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The state vectors |λk〉 are eigenstates of the crystal Hamiltonian (3.5),
which we now denote by H0:

H0|λk〉 = Eλ(k)|λk〉 = !ελ,k|λk〉 . (5.3)

As usual, Eq. (5.3) is transformed into the Schrödinger equation in real-
space representation by multiplying (5.3) from the left with the vector 〈r|.
The Schrödinger wave function ψλ(k, r) for the state |λk〉 is just the scalar
product

ψλ(k, r) = 〈r|λk〉 , (5.4)

i.e., the Bloch wave function (3.26) for the band λ.
The Hamiltonian of electrons in a crystal can be obtained in this repre-

sentation by multiplying Ho from the left and right with the completeness
relation (5.2)

H0 =
∑

λ′k′

|λ′k′〉〈λ′k′|H0

∑

λk

|λk〉〈λk| . (5.5)

Using Eqs. (5.3) and (5.1), we find the diagonal representation

H0 = !
∑

λk

ελ,k|λk〉〈λk| . (5.6)

The action of the Hamiltonian (5.6) on an arbitrary state vector can easily
be understood. The “bra-vector” 〈λk| projects out that part which contains
the state with the quantum numbers λ,k represented by the “ket-vector”
|λk〉.

As discussed in Chap. 2, the dipole interaction with the light is described
by

HI = −er E(t) = −d E(t) , (5.7)

where er = d is the projection of the dipole moment in the direction of the
electromagnetic field. Using the completeness relation twice yields

HI = −e E(t)
∑

k,k′,λ,λ′

rλλ′ (k′,k)|λ′k′〉〈λk| , (5.8)

with

rλ′λ(k′,k) = 〈λ′k′|r|λk〉 . (5.9)

Interaction with light field:

Crystal eigenstates:
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To compute the dipole matrix element, we assume only interband transi-
tions, λ != λ′, and use the same trick as in Eqs. (2.26) and (2.31) to get

rλ′λ(k′,k) =
1

Eλ(k) − Eλ′(k′)
〈λ′k′|[r,H0]|λk〉

=
i

m0(ελ,k − ελ′,k′)
〈λ′k′|p|λk〉 . (5.10)

Inserting

1 =
∫

L3
d3r|r〉〈r|

and using the fact that the momentum operator is diagonal in the r-
representation, we get

〈λ′k′|p|λk〉 =
∫

L3
d3r ψ∗

λ′(k′, r)pψλ(k, r) . (5.11)

As in Sec. 3.3, we expand the Bloch functions uλ(k, r) into the complete
set uη(0, r). Using only the leading term of the k · p-result, Eq. (3.66), we
get

ψλ(k, r) % eik·ruλ(0, r)
L3/2

. (5.12)

Inserting (5.12) into (5.11) yields

〈λ′k′|p|λk〉 % 1
L3

∫

L3
d3r e−i(k′−k)·ru∗

λ′(0, r)(!k + p)uλ(0, r) , (5.13)

where the additive !k results from commuting p and exp(ik · r). Now we
split the integral over the entire crystal into the unit-cell integral and the
sum over all unit cells, Eq. (3.38), replace r → r + Rn, and use Eq. (3.27),
to get

〈λ′k′|p|λk〉 %
N

∑

n=1

e−i(k′−k)·Rn

N

∫

l3
d3r

e−i(k′−k)·r

l3
u∗

λ′(0, r)(!k+p)uλ(0, r) .

(5.14)
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erλ′λ(k′, k) = dλ′λ(k′, k) = δk,k′dλ′λ(0)
ελ′,0 − ελ,0

ελ′,k − ελ,k
, (5.17)

optical dipole matrix element

where we used Eq. (5.16) for k = k′ = 0 to lump all parameters into

dλ′λ(0) =
iepλ′λ(0)

m0(ελ′,0 − ελ,0)
. (5.18)

For the cases of two parabolic bands with effective masses mλ and mλ′ and
dispersions

!ελ′,k = Eg +
!2k2

2mλ′
and !ελ,k =

!2k2

2mλ
, (5.19)

the optical dipole matrix element is

dλ′λ(k′,k) = δk,k′dλ′λ(0)
Eg

Eg + !2k2

2

(

1
mλ

+ 1
mλ′

) . (5.20)

Except for the δ-function the k-dependence of the dipole matrix element
can often be neglected in the spectral region around the semiconductor band
edge. The k-dependence is usually important only if the variation over the
whole first Brillouin zone is needed, as in Kramers–Kronig transformations
or computations of refractive index contributions.

5.2 Kinetics of Optical Interband Transitions

In order to keep the following treatment as simple as possible, we now make
a two-band approximation by restricting our treatment to one valence band
v and one conduction band c out of the many bands of a real semiconductor,
i.e., λ = c, v. This two-band model is a reasonable first approximation to
calculate the optical response of a real material if all the other possible
transitions are sufficiently detuned with regard to the frequency region of
interest. We will treat first quasi-D-dimensional semiconductors, followed
by an extension to quantum confined semiconductors with several subbands.
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Fig. 5.1 Schematic drawing of conduction and valence bands and an optical dipole
transition connecting identical k-points in both bands.

Since the unit-cell integral yields the same result for all unit cells, we can
take it out of the summation over the unit cells, which then yields δk,k′ ,
and Eq. (5.14) becomes

〈λ′k′|p|λk〉 =
δk,k′

l3

∫

l3
d3r u∗

λ′(0, r)puλ(0, r) ≡ δk,k′pλ′λ(0) , (5.15)

where the term ∝ !k disappeared because of the orthogonality of the lattice
periodic functions and our λ %= λ′ requirement.

The δ-function in Eq. (5.15) shows that the optical dipole matrix ele-
ment couples identical k-states in different bands, so that optical transi-
tions are “perpendicular” if plotted in an energy–wave–number diagram, as
in Fig. 5.1. The dipole approximation is equivalent to ignoring the photon
momentum in comparison to a typical electron momentum in the Brillouin
zone.

Collecting all contributions to the dipole matrix element, we get

erλ′λ(k′,k) =
ie

m0(ελ′,k − ελ,k)
δk,k′pλ′λ(0) (5.16)

or
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a two-band approximation by restricting our treatment to one valence band
v and one conduction band c out of the many bands of a real semiconductor,
i.e., λ = c, v. This two-band model is a reasonable first approximation to
calculate the optical response of a real material if all the other possible
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5.2.1 Quasi-D-Dimensional Semiconductors

To simplify our analysis even further, we ignore the k-dependence of the
dipole matrix element and write the interaction Hamiltonian in the form

HI = −E(t)
∑

k,{λ!=λ′}={c,v}

dλ′λ|λ′k〉〈λk| ≡
∑

k

HI,k , (5.21)

showing that different k-states are not mixed as long as we ignore the
Coulomb interaction between the carriers.

Evaluating the summation over the band indices yields

HI,k = −E(t)( dcv |ck〉〈vk| + d∗cv|vk〉〈ck|) , (5.22)

where d∗cv = dvc has been used. For our subsequent calculations it is advan-
tageous to transform the Hamiltonian into the interaction representation

Hint
I,k(t) = exp

(

i

!
H0t

)

HI,k exp
(

− i

!
H0t

)

= −E(t)
[

ei(εc,k−εv,k)tdcv|ck〉〈vk| + h.c.
]

, (5.23)

where h.c. denotes the Hermitian conjugate of the preceding term.
The single-particle density matrix ρk(t) of the state k can be expanded

into the eigenstates |λk〉

ρk =
∑

λ′,λ

ρλ′,λ(k, t)|λ′k〉〈λk| . (5.24)

single-particle density matrix for the state k

The equation of motion for the density matrix is the Liouville equation

d

dt
ρk(t) = − i

!
[Hk , ρk(t)] (5.25)

which is written in the interaction representation as

d

dt
ρint
k (t) = − i

!
[Hint

I,k , ρint
k (t)] (5.26)
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k (t)] (5.26)

Single particle density matrix for the state k:
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5.2.1 Quasi-D-Dimensional Semiconductors

To simplify our analysis even further, we ignore the k-dependence of the
dipole matrix element and write the interaction Hamiltonian in the form

HI = −E(t)
∑

k,{λ!=λ′}={c,v}

dλ′λ|λ′k〉〈λk| ≡
∑

k

HI,k , (5.21)

showing that different k-states are not mixed as long as we ignore the
Coulomb interaction between the carriers.

Evaluating the summation over the band indices yields

HI,k = −E(t)( dcv |ck〉〈vk| + d∗cv|vk〉〈ck|) , (5.22)

where d∗cv = dvc has been used. For our subsequent calculations it is advan-
tageous to transform the Hamiltonian into the interaction representation

Hint
I,k(t) = exp

(

i

!
H0t

)

HI,k exp
(

− i

!
H0t

)

= −E(t)
[

ei(εc,k−εv,k)tdcv|ck〉〈vk| + h.c.
]

, (5.23)

where h.c. denotes the Hermitian conjugate of the preceding term.
The single-particle density matrix ρk(t) of the state k can be expanded

into the eigenstates |λk〉

ρk =
∑

λ′,λ

ρλ′,λ(k, t)|λ′k〉〈λk| . (5.24)

single-particle density matrix for the state k

The equation of motion for the density matrix is the Liouville equation

d

dt
ρk(t) = − i

!
[Hk , ρk(t)] (5.25)

which is written in the interaction representation as

d

dt
ρint
k (t) = − i

!
[Hint

I,k , ρint
k (t)] (5.26)
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with

ρint
k (t) = exp

(

i

!
H0t

)

ρk(t) exp
(

− i

!
H0t

)

. (5.27)

Inserting Eqs. (5.23) and (5.27) into (5.26), we get

d

dt
ρint
k (t) =

i

!
E(t)

∑

λ′,λ

ρint
λ′λ(k, t)

×
[

ei(εc,k−εv,k)tdcv (|ck〉〈vk|λ′k〉〈λk| − |λ′k〉〈λk|ck〉〈vk|)

+e−i(εc,k−εv,k)td∗cv (|vk〉〈ck|λ′k〉〈λk| − |λ′k〉〈λk|vk〉〈ck|)
]

.

(5.28)

Taking the matrix element

ρint
cv (k, t) = 〈ck|ρint

k (t)|vk〉 (5.29)

of Eq. (5.28) yields

d

dt
ρint

cv (k, t) =
i

!
dcvE(t)ei(εc,k−εv,k)t[ρvv(k, t) − ρcc(k, t)] , (5.30)

where we used

ρint
λλ = ρλλ .

Eq. (5.30) shows that the off-diagonal elements ρcv of the density matrix
for the momentum state k couple to the diagonal elements ρcc, ρvv, of the
same state. The coupling between different k-values is introduced when we
also include the Coulomb interaction among the carriers.

The diagonal elements of the density matrix ρλλ give the probability to
find an electron in the state |λk〉, i.e., ρλλ is the population distribution of
the electrons in band λ. From Eq. (5.28) we obtain

d

dt
ρcc(k, t) =

i

!
E(t)

[

dcve
i(εc,k−εv,k)tρint

vc (k, t) − c.c.
]

, (5.31)

d

dt
ρvv(k, t) =

i

!
E(t)

[

d∗cve
i(εv,k−εc,k)tρint

cv (k, t) − c.c.
]

= − d

dt
ρcc(k, t) . (5.32)
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Hint
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[
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]

, (5.23)

where h.c. denotes the Hermitian conjugate of the preceding term.
The single-particle density matrix ρk(t) of the state k can be expanded

into the eigenstates |λk〉

ρk =
∑

λ′,λ

ρλ′,λ(k, t)|λ′k〉〈λk| . (5.24)

single-particle density matrix for the state k

The equation of motion for the density matrix is the Liouville equation

d

dt
ρk(t) = − i

!
[Hk , ρk(t)] (5.25)

which is written in the interaction representation as

d

dt
ρint
k (t) = − i

!
[Hint

I,k , ρint
k (t)] (5.26)

Equation of motion for the density matrix:
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with

ρint
k (t) = exp

(

i

!
H0t

)

ρk(t) exp
(

− i

!
H0t

)

. (5.27)

Inserting Eqs. (5.23) and (5.27) into (5.26), we get

d

dt
ρint
k (t) =

i

!
E(t)

∑

λ′,λ

ρint
λ′λ(k, t)

×
[

ei(εc,k−εv,k)tdcv (|ck〉〈vk|λ′k〉〈λk| − |λ′k〉〈λk|ck〉〈vk|)

+e−i(εc,k−εv,k)td∗cv (|vk〉〈ck|λ′k〉〈λk| − |λ′k〉〈λk|vk〉〈ck|)
]

.

(5.28)

Taking the matrix element

ρint
cv (k, t) = 〈ck|ρint

k (t)|vk〉 (5.29)

of Eq. (5.28) yields

d

dt
ρint

cv (k, t) =
i

!
dcvE(t)ei(εc,k−εv,k)t[ρvv(k, t) − ρcc(k, t)] , (5.30)

where we used

ρint
λλ = ρλλ .

Eq. (5.30) shows that the off-diagonal elements ρcv of the density matrix
for the momentum state k couple to the diagonal elements ρcc, ρvv, of the
same state. The coupling between different k-values is introduced when we
also include the Coulomb interaction among the carriers.

The diagonal elements of the density matrix ρλλ give the probability to
find an electron in the state |λk〉, i.e., ρλλ is the population distribution of
the electrons in band λ. From Eq. (5.28) we obtain

d

dt
ρcc(k, t) =

i

!
E(t)

[

dcve
i(εc,k−εv,k)tρint

vc (k, t) − c.c.
]

, (5.31)

d

dt
ρvv(k, t) =

i

!
E(t)

[

d∗cve
i(εv,k−εc,k)tρint

cv (k, t) − c.c.
]

= − d

dt
ρcc(k, t) . (5.32)

Dienstag, 3. Mai 2011



Equations of motion for density matrix elements

January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Free Carrier Transitions 71
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ρint
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!
H0t
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ρk(t) exp
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!
H0t

)

. (5.27)

Inserting Eqs. (5.23) and (5.27) into (5.26), we get
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dt
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×
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(5.28)

Taking the matrix element

ρint
cv (k, t) = 〈ck|ρint

k (t)|vk〉 (5.29)

of Eq. (5.28) yields

d

dt
ρint

cv (k, t) =
i

!
dcvE(t)ei(εc,k−εv,k)t[ρvv(k, t) − ρcc(k, t)] , (5.30)

where we used

ρint
λλ = ρλλ .

Eq. (5.30) shows that the off-diagonal elements ρcv of the density matrix
for the momentum state k couple to the diagonal elements ρcc, ρvv, of the
same state. The coupling between different k-values is introduced when we
also include the Coulomb interaction among the carriers.

The diagonal elements of the density matrix ρλλ give the probability to
find an electron in the state |λk〉, i.e., ρλλ is the population distribution of
the electrons in band λ. From Eq. (5.28) we obtain

d

dt
ρcc(k, t) =

i

!
E(t)

[

dcve
i(εc,k−εv,k)tρint

vc (k, t) − c.c.
]

, (5.31)

d

dt
ρvv(k, t) =

i

!
E(t)

[

d∗cve
i(εv,k−εc,k)tρint

cv (k, t) − c.c.
]

= − d

dt
ρcc(k, t) . (5.32)
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(5.28)

Taking the matrix element

ρint
cv (k, t) = 〈ck|ρint

k (t)|vk〉 (5.29)

of Eq. (5.28) yields

d

dt
ρint

cv (k, t) =
i

!
dcvE(t)ei(εc,k−εv,k)t[ρvv(k, t) − ρcc(k, t)] , (5.30)

where we used

ρint
λλ = ρλλ .

Eq. (5.30) shows that the off-diagonal elements ρcv of the density matrix
for the momentum state k couple to the diagonal elements ρcc, ρvv, of the
same state. The coupling between different k-values is introduced when we
also include the Coulomb interaction among the carriers.

The diagonal elements of the density matrix ρλλ give the probability to
find an electron in the state |λk〉, i.e., ρλλ is the population distribution of
the electrons in band λ. From Eq. (5.28) we obtain

d

dt
ρcc(k, t) =

i

!
E(t)

[

dcve
i(εc,k−εv,k)tρint

vc (k, t) − c.c.
]

, (5.31)

d

dt
ρvv(k, t) =

i

!
E(t)

[

d∗cve
i(εv,k−εc,k)tρint

cv (k, t) − c.c.
]

= − d

dt
ρcc(k, t) . (5.32)
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where we used

ρint
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Eq. (5.30) shows that the off-diagonal elements ρcv of the density matrix
for the momentum state k couple to the diagonal elements ρcc, ρvv, of the
same state. The coupling between different k-values is introduced when we
also include the Coulomb interaction among the carriers.

The diagonal elements of the density matrix ρλλ give the probability to
find an electron in the state |λk〉, i.e., ρλλ is the population distribution of
the electrons in band λ. From Eq. (5.28) we obtain

d

dt
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dt
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[
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]

= − d

dt
ρcc(k, t) . (5.32)
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where we used

ρint
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Eq. (5.30) shows that the off-diagonal elements ρcv of the density matrix
for the momentum state k couple to the diagonal elements ρcc, ρvv, of the
same state. The coupling between different k-values is introduced when we
also include the Coulomb interaction among the carriers.

The diagonal elements of the density matrix ρλλ give the probability to
find an electron in the state |λk〉, i.e., ρλλ is the population distribution of
the electrons in band λ. From Eq. (5.28) we obtain
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dt
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[
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i(εv,k−εc,k)tρint
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]

= − d

dt
ρcc(k, t) . (5.32)
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]

.

(5.28)

Taking the matrix element

ρint
cv (k, t) = 〈ck|ρint

k (t)|vk〉 (5.29)

of Eq. (5.28) yields

d

dt
ρint

cv (k, t) =
i

!
dcvE(t)ei(εc,k−εv,k)t[ρvv(k, t) − ρcc(k, t)] , (5.30)

where we used

ρint
λλ = ρλλ .

Eq. (5.30) shows that the off-diagonal elements ρcv of the density matrix
for the momentum state k couple to the diagonal elements ρcc, ρvv, of the
same state. The coupling between different k-values is introduced when we
also include the Coulomb interaction among the carriers.

The diagonal elements of the density matrix ρλλ give the probability to
find an electron in the state |λk〉, i.e., ρλλ is the population distribution of
the electrons in band λ. From Eq. (5.28) we obtain

d

dt
ρcc(k, t) =

i

!
E(t)

[

dcve
i(εc,k−εv,k)tρint

vc (k, t) − c.c.
]

, (5.31)

d

dt
ρvv(k, t) =

i

!
E(t)

[

d∗cve
i(εv,k−εc,k)tρint

cv (k, t) − c.c.
]

= − d

dt
ρcc(k, t) . (5.32)

Two important limiting cases of the noninteracting system:
coherent optical interband transitions;

quasi-equilibrium electron-hole plasma
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5.3 Coherent Regime: Optical Bloch Equations

In this section, we discuss the interband kinetics for semiconductor systems
for the coherent regime assuming a two-band system. The extensions to
microstructures with several subbands is straightforward, using the results
of the last subsection.

We simplify the free-carrier interband kinetic equations (5.30) – (5.32)
by assuming an electromagnetic field in the form

E(t) =
E0

2
(eiωt + e−iωt) , (5.37)

where E0 is a slowly varying amplitude. Using

ρcv(k, t) = ρint
cv (k, t)e−i(εc,k−εv,k)t (5.38)

and taking into account only the resonant terms (rotating wave approxi-
mation, RWA) proportional to exp[±i(ω − εc,k + εv,k)t], we can write the
interband equations as

(

d

dt
+ iνk

)

ρcv(k, t)eiωt = − iωR

2
[ρcc(k, t) − ρvv(k, t)] , (5.39)

and

d

dt
ρcc(k, t) = − i

2
ωR[ρcv(k, t)eiωt − ρvc(k, t)e−iωt]

= − d

dt
ρvv(k, t) . (5.40)

Here, we introduced the detuning

νk = εc,k − εv,k − ω (5.41)

and the Rabi frequency

ωR =
dcvE0

!
. (5.42)

With the assumption dcv = dvc the Rabi frequency is real.
A helpful geometrical visualization of the kinetics described by

Eqs. (5.39) and (5.40) is obtained if we introduce the Bloch vector, whose
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In this section, we discuss the interband kinetics for semiconductor systems
for the coherent regime assuming a two-band system. The extensions to
microstructures with several subbands is straightforward, using the results
of the last subsection.

We simplify the free-carrier interband kinetic equations (5.30) – (5.32)
by assuming an electromagnetic field in the form

E(t) =
E0

2
(eiωt + e−iωt) , (5.37)

where E0 is a slowly varying amplitude. Using

ρcv(k, t) = ρint
cv (k, t)e−i(εc,k−εv,k)t (5.38)

and taking into account only the resonant terms (rotating wave approxi-
mation, RWA) proportional to exp[±i(ω − εc,k + εv,k)t], we can write the
interband equations as

(

d

dt
+ iνk

)

ρcv(k, t)eiωt = − iωR

2
[ρcc(k, t) − ρvv(k, t)] , (5.39)

and

d

dt
ρcc(k, t) = − i

2
ωR[ρcv(k, t)eiωt − ρvc(k, t)e−iωt]

= − d

dt
ρvv(k, t) . (5.40)

Here, we introduced the detuning

νk = εc,k − εv,k − ω (5.41)

and the Rabi frequency

ωR =
dcvE0

!
. (5.42)

With the assumption dcv = dvc the Rabi frequency is real.
A helpful geometrical visualization of the kinetics described by

Eqs. (5.39) and (5.40) is obtained if we introduce the Bloch vector, whose
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With the assumption dcv = dvc the Rabi frequency is real.
A helpful geometrical visualization of the kinetics described by

Eqs. (5.39) and (5.40) is obtained if we introduce the Bloch vector, whose

Interband equation:
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With the assumption dcv = dvc the Rabi frequency is real.
A helpful geometrical visualization of the kinetics described by

Eqs. (5.39) and (5.40) is obtained if we introduce the Bloch vector, whose

January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

74 Quantum Theory of the Optical and Electronic Properties of Semiconductors

5.3 Coherent Regime: Optical Bloch Equations

In this section, we discuss the interband kinetics for semiconductor systems
for the coherent regime assuming a two-band system. The extensions to
microstructures with several subbands is straightforward, using the results
of the last subsection.

We simplify the free-carrier interband kinetic equations (5.30) – (5.32)
by assuming an electromagnetic field in the form

E(t) =
E0

2
(eiωt + e−iωt) , (5.37)

where E0 is a slowly varying amplitude. Using

ρcv(k, t) = ρint
cv (k, t)e−i(εc,k−εv,k)t (5.38)

and taking into account only the resonant terms (rotating wave approxi-
mation, RWA) proportional to exp[±i(ω − εc,k + εv,k)t], we can write the
interband equations as

(

d

dt
+ iνk

)

ρcv(k, t)eiωt = − iωR

2
[ρcc(k, t) − ρvv(k, t)] , (5.39)

and

d

dt
ρcc(k, t) = − i

2
ωR[ρcv(k, t)eiωt − ρvc(k, t)e−iωt]

= − d

dt
ρvv(k, t) . (5.40)

Here, we introduced the detuning

νk = εc,k − εv,k − ω (5.41)

and the Rabi frequency

ωR =
dcvE0

!
. (5.42)

With the assumption dcv = dvc the Rabi frequency is real.
A helpful geometrical visualization of the kinetics described by

Eqs. (5.39) and (5.40) is obtained if we introduce the Bloch vector, whose
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With the assumption dcv = dvc the Rabi frequency is real.
A helpful geometrical visualization of the kinetics described by

Eqs. (5.39) and (5.40) is obtained if we introduce the Bloch vector, whose

Define Bloch vector:
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real components are

U1(k, t) = 2 Re[ρcv(k, t)eiωt]
U2(k, t) = 2 Im[ρcv(k, t)eiωt]
U3(k, t) = [ρcc(k, t) − ρvv(k, t)] . (5.43)

From Eqs. (5.39) and (5.40) we obtain the following equations of motion
for the Bloch-vector components

d

dt
U1(k, t) = νk U2(k, t)

d

dt
U2(k, t) = −νk U1(k, t) − ωR U3(k, t)

d

dt
U3(k, t) = ωR U2(k, t) . (5.44)

coherent optical Bloch equations

These coherent Bloch equations can be written as single vector equation

d

dt
U(k, t) = Ω × U(k, t) , (5.45)

where

Ω = ωR e1 − νk e3 (5.46)

is the vector of the rotation frequency, and the ei are Cartesian unit vectors.
It is well known from elementary mechanics that

dr
dt

= ω × r (5.47)

describes the rotation of the vector r around ω, where the direction of ω
is the rotation axis and ω is the angular velocity. Using the analogy of
Eqs. (5.45) and (5.47) one can thus describe the optical interband kinetics
as a rotation of the Bloch vector. The length of the vector remains constant,
and since in the absence of a field

U(k, t) = U3(k, t) e3 = −e3 , (5.48)

the Bloch vector for coherent motion is a unit vector with length one.

=⇒

Coherent optical Bloch equations:

d

dt
U1(k, t) = νk U2(k, t)

d

dt
U2(k, t) = −νk U1(k, t) − ωR U3(k, t)

d

dt
U3(k, t) = ωR U2(k, t) .
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Fig. 5.2 Schematic drawing of the rotation of the Bloch vector for excitation with a
rectangular pulse of area π/2 pulse and a finite detuning for T2 ! T1.

we take ωR = 0 in (5.49) and obtain

d

dt
U1(k, t) = −U1(k, t)

T2
+ νk U2(k, t)

d

dt
U2(k, t) = −U2(k, t)

T2
− νk U1(k, t) (5.51)

with the solution
(

U1(k, t)
U2(k, t)

)

=
(

cos(νkt) sin(νkt)
− sin(νkt) cos(νkt)

) (

U1(k, t)
U2(k, t)

)

e−t/T2 . (5.52)

Eq. (5.52) shows how T2 causes a decay of the polarization while it rotates
with the detuning frequency νk around the z-axis. The polarization spirals
from the initial value to the stable fix point U1 = U2 = 0, if we disregard the
inversion decay. Because of the band dispersion included in νk, the polar-
ization of electron–hole pairs with different k-values rotates with different
rotation frequencies. If one applies after a time τ a second light pulse, which
causes a rotation of the Bloch vector by π around the e1 axis, one keeps the
Bloch vector in the x− y plane (Fig. 5.2). A polarization component which
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If the system is excited at resonance, νk = 0, then U rotates under the
influence of a coherent field around the e1 axis in the z − y plane. Starting
in the ground state, U3(t = 0) = −1, a light field rotates the Bloch vector
with the Rabi frequency around the -e1 axis. After the time ωRt = π/2
the inversion U3 is zero, and the polarization reaches its maximum U2 = 1.
After ωRt = π the system is in a completely inverted state, U3 = 1, and
it returns after ωRt = 2π to the initial state, U3 = −1. Such a rotation
is called Rabi flopping. A light pulse of given duration turns the Bloch
vector a certain angle. This is the basic idea for the phenomenon of photon
echo. With a finite detuning ν > 0, e.g., a z-component is added to the
rotation axis, so that the rotations no longer connect the points U3 = 1 and
U3 = −1.

For a more realistic description, we have to add dissipative terms to the
Bloch equations. Here, we simply introduce a phenomenological damping
of the polarization, i.e., we assume a decay of the transverse vector compo-
nents U1 and U2 with a transverse relaxation time T2. Additionally, we take
into account that the inversion U3 decays, e.g., by spontaneous emission, to
the ground state U3 = −1. This population decay time is the longitudinal
relaxation time T1. It is an important task of the many-body theory to
derive the relaxation times from the system interactions. Including these
relaxation times, the Bloch equations take the form

d

dt
U1(k, t) = −

U1(k, t)
T2

+ νk U2(k, t)

d

dt
U2(k, t) = −

U2(k, t)
T2

− νk U1(k, t) − ωR U3(k, t)

d

dt
U3(k, t) = −

U3(k, t) + 1
T1

+ ωR U2(k, t) . (5.49)

optical Bloch equations with relaxation

To get a feeling for the decay processes described by the relaxation
rates in Eqs. (5.49), let us assume that a short pulse with the area π/4 has
induced an initial maximum polarization

U(k, t = 0) = U1(k, t = 0) e1 + U2(k, t = 0) e2 . (5.50)

To study the free induction decay, i.e., the decay in the absence of the field,
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we take ωR = 0 in (5.49) and obtain
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+ νk U2(k, t)

d

dt
U2(k, t) = −U2(k, t)
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− νk U1(k, t) (5.51)

with the solution
(

U1(k, t)
U2(k, t)

)

=
(

cos(νkt) sin(νkt)
− sin(νkt) cos(νkt)

) (

U1(k, t)
U2(k, t)

)

e−t/T2 . (5.52)

Eq. (5.52) shows how T2 causes a decay of the polarization while it rotates
with the detuning frequency νk around the z-axis. The polarization spirals
from the initial value to the stable fix point U1 = U2 = 0, if we disregard the
inversion decay. Because of the band dispersion included in νk, the polar-
ization of electron–hole pairs with different k-values rotates with different
rotation frequencies. If one applies after a time τ a second light pulse, which
causes a rotation of the Bloch vector by π around the e1 axis, one keeps the
Bloch vector in the x− y plane (Fig. 5.2). A polarization component which

Free induction decay                :
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in the ground state, U3(t = 0) = −1, a light field rotates the Bloch vector
with the Rabi frequency around the -e1 axis. After the time ωRt = π/2
the inversion U3 is zero, and the polarization reaches its maximum U2 = 1.
After ωRt = π the system is in a completely inverted state, U3 = 1, and
it returns after ωRt = 2π to the initial state, U3 = −1. Such a rotation
is called Rabi flopping. A light pulse of given duration turns the Bloch
vector a certain angle. This is the basic idea for the phenomenon of photon
echo. With a finite detuning ν > 0, e.g., a z-component is added to the
rotation axis, so that the rotations no longer connect the points U3 = 1 and
U3 = −1.

For a more realistic description, we have to add dissipative terms to the
Bloch equations. Here, we simply introduce a phenomenological damping
of the polarization, i.e., we assume a decay of the transverse vector compo-
nents U1 and U2 with a transverse relaxation time T2. Additionally, we take
into account that the inversion U3 decays, e.g., by spontaneous emission, to
the ground state U3 = −1. This population decay time is the longitudinal
relaxation time T1. It is an important task of the many-body theory to
derive the relaxation times from the system interactions. Including these
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optical Bloch equations with relaxation

To get a feeling for the decay processes described by the relaxation
rates in Eqs. (5.49), let us assume that a short pulse with the area π/4 has
induced an initial maximum polarization

U(k, t = 0) = U1(k, t = 0) e1 + U2(k, t = 0) e2 . (5.50)
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Eq. (5.52) shows how T2 causes a decay of the polarization while it rotates
with the detuning frequency νk around the z-axis. The polarization spirals
from the initial value to the stable fix point U1 = U2 = 0, if we disregard the
inversion decay. Because of the band dispersion included in νk, the polar-
ization of electron–hole pairs with different k-values rotates with different
rotation frequencies. If one applies after a time τ a second light pulse, which
causes a rotation of the Bloch vector by π around the e1 axis, one keeps the
Bloch vector in the x− y plane (Fig. 5.2). A polarization component which

January 26, 2004 16:26 WSPC/Book Trim Size for 9in x 6in book2

Free Carrier Transitions 77

−1
−0.5

0
0.5

1

−1

−0.5
0
0.5

1

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

−1

−0.5
0
0.5

1

U

U1

3

U 2

Fig. 5.2 Schematic drawing of the rotation of the Bloch vector for excitation with a
rectangular pulse of area π/2 pulse and a finite detuning for T2 ! T1.

we take ωR = 0 in (5.49) and obtain
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Eq. (5.52) shows how T2 causes a decay of the polarization while it rotates
with the detuning frequency νk around the z-axis. The polarization spirals
from the initial value to the stable fix point U1 = U2 = 0, if we disregard the
inversion decay. Because of the band dispersion included in νk, the polar-
ization of electron–hole pairs with different k-values rotates with different
rotation frequencies. If one applies after a time τ a second light pulse, which
causes a rotation of the Bloch vector by π around the e1 axis, one keeps the
Bloch vector in the x− y plane (Fig. 5.2). A polarization component which

Photon echo intensity:
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had rotated at time τ by an angle α will find itself again separated from the
origin after the π pulse, this time by −α. Since all polarization components
continue to rotate around e3 with νk, they all return to the origin after the
time 2τ . The coherent superposition of all polarization components causes
the emission of a light pulse, the photon echo pulse. Naturally, the intensity
of the photon echo depends on the dephasing time and decreases as

[e−2τ/T2 ]2 = e−4τ/T2 . (5.53)

By varying the time delay τ between the two pulses, one can thus use a
photon echo experiment to measure the dephasing time T2.

5.4 Quasi-Equilibrium Regime:
Free Carrier Absorption

The assumption of quasi-thermal distributions of the electrons in the con-
duction band and of the holes in the valence band provides a significant
shortcut for the analysis of the optical response, since the diagonal ele-
ments of the density matrix do not have to be computed, but are given by
thermal distribution functions. We discuss some aspects of carrier–carrier
scattering and the mechanisms leading to a quasi-equilibrium situation in
later chapters of this book. Here, in the framework of the free carrier
model we simply postulate this situation. As is well known, the thermal
equilibrium distribution for electrons is the Fermi distribution

ρ0
λλ =

1
e(ελ,k−µλ)β + 1

≡ fλ,k , (5.54)

where β = 1/(kBT ) is the inverse thermal energy and kB is the Boltzmann
constant. The Fermi distribution and its properties are discussed in more
detail in the following Chap. 6. For the present purposes, it is sufficient to
note that the chemical potential µλ is determined by the condition that the
sum

∑

k fλ,k yields the total number of electrons Nλ in a band λ, i.e.,
∑

k

fλ,k = Nλ → µλ = µλ(Nλ, T ) , (5.55)

where we assume that the summation over the two spin directions is in-
cluded with the k-summation. In total equilibrium and for thermal ener-
gies, which are small in comparison to the band gap, the valence band is
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had rotated at time τ by an angle α will find itself again separated from the
origin after the π pulse, this time by −α. Since all polarization components
continue to rotate around e3 with νk, they all return to the origin after the
time 2τ . The coherent superposition of all polarization components causes
the emission of a light pulse, the photon echo pulse. Naturally, the intensity
of the photon echo depends on the dephasing time and decreases as

[e−2τ/T2 ]2 = e−4τ/T2 . (5.53)

By varying the time delay τ between the two pulses, one can thus use a
photon echo experiment to measure the dephasing time T2.

5.4 Quasi-Equilibrium Regime:
Free Carrier Absorption

The assumption of quasi-thermal distributions of the electrons in the con-
duction band and of the holes in the valence band provides a significant
shortcut for the analysis of the optical response, since the diagonal ele-
ments of the density matrix do not have to be computed, but are given by
thermal distribution functions. We discuss some aspects of carrier–carrier
scattering and the mechanisms leading to a quasi-equilibrium situation in
later chapters of this book. Here, in the framework of the free carrier
model we simply postulate this situation. As is well known, the thermal
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where β = 1/(kBT ) is the inverse thermal energy and kB is the Boltzmann
constant. The Fermi distribution and its properties are discussed in more
detail in the following Chap. 6. For the present purposes, it is sufficient to
note that the chemical potential µλ is determined by the condition that the
sum

∑

k fλ,k yields the total number of electrons Nλ in a band λ, i.e.,
∑

k

fλ,k = Nλ → µλ = µλ(Nλ, T ) , (5.55)

where we assume that the summation over the two spin directions is in-
cluded with the k-summation. In total equilibrium and for thermal ener-
gies, which are small in comparison to the band gap, the valence band is
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completely filled and the conduction band is empty, i.e.,

Nv = N, Nc = 0 for 1/β << Eg ,

where N is the number of atoms.
The quasi-equilibrium approximation is a significant simplification in

comparison to the full set of Bloch equations, since we do not have to solve
Eqs. (5.31) and (5.32) for the diagonal terms. Inserting the distribution
functions (5.54) into the RHS of Eq. (5.30), expressing the field through its
Fourier transform, Eq. (2.16), and integrating over time yields

ρint
cv (k, t) =

∫

dω

2π

dcvE(ω)ei(εc,k−εv,k−ω)t

!(εc,k − εv,k − ω − iγ)
(fv,k − fc,k) . (5.56)

The optical polarization is given by

P(t) = tr[ρ(t)d] = tr[ρint(t)dint(t)] , (5.57)

where tr stands for trace, i.e., the sum over all diagonal matrix elements:

P(t) =
1
L3

∑

k

[ρint
cv (k, t)dint

vc (k, t) + ρint
vc (k, t)dint

cv (k, t)]

=
1
L3

∑

k

∫

dω

2π

|dcv|2(fv,k − fc,k)
!(εc,k − εv,k − ω − iγ)

E(ω)e−iωt + c.c. , (5.58)

and

dint
vc (k, t) = dvce

i(εv,k−εc,k)t . (5.59)

Since

χ(ω) = P(ω)/E(ω) (5.60)

and

P(t) =
∫

dω

2π
P(ω)e−iωt , (5.61)

Optical polarisation:
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Optical susceptibility:
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we obtain the optical susceptibility as

χ(ω) = −
∑

k

|dcv|2

L3
(fv,k − fc,k)

[

1
!(εv,k − εc,k + ω + iγ)

.

−
1

!(εc,k − εv,k + ω + iγ)

]

. (5.62)

optical susceptibility for free carriers

According to Eq. (1.53), the absorption spectrum is determined by the
imaginary part of χ(ω)

α(ω) =
4πω

nbc
χ′′(ω)

=
4π2ω

L3nbc

∑

k

|dcv|2(fv,k − fc,k) δ
[

!(εv,k − εc,k + ω)
]

. (5.63)

Since it is possible to evaluate Eq. (5.63) for different dimensionalities D
of the electron system, we will give the result for the general case. As
discussed in Chap. 3, it is often possible to approximate the band energies
εc,k and εv,k by quadratic functions around the band extrema. Unless noted
otherwise, we always assume that the extrema of both bands occur at the
center of the Brillouin zone, i.e., at k = 0. Such semiconductors are called
direct-gap semiconductors. Introducing the effective masses mc and mv for
electrons in the conduction band and valence band, respectively, we write
the energy difference as

!(εc,k − εv,k) =
!2k2

2mc
− !2k2

2mv
+ Eg . (5.64)

Since the valence-band curvature is negative, we have a negative mass for
the electrons in the valence band, mv < 0. To avoid dealing with negative
masses, one often prefers to introduce holes as new quasi-particles with a
positive effective mass

mh = −mv . (5.65)

In the electron–hole representation, one discusses electrons in the conduc-
tion band and holes in the valence band. The probability fh,k to have a
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For different dimensionalities D:
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hole at state k is given as

fh,k = 1 − fv,k . (5.66)

The charge of the hole is opposite to that of the electron, i.e., +e. Eq. (5.65)
implies that the energy of a hole is counted in the opposite way of the
electron energy, i.e., the hole has minimum energy when it is at the top of
the valence band. To emphasize the symmetry in our results, we rename
the conduction-band mass mc → me, fc → fe, and understand from now
on that the term electron is used for conduction-band electrons and hole
for valence-band holes, respectively. In the electron–hole notation, the free
carrier absorption (5.63) is

α(ω) =
4π2ω

L3nbc

∑

k

|dcv|2(1 − fe,k − fh,k) δ
[

!(εv,k − εc,k + ω)
]

. (5.67)

Furthermore, we write the energy difference as

!(εc,k − εv,k) = !(εe,k + εh,k) =
!2k2

2mr
+ Eg , (5.68)

where

1
mr

=
1

me
+

1
mh

or mr =
memh

me + mh
(5.69)

is the reduced electron–hole mass.
In order to proceed with our evaluation of the absorption coefficient for

electrons with D translational degrees of freedom, it is useful to convert
the sum over k into an integral. Following the steps in Eqs. (4.5) – (4.7)
we evaluate the k-summation in Eq. (5.67) to obtain

α(ω) =
8π2ω|dcv|2

nbcL
3−D
c

1
(2π)D

ΩDSD(ω) . (5.70)

In Eq. (5.70), we have replaced the ratio LD/L3 by 1/L3−D
c , where Lc

denotes again the length of the system in the confined space dimensions,
see Chap. 4. Furthermore, we introduced

SD(ω) =
∫ ∞
0 dk kD−1δ

(

!
2k2

2mr
+ Eg + E(D)

0 − !ω
)

(1 − fe,k − fh,k) .

(5.71)
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the conduction-band mass mc → me, fc → fe, and understand from now
on that the term electron is used for conduction-band electrons and hole
for valence-band holes, respectively. In the electron–hole notation, the free
carrier absorption (5.63) is

α(ω) =
4π2ω

L3nbc

∑

k

|dcv|2(1 − fe,k − fh,k) δ
[

!(εv,k − εc,k + ω)
]

. (5.67)

Furthermore, we write the energy difference as

!(εc,k − εv,k) = !(εe,k + εh,k) =
!2k2

2mr
+ Eg , (5.68)

where

1
mr

=
1

me
+

1
mh

or mr =
memh

me + mh
(5.69)

is the reduced electron–hole mass.
In order to proceed with our evaluation of the absorption coefficient for

electrons with D translational degrees of freedom, it is useful to convert
the sum over k into an integral. Following the steps in Eqs. (4.5) – (4.7)
we evaluate the k-summation in Eq. (5.67) to obtain

α(ω) =
8π2ω|dcv|2

nbcL
3−D
c

1
(2π)D

ΩDSD(ω) . (5.70)

In Eq. (5.70), we have replaced the ratio LD/L3 by 1/L3−D
c , where Lc

denotes again the length of the system in the confined space dimensions,
see Chap. 4. Furthermore, we introduced

SD(ω) =
∫ ∞
0 dk kD−1δ

(

!
2k2

2mr
+ Eg + E(D)

0 − !ω
)

(1 − fe,k − fh,k) .

(5.71)
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In the energy-conserving δ-function, we included also the zero-point energy,
which for ideal confinement (infinite potential) is

E(D)
0 =

!2

2mr

(

π

Lc

)2

(3 − D) (5.72)

for the (3−D) confined directions (see problem 5.2). Taking the electron–
hole–pair reduced-mass energy

!2k2

2mr
= x (5.73)

as the integration variable, we can evaluate the integral in Eq. (5.71) with

k =
(

2mr

!2

)1/2

x1/2 and dk =
1
2

(

2mr

!2

)1/2 dx

x1/2
(5.74)

as

SD(ω) =
1
2

(

2mr

!2

)D/2 ∫ ∞

0
dxx(D−2)/2 δ(x + Eg + E(D)

0 − !ω)

× [1 − fe(x) − fh(x)] , (5.75)

where

fi(x) =
1

eβ(xmr/mi−µi) + 1
for i = e, h . (5.76)

The final integral in Eq. (5.75) is easily evaluated yielding

SD(ω) = 1
2

(

2mr
!2

)D/2 (!ω−Eg −E(D)
0 )(D−2)/2Θ(!ω−Eg −E(D)

0 )A(ω) ,

(5.77)

where Θ(x) is again the Heavyside unit-step function and

A(ω) = 1 − fe(ω) − fh(ω) (5.78)

with

fi(ω) =
1

eβ[(!ω−Eg−E(D)
0 )mr/mi−µi] + 1

for i = e, h . (5.79)
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Density of states for dimensionality D:

Optical susceptibility for free carriers:

3D ∼
�
�ω − Eg

1D ∼ 1/

�
�ω − Eg − E(1)

0

2D ∼ Θ(Eg + E(2)
0 )
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The factor A(ω) in (5.77) is often referred to as band-filling factor. Inserting
the result for S(ω) into Eq. (5.70), we obtain for the absorption coefficient

α(ω) = αD
0

!ω

E0

(

!ω − Eg − E(D)
0

E0

)

D−2
2

Θ(!ω − Eg − E(D)
0 )A(ω) ,

(5.80)

absorption coefficient for free carriers

where we introduced the energy E0 = !2/(2mra2
0) and the length a0 =

!2ε0/(e2mr) as scaling parameters, and

αD
0 =

4π2|dcv|2

!nbc

1
(2πa0)D

ΩD
1

L3−D
c

(5.81)

To discuss the resulting semiconductor absorption, we first consider the
case of unexcited material, where fe(ω) = fh(ω) = 0, i.e., A(ω) = 1.
The absorption spectra obtained from Eq. (5.80) for this case are plotted
in Fig. 5.3. The figure shows that in two-dimensional materials the ab-
sorption sets in at Eg + E(2)

0 like a step function, while it starts like a
square root

√

!ω − Eg in bulk material with D = 3, and it diverges like

1D

2D
3D

!

h"

Fig. 5.3 Free electron absorption spectra for semiconductors, where the electrons can
move freely in one, two, or three space dimensions.

Unexcited material:
Absorption coefficient for free carriers:
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1/
√

!ω − Eg − E(1)
0 for D = 1. The function S(ω) is just the density of

states. If we considered not strictly two- or one-dimensional conditions,
but a quantum well or quantum wire with a finite thickness, the density of
states would exhibit steps corresponding to the quantization of the electron
motion in the confined space dimensions. The first step, which is all that
we have taken into account, belongs to the lowest eigenvalue. Further steps
corresponding to higher energy eigenvalues in the confined direction would
belong to higher subbands.

As mentioned earlier, through optical pumping or injection of carriers,
one may realize a situation with a finite number of electrons and holes.
In this case, one speaks about an excited semiconductor, where the band-
filling factor A(ω), Eq. (5.78), differs from one. Using the properties of the
Fermi functions, one can rewrite A(ω) as (see problem 5.1)

A(ω) =
[

(1− fe(ω))(1− fh(ω)) + fe(ω)fh(ω)
]

tanh
[

β
2 (!ω − Eg − µ)

]

,

(5.82)

where we introduced the total chemical potential µ as

µ = µe + µh . (5.83)

!

h"

Fig. 5.4 Absorption/gain spectra for a one-dimensional free carrier system using the
carrier densities N = 0, 3.5, 5.4, 7.4 × 105cm−1, from top to bottom.
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Since

0 ≤ fe/h ≤ 1 , (5.84)

we see that the prefactor of the tanh term in Eq. (5.82) is strictly positive,
varying between 0.5 and 1. However, tanh(x) changes its sign at x = 0.
The band-filling factor, and therefore the optical absorption, can become
negative if µ > 0 and

Eg < !ω < Eg + µ . (5.85)

Examples of the density-dependent absorption spectra for one-, two-, and
three-dimensional free carrier systems are plotted in Figs. 5.4, 5.5, and 5.6,
respectively.

As the electron–hole densities are increased, the carrier distributions
gradually become more and more degenerate with positive chemical poten-
tial µ/kBT . In most semiconductor systems, the effective mass of the holes
is more than three times larger than that of the electrons. Consequently, the
valence band density of states is very large and the holes remain non degen-
erate up to rather large densities. For the highest densities in Figs. 5.4 – 5.6,
the absorption becomes negative in the spectral region above the band gap,
i.e., light with these frequencies is amplified, it experiences gain rather than
loss (absorption).

The appearance of optical gain in the electron–hole system is the basis of
semiconductor lasers, whose basic operational principles are discussed later

h!

"

Fig. 5.5 Absorption/gain spectra for a two-dimensional free carrier system using the
carrier densities N = 0, 5, 8.3, 12 × 1011cm−2, from top to bottom.
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in this book. It is interesting to compare the spectral properties of the gain
for the different effective dimensionalities of the carrier system. Due to the
vanishing density of states at the band gap, in a three-dimensional system
(Fig. 5.6), the gain gradually increases with increasing energy and peaks
at an energy between the band gap and the total chemical potential of the
carrier system. Due to the step-like density of states in a two dimensional
system (Fig. 5.5) we always have the gain maximum directly at the band
gap, only the spectral region of optical gain increases with increasing carrier
density. In the one-dimensional carrier system of Fig. 5.4, we see a very
sharply peaked gain right at the band gap whose amplitude increases with
increasing carrier density.

For many applications one would often prefer the gain properties of the
one-dimensional system unless a broad spectral gain band width is needed,
e.g., for short-pulse generation. Anyway, the strong gain modifications
caused by changing the effective dimensionality of the carrier system are
one of the main motives of the ongoing research and development efforts in
the area of low-dimensional semiconductor structures.

The density-dependent absorption spectra shown in Figs. 5.4 – 5.6 are
the first example of optical nonlinearities which we discuss. The effects
included in our present treatment are usually referred to as band-filling
nonlinearities. Throughout this book we will encounter a variety of different
sources for optical semiconductor nonlinearities.
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Fig. 5.6 Absorption/gain spectra for a three-dimensional free carrier system using the
carrier densities N = 0, 3.3, 5.8, 9.5 × 1017cm−3, from top to bottom.

Absorption/gain spectra for D-dimensional semiconductors:
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1/
√

!ω − Eg − E(1)
0 for D = 1. The function S(ω) is just the density of

states. If we considered not strictly two- or one-dimensional conditions,
but a quantum well or quantum wire with a finite thickness, the density of
states would exhibit steps corresponding to the quantization of the electron
motion in the confined space dimensions. The first step, which is all that
we have taken into account, belongs to the lowest eigenvalue. Further steps
corresponding to higher energy eigenvalues in the confined direction would
belong to higher subbands.

As mentioned earlier, through optical pumping or injection of carriers,
one may realize a situation with a finite number of electrons and holes.
In this case, one speaks about an excited semiconductor, where the band-
filling factor A(ω), Eq. (5.78), differs from one. Using the properties of the
Fermi functions, one can rewrite A(ω) as (see problem 5.1)

A(ω) =
[

(1− fe(ω))(1− fh(ω)) + fe(ω)fh(ω)
]

tanh
[

β
2 (!ω − Eg − µ)

]

,

(5.82)

where we introduced the total chemical potential µ as

µ = µe + µh . (5.83)

!
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Fig. 5.4 Absorption/gain spectra for a one-dimensional free carrier system using the
carrier densities N = 0, 3.5, 5.4, 7.4 × 105cm−1, from top to bottom.
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Since

0 ≤ fe/h ≤ 1 , (5.84)

we see that the prefactor of the tanh term in Eq. (5.82) is strictly positive,
varying between 0.5 and 1. However, tanh(x) changes its sign at x = 0.
The band-filling factor, and therefore the optical absorption, can become
negative if µ > 0 and

Eg < !ω < Eg + µ . (5.85)

Examples of the density-dependent absorption spectra for one-, two-, and
three-dimensional free carrier systems are plotted in Figs. 5.4, 5.5, and 5.6,
respectively.

As the electron–hole densities are increased, the carrier distributions
gradually become more and more degenerate with positive chemical poten-
tial µ/kBT . In most semiconductor systems, the effective mass of the holes
is more than three times larger than that of the electrons. Consequently, the
valence band density of states is very large and the holes remain non degen-
erate up to rather large densities. For the highest densities in Figs. 5.4 – 5.6,
the absorption becomes negative in the spectral region above the band gap,
i.e., light with these frequencies is amplified, it experiences gain rather than
loss (absorption).

The appearance of optical gain in the electron–hole system is the basis of
semiconductor lasers, whose basic operational principles are discussed later
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Fig. 5.5 Absorption/gain spectra for a two-dimensional free carrier system using the
carrier densities N = 0, 5, 8.3, 12 × 1011cm−2, from top to bottom.
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Fig. 5.5 Absorption/gain spectra for a two-dimensional free carrier system using the
carrier densities N = 0, 5, 8.3, 12 × 1011cm−2, from top to bottom.
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Fig. 5.5 Absorption/gain spectra for a two-dimensional free carrier system using the
carrier densities N = 0, 5, 8.3, 12 × 1011cm−2, from top to bottom.
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