Seminar on the optical properties of semiconductors

Free carrier transitions

Julia Hildmann
3 May 2011

Content

1. Optical dipole matrix element
2. Dynamics of density matrix elements
3. Coherent optical interband transitions
4. Free carrier absorption in quasi-equilibrium regime

Optical dipole transitions

Crystal eigenstates:

$$
H_{0}=\hbar \sum_{\lambda \mathbf{k}} \epsilon_{\lambda, \mathbf{k}}|\lambda \mathbf{k}\rangle\langle\lambda \mathbf{k}| \quad H_{0}=\frac{p^{2}}{2 m_{0}}+V_{0}(\mathbf{r})
$$

Interaction with light field:

$$
\begin{aligned}
& H_{I}=-d \mathcal{E}(t)=-\operatorname{er} \mathcal{E}(t)= \\
& -e \mathcal{E}(t) \sum_{\mathbf{k}, \mathbf{k}^{\prime}, \lambda, \lambda^{\prime}} r_{\lambda, \lambda^{\prime}}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)\left|\lambda^{\prime} \mathbf{k}^{\prime}\right\rangle\langle\lambda \mathbf{k}| \\
& r_{\lambda^{\prime} \lambda}\left(\mathbf{k}^{\prime}, \mathbf{k}\right)=\left\langle\lambda^{\prime} \mathbf{k}^{\prime}\right| r|\lambda \mathbf{k}\rangle
\end{aligned}
$$

$$
\mathbf{r}_{\lambda, \lambda^{\prime}}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\frac{\left\langle\lambda^{\prime} \mathbf{k}^{\prime}\right|\left[\mathbf{r}, H_{0}\right]|\lambda \mathbf{k}\rangle}{\hbar\left(\epsilon_{\lambda, \mathbf{k}}-\epsilon_{\lambda^{\prime}, \mathbf{k}^{\prime}}\right)}=\frac{i\left\langle\lambda^{\prime} \mathbf{k}^{\prime}\right| \mathbf{p}|\lambda \mathbf{k}\rangle}{m_{0}\left(\epsilon_{\lambda, \mathbf{k}}-\epsilon_{\lambda^{\prime}, \mathbf{k}^{\prime}}\right)}
$$

Matrix element of momentum operator

$$
\begin{aligned}
& \left\langle\lambda^{\prime} \mathbf{k}^{\prime}\right| \mathbf{p}|\lambda \mathbf{k}\rangle=\int_{L^{3}} d^{3} r \psi_{\lambda^{\prime}}^{*}\left(\mathbf{k}^{\prime}, \mathbf{r}\right) \mathbf{p} \psi_{\lambda}(\mathbf{k}, \mathbf{r}) \simeq \\
& \psi_{\lambda}(\mathbf{k}, \mathbf{r}) \simeq e^{i \mathbf{k} \cdot \mathbf{r}} \frac{u_{\lambda}(0, \mathbf{r})}{L^{3 / 2}} \\
& \frac{1}{L^{3}} \int_{L^{3}} d^{3} r e^{-i\left(\mathbf{k}^{\prime}-\mathbf{k}\right) \cdot \mathbf{r}} u_{\lambda^{\prime}}^{*}(0, \mathbf{r})(\hbar \mathbf{k}+\mathbf{p}) u_{\lambda}(0, \mathbf{r}) \simeq \\
& \sum_{n=1}^{N} \frac{e^{-i\left(\mathbf{k}^{\prime}-\mathbf{k}\right) \cdot \mathbf{R}_{n}}}{N} \int_{l^{3}} d^{3} r \frac{e^{-i\left(\mathbf{k}^{\prime}-\mathbf{k}\right) \cdot \mathbf{r}}}{l^{3}} u_{\lambda^{\prime}}^{*}(0, \mathbf{r})(\hbar \mathbf{k}+\mathbf{p}) u_{\lambda}(0, \mathbf{r})
\end{aligned}
$$

Optical dipole matrix element

$$
\begin{aligned}
& \left\langle\lambda^{\prime} \mathbf{k}^{\prime}\right| \mathbf{p}|\lambda \mathbf{k}\rangle=\frac{\delta_{\mathbf{k}, \mathbf{k}^{\prime}}}{l^{3}} \int_{l^{3}} d^{3} r u_{\lambda^{\prime}}^{*}(0, \mathbf{r}) \mathbf{p} u_{\lambda}(0, \mathbf{r}) \equiv \delta_{\mathbf{k}, \mathbf{k}^{\prime}} \mathbf{p}_{\lambda^{\prime}, \lambda}(0) \\
& \mathbf{d}_{\lambda^{\prime} \boldsymbol{\lambda}}\left(\mathbf{k}^{\prime}, \mathbf{k}\right)=e \mathbf{r}_{\lambda^{\prime} \lambda}\left(\mathbf{k}^{\prime}, \mathbf{k}\right)=\frac{i e}{m_{0}\left(\epsilon_{\lambda^{\prime}, \mathbf{k}}-\epsilon_{\lambda, \mathbf{k}}\right)} \delta_{\mathbf{k}, \mathbf{k}^{\prime} \mathbf{p}_{\lambda^{\prime} \lambda}(0)} \\
& \begin{array}{c}
\mathbf{d}_{\boldsymbol{\lambda}^{\prime} \boldsymbol{\lambda}}\left(\mathbf{k}^{\prime}, \mathbf{k}\right)=\boldsymbol{\delta}_{\mathbf{k}, \mathbf{k}^{\prime}} \mathbf{d}_{\boldsymbol{\lambda}^{\prime} \boldsymbol{\lambda}}(0) \frac{\boldsymbol{\epsilon}_{\boldsymbol{\lambda}^{\prime}, \mathbf{0}}-\boldsymbol{\epsilon}_{\boldsymbol{\lambda}, \mathbf{0}}}{\epsilon_{\boldsymbol{\lambda}^{\prime}, \mathbf{k}}-\boldsymbol{\epsilon}_{\boldsymbol{\lambda}, \mathbf{k}}} \\
\mathbf{d}_{\lambda^{\prime} \lambda}(0)=\frac{i e \mathbf{p}_{\lambda^{\prime} \lambda}(0)}{m_{0}\left(\epsilon_{\lambda^{\prime}, 0}-\epsilon_{\lambda, 0}\right)}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{d}_{\lambda^{\prime} \lambda}\left(\mathbf{k}^{\prime}, \mathbf{k}\right)=\delta_{\mathbf{k}, \mathbf{k}^{\prime}} \mathbf{d}_{\lambda^{\prime} \lambda}(0) \frac{E_{g}}{E_{g}+\frac{\hbar^{2} k^{2}}{2}\left(\frac{1}{m_{\lambda}}+\frac{1}{m_{\lambda^{\prime}}}\right)} \\
& \hbar \epsilon_{\lambda^{\prime}, \mathbf{k}}=E_{g}+\frac{\hbar^{2} k^{2}}{2 m_{\lambda^{\prime}}} \\
& \hbar \epsilon_{\lambda, \mathbf{k}}=\frac{\hbar^{2} k^{2}}{2 m_{\lambda}}
\end{aligned}
$$

Kinetics of optical interband transitions

Two-band model: $\lambda=c, v$
$\mathcal{H}_{I}=-\mathcal{E}(t) \sum_{\mathbf{k},\left\{\lambda \neq \lambda^{\prime}\right\}=\{c, v\}} d_{\lambda^{\prime} \lambda}\left|\lambda^{\prime} \mathbf{k}\right\rangle\langle\lambda \mathbf{k}| \equiv \sum_{\mathbf{k}} \mathcal{H}_{I, \mathbf{k}} \quad \mathcal{H}_{I, \mathbf{k}}=-\mathcal{E}(t)\left(d_{c v}|c \mathbf{k}\rangle\langle v \mathbf{k}|+d_{c v}^{*}|v \mathbf{k}\rangle\langle\langle\mathbf{k}|)\right.$
$\mathcal{H}_{I, \mathbf{k}}^{i n t}(t)=\exp \left(\frac{i}{\hbar} \mathcal{H}_{0} t\right) \mathcal{H}_{I, \mathbf{k}} \exp \left(-\frac{i}{\hbar} \mathcal{H}_{0} t\right)=-\mathcal{E}(t)\left[e^{i\left(\epsilon_{c, \mathbf{k}}-\epsilon_{v, \mathbf{k}}\right) t} d_{c v}|c \mathbf{k}\rangle\langle v \mathbf{k}|+h . c.\right]$
Single particle density matrix for the state $\mathrm{k}: \quad \rho_{\mathrm{k}}=\sum_{\lambda^{\prime}, \lambda} \rho_{\lambda^{\prime}, \lambda}(\mathbf{k}, t)\left|\lambda^{\prime} \mathbf{k}\right\rangle\langle\lambda \mathbf{k}|$

$$
\rho_{\mathbf{k}}^{\text {int }}(t)=\exp \left(\frac{i}{\hbar} \mathcal{H}_{0} t\right) \rho_{\mathbf{k}}(t) \exp \left(-\frac{i}{\hbar} \mathcal{H}_{0} t\right)
$$

Equation of motion for the density matrix:

$$
\begin{aligned}
\frac{d}{d t} \rho_{\mathbf{k}}(t)=-\frac{i}{\hbar} & {\left[\mathcal{H}_{\mathbf{k}}, \rho_{\mathbf{k}}(t)\right] \quad \frac{d}{d t} \rho_{\mathbf{k}}^{i n t}(t)=-\frac{i}{\hbar}\left[\mathcal{H}_{I, \mathbf{k}}^{i n t}, \rho_{\mathbf{k}}^{i n t}(t)\right] } \\
\frac{d}{d t} \rho_{\mathbf{k}}^{i n t}(t) & =\frac{i}{\hbar} \mathcal{E}(t) \sum_{\lambda^{\prime}, \lambda} \rho_{\lambda^{\prime} \lambda}^{i n t}(\mathbf{k}, t) \\
& \times\left[e^{i\left(\epsilon_{c, \mathbf{k}}-\epsilon_{v, \mathbf{k}}\right) t} d_{c v}\left(|c \mathbf{k}\rangle\left\langle v \mathbf{k} \mid \lambda^{\prime} \mathbf{k}\right\rangle\langle\lambda \mathbf{k}|-\left|\lambda^{\prime} \mathbf{k}\right\rangle\langle\lambda \mathbf{k} \mid c \mathbf{k}\rangle\langle v \mathbf{k}|\right)\right. \\
& \left.+e^{-i\left(\epsilon_{c, \mathbf{k}}-\epsilon_{v, \mathbf{k}}\right) t} d_{c v}^{*}\left(|v \mathbf{k}\rangle\left\langle c \mathbf{k} \mid \lambda^{\prime} \mathbf{k}\right\rangle\langle\lambda \mathbf{k}|-\left|\lambda^{\prime} \mathbf{k}\right\rangle\langle\lambda \mathbf{k} \mid v \mathbf{k}\rangle\langle c \mathbf{k}|\right)\right]
\end{aligned}
$$

Equations of motion for density matrix elements

$$
\begin{aligned}
& \rho_{c v}^{i n t}(\mathbf{k}, t)=\langle c \mathbf{k}| \rho_{\mathbf{k}}^{i n t}(t)|v \mathbf{k}\rangle \\
& \frac{d}{d t} \rho_{c v}^{i n t}(\mathbf{k}, t)=\frac{i}{\hbar} d_{c v} \mathcal{E}(t) e^{i\left(\epsilon_{c, \mathbf{k}}-\epsilon_{v, \mathbf{k}}\right) t}\left[\rho_{v v}(\mathbf{k}, t)-\rho_{c c}(\mathbf{k}, t)\right] \\
& \frac{d}{d t} \rho_{c c}(\mathbf{k}, t)=\frac{i}{\hbar} \mathcal{E}(t)\left[d_{c v} e^{i\left(\epsilon_{c, \mathbf{k}}-\epsilon_{v, \mathbf{k}}\right) t} \rho_{v c}^{i n t}(\mathbf{k}, t)-c . c .\right] \\
& \frac{d}{d t} \rho_{v v}(\mathbf{k}, t)=\frac{i}{\hbar} \mathcal{E}(t)\left[d_{c v}^{*} e^{i\left(\epsilon_{v, \mathbf{k}}-\epsilon_{c, \mathbf{k}}\right) t} \rho_{c v}^{i n t}(\mathbf{k}, t)-c . c .\right]=-\frac{d}{d t} \rho_{c c}(\mathbf{k}, t)
\end{aligned}
$$

Two important limiting cases of the noninteracting system:
coherent optical interband transitions; quasi-equilibrium electron-hole plasma

Coherent regime

Electromagnetic field: $\mathcal{E}(t)=\frac{E_{0}}{2}\left(e^{i \omega t}+e^{-i \omega t}\right) \quad \rho_{c v}(\mathbf{k}, t)=\rho_{c v}^{i n t}(\mathbf{k}, t) e^{-i\left(\epsilon_{c, \mathbf{k}}-\epsilon_{v, \mathbf{k}}\right) t}$ Interband equation:

$$
\begin{aligned}
& \left(\frac{d}{d t}+i \nu_{\mathbf{k}}\right) \rho_{c v}(\mathbf{k}, t) e^{i \omega t}=-\frac{i \omega_{R}}{2}\left[\rho_{c c}(\mathbf{k}, t)-\rho_{v v}(\mathbf{k}, t)\right] \\
& \frac{d}{d t} \rho_{c c}(\mathbf{k}, t)=-\frac{i}{2} \omega_{R}\left[\rho_{c v}(\mathbf{k}, t) e^{i \omega t}-\rho_{v c}(\mathbf{k}, t) e^{-i \omega t}\right]=-\frac{d}{d t} \rho_{v v}(\mathbf{k}, t)
\end{aligned}
$$

with detuning $\nu_{\mathbf{k}}=\epsilon_{c, \mathbf{k}}-\epsilon_{v, \mathbf{k}}-\omega$ and Rabi frequency $\omega_{R}=\frac{d_{c v} E_{0}}{\hbar}$

Define Bloch vector:

$U_{1}(\mathbf{k}, t)=2 \operatorname{Re}\left[\rho_{c v}(\mathbf{k}, t) e^{i \omega t}\right]$
$U_{2}(\mathbf{k}, t)=2 \operatorname{Im}\left[\rho_{c v}(\mathbf{k}, t) e^{i \omega t}\right]$
$U_{3}(\mathbf{k}, t)=\left[\rho_{c c}(\mathbf{k}, t)-\rho_{v v}(\mathbf{k}, t)\right]$

Coherent optical Bloch equations:

$$
\begin{aligned}
& \frac{d}{d t} U_{1}(\mathrm{k}, t)=\nu_{\mathrm{k}} U_{2}(\mathrm{k}, t) \\
& \frac{d}{d t} U_{2}(\mathrm{k}, t)=-\nu_{\mathrm{k}} U_{1}(\mathrm{k}, t)-\omega_{R} U_{3}(\mathrm{k}, t) \\
& \frac{d}{d t} U_{3}(\mathrm{k}, t)=\omega_{R} U_{2}(\mathrm{k}, t)
\end{aligned}
$$

$$
\Longrightarrow \quad \frac{d}{d t} \mathbf{U}(\mathbf{k}, t)=\boldsymbol{\Omega} \times \mathbf{U}(\mathbf{k}, t), \boldsymbol{\Omega}=\omega_{R} \mathbf{e}_{1}-\nu_{\mathbf{k}} \mathbf{e}_{3}
$$

Optical Bloch equations with relaxation

$$
\begin{aligned}
& \frac{d}{d t} U_{1}(\mathrm{k}, t)=-\frac{U_{1}(\mathrm{k}, t)}{T_{2}}+\nu_{\mathrm{k}} U_{2}(\mathrm{k}, t) \\
& \frac{d}{d t} U_{2}(\mathrm{k}, t)=-\frac{U_{2}(\mathrm{k}, t)}{T_{2}}-\nu_{\mathrm{k}} U_{1}(\mathrm{k}, t)-\omega_{R} U_{3}(\mathrm{k}, t) \\
& \frac{d}{d t} U_{3}(\mathrm{k}, t)=-\frac{U_{3}(\mathrm{k}, t)+1}{T_{1}}+\omega_{R} U_{2}(\mathrm{k}, t)
\end{aligned}
$$

Free induction decay $\omega_{R}=0$:

$$
\mathbf{U}(\mathbf{k}, t=0)=U_{1}(\mathbf{k}, t=0) \mathbf{e}_{1}+U_{2}(\mathbf{k}, t=0) \mathbf{e}_{2}
$$

$$
\frac{d}{d t} U_{1}(\mathbf{k}, t)=-\frac{U_{1}(\mathbf{k}, t)}{T_{2}}+\nu_{\mathbf{k}} U_{2}(\mathbf{k}, t)
$$

$\frac{d}{d t} U_{2}(\mathbf{k}, t)=-\frac{U_{2}(\mathbf{k}, t)}{T_{2}}-\nu_{\mathbf{k}} U_{1}(\mathbf{k}, t)$
$\binom{U_{1}(\mathbf{k}, t)}{U_{2}(\mathbf{k}, t)}=\left(\begin{array}{ll}\cos \left(\nu_{\mathbf{k}} t\right) & \sin \left(\nu_{\mathbf{k}} t\right) \\ -\sin \left(\nu_{\mathbf{k}} t\right) & \cos \left(\nu_{\mathbf{k}} t\right)\end{array}\right)\binom{U_{1}(\mathbf{k}, t)}{U_{2}(\mathbf{k}, t)} e^{-t / T_{2}}$

Photon echo intensity: $\left[e^{-2 \tau / T_{2}}\right]^{2}=e^{-4 \tau / T_{2}}$

Free carrier absorption in quasi-equilibrium regime

Thermal equilibrium distribution for electrons:

$$
\begin{aligned}
& \rho_{\lambda \lambda}^{0}=\frac{1}{e^{\left(\epsilon_{\lambda, \mathbf{k}}-\mu_{\lambda}\right) \beta}+1} \equiv f_{\lambda, k} \quad \sum_{\mathbf{k}} f_{\lambda, k}=N_{\lambda} \rightarrow \mu_{\lambda}=\mu_{\lambda}\left(N_{\lambda}, T\right) \\
& \rho_{c v}^{i n t}(\mathbf{k}, t)=\int \frac{d \omega}{2 \pi} \frac{d_{c v} \mathcal{E}(\omega) e^{i\left(\epsilon_{c, \mathbf{k}}-\epsilon_{v, \mathbf{k}}-\omega\right) t}}{\hbar\left(\epsilon_{c, \mathbf{k}}-\epsilon_{v, \mathbf{k}}-\omega-i \gamma\right)}\left(f_{v, k}-f_{c, k}\right)
\end{aligned}
$$

Optical polarisation:

$$
\begin{aligned}
\mathcal{P}(t) & =\operatorname{tr}[\rho(t) d]=\operatorname{tr}\left[\rho^{i n t}(t) d^{i n t}(t)\right]=\frac{1}{L^{3}} \sum_{\mathbf{k}}\left[\rho_{c v}^{i n t}(\mathbf{k}, t) d_{v c}^{i n t}(\mathbf{k}, t)+\rho_{v c}^{i n t}(\mathbf{k}, t) d_{c v}^{i n t}(\mathbf{k}, t)\right] \\
& =\frac{1}{L^{3}} \sum_{\mathbf{k}} \int \frac{d \omega}{2 \pi} \frac{\left|d_{c v}\right|^{2}\left(f_{v, k}-f_{c, k}\right)}{\hbar\left(\epsilon_{c, \mathbf{k}}-\epsilon_{v, \mathbf{k}}-\omega-i \gamma\right)} \mathcal{E}(\omega) e^{-i \omega t}+\text { c.c. }
\end{aligned}
$$

Optical susceptibility:
$\chi(\omega)=\mathcal{P}(\omega) / \mathcal{E}(\omega)$

$$
\mathcal{P}(t)=\int \frac{d \omega}{2 \pi} \mathcal{P}(\omega) e^{-i \omega t}
$$

Absorption spectrum

Optical susceptibility for free carriers:
$\chi(\omega)=-\sum_{\mathrm{k}} \frac{\left|d_{c v}\right|^{2}}{L^{3}}\left(f_{v, k}-f_{c, k}\right)\left[\frac{1}{\hbar\left(\epsilon_{v, \mathrm{k}}-\epsilon_{c, \mathrm{k}}+\omega+i \gamma\right)}-\frac{1}{\hbar\left(\epsilon_{c, \mathrm{k}}-\epsilon_{v, \mathrm{k}}+\omega+i \gamma\right)}\right]$
Absorption spectrum:

$$
\alpha(\omega)=\frac{4 \pi \omega}{n_{b} c} \chi^{\prime \prime}(\omega)=\frac{4 \pi^{2} \omega}{L^{3} n_{b} c} \sum_{\mathbf{k}}\left|d_{c v}\right|^{2}\left(f_{v, k}-f_{c, k}\right) \delta\left[\hbar\left(\epsilon_{v, \mathbf{k}}-\epsilon_{c, \mathbf{k}}+\omega\right)\right]
$$

For different dimensionalities D :

$$
\begin{aligned}
& f_{h, k}=1-f_{v, k} \quad \hbar\left(\epsilon_{c, k}-\epsilon_{v, k}\right)=\hbar\left(\epsilon_{e, k}+\epsilon_{h, k}\right)=\frac{\hbar^{2} k^{2}}{2 m_{r}}+E_{g} \\
& \alpha(\omega)=\frac{8 \pi^{2} \omega\left|d_{c v}\right|^{2}}{n_{b} c L_{c}^{3-D}} \frac{1}{(2 \pi)^{D}} \Omega_{D} S_{D}(\omega) \\
& S_{D}(\omega)=\int_{0}^{\infty} d k k^{D-1} \delta\left(\frac{\hbar^{2} k^{2}}{2 m_{r}}+E_{g}+\sum_{0}^{(D)}-\hbar \omega\right)\left(1-f_{e, k}-f_{h, k}\right) \\
& E_{0}^{(D)}=\frac{\hbar^{2}}{2 m_{r}}\left(\frac{\pi}{L_{c}}\right)^{2}(3-D)
\end{aligned}
$$

Absorption coefficient

Density of states for dimensionality D :

$$
\begin{gathered}
S_{D}(\omega)=\frac{1}{2}\left(\frac{2 m_{r}}{\hbar^{2}}\right)^{D / 2} \int_{0}^{\infty} d x x^{(D-2) / 2} \delta\left(x+E_{g}+E_{0}^{(D)}-\hbar \omega\right) \\
\times\left[1-f_{e}(x)-f_{h}(x)\right] \\
\frac{\hbar^{2} k^{2}}{2 m_{r}}=x \\
S_{D}(\omega)=\frac{1}{2}\left(\frac{2 m_{r}}{\hbar^{2}}\right)^{D / 2}\left(\hbar \omega-E_{g}-E_{0}^{(D)}\right)^{(D-2) / 2} \\
\\
\\
\times \Theta\left(\hbar \omega-E_{g}-E_{0}^{(D)}\right) A(\omega)
\end{gathered}
$$

Absorption coefficient for free carriers:
Unexcited material:

$$
\begin{aligned}
& \alpha(\omega)=\alpha_{0}^{D} \frac{\hbar \omega}{\boldsymbol{E}_{0}}\left(\frac{\hbar \omega-\boldsymbol{E}_{\boldsymbol{g}}-\boldsymbol{E}_{0}^{(D)}}{\boldsymbol{E}_{0}}\right)^{\frac{D-2}{2}} \Theta\left(\hbar \omega-\boldsymbol{E}_{g}-\boldsymbol{E}_{0}^{(D)}\right) \boldsymbol{A}(\omega) \\
& 3 \mathrm{D} \sim \sqrt{\hbar \omega-E_{g}} \\
& 2 \mathrm{D} \sim \Theta\left(E_{g}+E_{0}^{(2)}\right) \\
& 1 \mathrm{D} \sim 1 / \sqrt{\hbar \omega-E_{g}-E_{0}^{(1)}}
\end{aligned}
$$

Negative optical absorption

Band filling factor:

$$
A(\omega)=[\underbrace{\left(1-f_{e}(\omega)\right)\left(1-f_{h}(\omega)\right)+f_{e}(\omega) f_{h}(\omega)}] \underbrace{\tanh \left[\frac{\beta}{2}\left(\hbar \omega-E_{g}-\mu\right)\right]}_{\text {if } \mu>0 \text { and } E_{g}<\hbar \omega<E_{g}+\mu}
$$

Absorption/gain spectra for D-dimensional semiconductors:
(carrier density grows from top to bottom)

