
(b) Quantum dot-"artifical atom"

Non-linear regime:
by certain light intensity optical gain can be obtained.
Application:
quantum dot laser

COLLOIDAL QUANTUM DOTS

Broadening of the absorption spectrum due to variation of the radii of the dots (Gaussian distribution)

$$
\left.\alpha_{l}(\omega)\right|_{a \nu}=\left.\int_{0}^{\infty} d R f(R) \alpha_{l}(\omega)\right|_{R}
$$

SELF-ASSEMBLED QUANTUM DOTS

In(Ga)As/GaAs, In(Ga)As/InP, SiGe/Si or CdSe/ZnSe

Heteroepitaxical growth methods:

Photoluminescence spectrum

Volmer-Weber

Stanski-Krastanow

GATE DEFINED QUANTUM DOTS

Quantum dots in quantum wires:

Quantum dots in a 2D heterostructure:

INTERFACE FLUCTUATION QUANTUM DOTS

Photoluminescense spectrum

NOTES ON EXCITONS IN QUANTUM DOTS

* Quantum dots exhibit atom-like optical properties: welldefined absorption peaks
* The size and form (confining potential) of a quantum dot have significant influence on optical properties
* The energy eigenvalues for exciton states can be defined analytically in a strict approximation, otherwise only numerically

WANNIER EQUATION IN 2D CASE

Solve first homogeneous equation:

$$
-\left[\frac{\hbar^{2} \nabla_{\mathrm{r}}^{2}}{2 m_{r}}+V(r)\right] \psi_{\nu}(\mathrm{r})=\boldsymbol{E}_{\nu} \psi_{\nu}(\mathrm{r}) \quad \text { Wannier equation }
$$

With scaled radius $\rho=r \alpha$ and $\quad \lambda=\frac{e^{2}}{\hbar \epsilon_{0}} \sqrt{-\frac{m_{r}}{2 E_{\nu}}}=\frac{2}{\alpha a_{0}} \quad E_{0}=\frac{\hbar^{2}}{2 m_{r} a_{0}^{2}}$
we get: $\quad\left(-\nabla_{\rho}^{2}-\frac{\lambda}{\rho}\right) \psi(\rho)=-\frac{1}{4} \psi(\rho)$
$\lambda>0$ bound states
$\lambda<0$ ionisation continuum
2D Laplace operator, polar coordinates:

$$
\nabla_{\rho}^{2}=\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho}-\frac{\mathcal{L}_{z}^{2}}{\rho^{2}} \quad \mathcal{L}_{z}^{2}=-\frac{\partial^{2}}{\partial \phi^{2}} \quad \mathcal{L}_{z} \frac{1}{\sqrt{2 \pi}} e^{i m \phi}=m \frac{1}{\sqrt{2 \pi}} e^{i m \phi}
$$

Ansatz:

$$
\psi(\rho)=f_{m}(\rho) \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{i m \phi}
$$

ELECTRON WAVE FUNCTION IN 2D CASE

Equation for radial part:

$$
\begin{equation*}
\left(\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho}+\frac{\lambda}{\rho}-\frac{1}{4}-\frac{m^{2}}{\rho^{2}}\right) f_{m}(\rho)=0 \tag{*}
\end{equation*}
$$

Ansatz:

$$
f_{m}(\rho)=\rho^{|m|} e^{-\frac{\rho}{2}} R(\rho)
$$

assymptotic behaviour for $\rho \rightarrow 0$ and $\rho \rightarrow \infty$
Inserting in (${ }^{*}$) gives:

$$
\rho \frac{\partial^{2} R}{\partial \rho^{2}}+(2|m|+1-\rho) \frac{\partial R}{\partial \rho}+\left(\lambda-|m|-\frac{1}{2}\right) R=0
$$

Solution:

$$
R(\rho)=\sum_{\nu=0} \beta_{\nu} \rho^{\nu} \quad \nu_{\max }+|m|+\frac{1}{2}=\lambda \equiv n+\frac{1}{2}
$$

$$
E_{n}=-E_{0} \frac{1}{(n+1 / 2)^{2}} \quad \text { with } n=0,1, \ldots
$$

2D EXCITON WAVE FUNCTIONS

2D radial wave functions:

$\nu_{\text {max }}$	n	m	$f_{n, m}(\rho)=C \rho^{\|m\|} e^{-\frac{\rho}{2}} \sum_{\nu} \beta_{\nu} \rho^{\nu}$	E_{n}
0	0	0	$f_{0,0}(r)=\frac{1}{a_{0}} 4 e^{-2 r / a_{0}}$	$E_{n=0}=-4 E_{0}$
1	1	0	$f_{1,0}(r)=\frac{4}{a_{0} 3 \sqrt{3}}\left(1-\frac{4 r}{3 a_{0}}\right) e^{-\frac{2 r}{3 a_{0}}}$	$E_{1}=-\frac{4 E_{0}}{9}$
0	1	± 1	$f_{1, \pm 1}(r)=\frac{16}{a_{0} 9 \sqrt{6}} \frac{r}{a_{0}} e^{-2 r / 3 a_{0}}$	$E_{1}=-\frac{4 E_{0}}{9}$.

2D exciton wave functions:

$$
\psi_{n, m}(\mathrm{r})=\sqrt{\frac{1}{\pi a_{0}^{2}\left(n+\frac{1}{2}\right)^{3}} \frac{(n-|m|)!}{[(n+|m|)!]^{3}}} \rho^{|m|} e^{-\frac{\rho}{2}} L_{n+|m|}^{2|m|}(\rho) e^{i m \phi}
$$

IONISATION CONTINUUM IN 2D

λ negative
The same ansatz for radial part: $\quad f_{m}(\rho)=\rho^{|m|} e^{-\frac{\rho}{2}} R(\rho)$
The equation for R :

$$
\rho \frac{\partial^{2} R}{\partial \rho^{2}}+(2|m|+1-\rho) \frac{\partial R}{\partial \rho}-\left(i|\lambda|+|m|+\frac{1}{2}\right) R=0
$$

The normalised wave function:

$$
\begin{aligned}
\psi_{k, m}(\mathbf{r}) & =\frac{(i 2 k r)^{|m|}}{(2|m|)!} \sqrt{\frac{\pi k}{\mathcal{R}\left(1 / 4+|\lambda|^{2}\right) \cosh (\pi|\lambda|)} \prod_{j=0}^{|m|}\left[\left(j-\frac{1}{2}\right)^{2}+|\lambda|^{2}\right]} \\
& \times e^{\frac{\pi|\lambda|}{2}} e^{-i k r} F\left(|m|+\frac{1}{2}+i|\lambda| ; 2|m|+1 ; 2 i k r\right) \frac{e^{i m \phi}}{\sqrt{2 \pi}}
\end{aligned}
$$

WANNIER EQUATION IN ID CASE

$-\left[\frac{\hbar^{2} \nabla_{\mathrm{r}}^{2}}{2 m_{r}}+V(r)\right] \psi_{\nu}(\mathrm{r})=E_{\nu} \psi_{\nu}(\mathrm{r}) \quad$ Wannier equation
In ID case we have to replace the Coulomb potential with envelope averaged potential in a quantum wire (radius R):
$V(\mathbf{r}) \rightarrow V^{1 D}(z)=\frac{e^{2}}{\epsilon_{0}} \frac{1}{|z|+\gamma R}$
general scaled Wannier equation $\quad\left(-\nabla_{\rho}^{2}-\frac{\lambda}{\rho}\right) \psi(\rho)=-\frac{1}{4} \psi(\rho)$
in ID case $\quad \rho \rightarrow \zeta=\alpha(|z|+\gamma R) \quad \nabla_{\rho}^{2}=\frac{\partial^{2}}{\partial \zeta^{2}} \quad \psi(\rho)=f(\zeta)$
Equation (${ }^{* *}$) in ID case:
Assymptotic behavior for large radii (distances):

$$
\begin{aligned}
&\left(\frac{\partial^{2}}{\partial \zeta^{2}}+\frac{\lambda}{\zeta}-\frac{1}{4}\right) f(\zeta)= \underbrace{0} \stackrel{\longleftrightarrow}{\longleftrightarrow} \\
&\left(\frac{\partial^{2}}{\partial \zeta^{2}}+\frac{\partial}{\partial \zeta}+\frac{\lambda}{\zeta}\right) R=0
\end{aligned}
$$

ELECTRON WAVE FUNCTION IN A QUANTUM WIRE

Wannier equation in ID case is Whittaker equation:

$$
\left(\frac{\partial^{2}}{\partial \zeta^{2}}+\frac{\lambda}{\zeta}-\frac{1}{4}+\frac{1 / 4-\mu^{2}}{\zeta^{2}}\right) \underset{\uparrow}{W_{\lambda, \mu}(\zeta)=0} \underset{\text { Whittaker functions }}{W_{i}} \quad \mu= \pm 1 / 2
$$

ID exciton bound state energies:

$$
E_{\lambda}=-E_{0} \frac{1}{\lambda^{2}}
$$

λ from boundary conditions
ID exciton wave functions:

$$
f_{\lambda}(|z|)=N_{\lambda} W_{\lambda, 1 / 2}\left(\frac{2(|z|+\gamma R)}{\lambda a_{0}}\right) \quad\left(\text { even: } d f(\zeta) /\left.d z\right|_{z=0}=0\right)
$$

Eigenvalue for the ground state:

$$
\frac{1}{2}+\lambda_{0} \ln \left(\frac{2 \gamma R}{\lambda_{0} a_{0}}\right)=0 \quad \rightarrow \lambda_{0} \ll 1 \quad E_{\lambda_{0}} \gg E_{0}
$$

e.g. GaAs/GaAlAs wire: $E_{\lambda_{0}} \simeq 5 E_{0}$

IONISATION CONTINUUM IN ID

Scaled Wannier equation with λ negative:

$$
\left[\frac{d^{2}}{d \zeta^{2}}-\left(\frac{1}{4}+i \frac{|\lambda|}{\zeta}\right)\right] f(\zeta)=0
$$

Two independent solutions (Whittaker functions):

$$
\begin{aligned}
& W_{-i|\lambda|, 1 / 2}^{(1)}(\zeta)=\Gamma(1+i|\lambda|) \zeta e^{-\zeta / 2}[F(1+i|\lambda|, 2 ; \zeta)+G(1+i|\lambda|, 2 ; \zeta)] \\
& W_{-i|\lambda|, 1 / 2}^{(2)}(\zeta)=\Gamma(1-i|\lambda|) \zeta e^{-\zeta / 2}[F(1+i|\lambda|, 2 ; \zeta)-G(1+i|\lambda|, 2 ; \zeta)]
\end{aligned}
$$

Even electron wave function combined of these two solutions and normalised:

$$
f_{k}(\zeta)=\left(\frac{e^{\pi|\lambda|}}{2 \pi}\right)^{1 / 2} \frac{D_{0}^{(2)} W^{(1)}(\zeta)-D_{0}^{(1)} W^{(2)}(\zeta)}{\left(\left|D_{0}^{(1)}\right|^{2}+\left|D_{0}^{(2)}\right|^{2}\right)^{1 / 2}} \quad D_{0}^{(j)}=\left.\frac{d W^{(j)}(\zeta)}{d \zeta}\right|_{\zeta=2 i k \gamma R}
$$

