
  

Optics + Semiconductors: How do we start?

1. Classical treatment of charge in an optical (electric) field – oscillator model

2. Quantum mechanical treatment of an atom in a classical field

3. Semiconductors: bands instead discrete levels

4. Nanostructures (quantum wells, quantum wires, quantum dots)

Rich optical properties due to many body environment

Role of lattice vibrations (phonons), Coulomb interactions, confinement, etc.



  

3. Solids: periodic lattice of atoms



Electron in a periodic potential

 In a crystal,

 Hamiltonian

 Translation operator

Basis vectorsLattice vector

Also and

Bloch
Theorem



Real & reciprocal lattice

 Real crystal lattice

Wigner-Seitz cell

 SC

 BCC

 FCC

 Reciprocal lattice

Brillouin zone

 SC

 FCC

 BCC



Bloch wave function

 Bloch Theorem:

 Using

the Schrödinger equation becomes 

Bloch function



Bloch wave function properties

 Normalization

Using                               we get 

 Surface effects avoided via periodic boundary conditions

For a cubic lattice



Wannier Functions

 Localized functions

 Electron wavefunction



Tight Binding Approximation

 Assumption: electrons remain close to atomic sites, i.e. electronic wave 
functions between neighboring atoms have small overlap

 Ansatz:

 Energy

Tight
Binding
Wave function



Tight Binding Approximation

 Assuming localized electrons



Tight Binding Approximation

 Up to nearest neighbors

 For a cubic lattice

 Bands formed; Energy gaps possible

 Typically B>0 for s-type and B<0 for p-type φ

 Near band min/max: parabolic band approximation



k·p Theory 

 Assume the band structure is known at some point of high symmetry

 Compute energy eigenvalues & Bloch functions around that point

Consider Γ point of Brillouin zone:

 Perturbation theory

or

parity



Conduction & valence band effective mass 

 Assume 2 bands only, 0 and 1, with                and

 Effective mass tensor

 Isotropic:

 Reduce e-h effective mass

I = c,v
The effective mass for the lower 
(valence) band can be negative



Degenerate Valence Bands

 Valence band originates from p orbitals

 4 states

One band with positive curvature2 bands unaffected



Degenerate Valence Bands

 In the presence of spin, we need to consider total angular momentum

 6 states:

Split to lower energies due 
to spin-orbit interaction

Can be ignored



Degenerate Valence Bands

 4 degenerate valence bands described by spherical symmetric H



  

4. Nanostructures



Nanostructures

Quantum Well Quantum Wire

Quantum Dot

Electrons confined in 1, 2 or 3 dimensions



Envelope function approximation

 Quantum well

 Quantum wire

 Quantum dot

 Density of states changes with dimensionality



Quantum Wells (I)

 Assuming infinitely deep walls

Even & odd solutions

n=1,2,3,...



Quantum Wells (II)

 Assuming finite potential walls

 3 regions 
(I) (II)(III)



Quantum Wells (III)

 Valence bands



Summary

 Electron in periodic potential described by Bloch function

 Description possible with Wannier (localized) or Bloch(delocalized) functions

 Tight binding approximation: electron wavefunction can be approximated as a 
sum of atomic orbitals

  Conduction & valence bands formed; energy gaps created

 k.p theory: treats k dependence as a perturbation around k=0 point

 Valence bands: HH, LH and SO split off band

 Dimensionality matters: HH-LH degeneracy is lifted at k=0 in nanostructures
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