Physik, Integrierter Kurs IV -Sommersemester 10, UNI Konstanz

Mitschrift*: Alexander Kimmig Alexander.Kimmig@uni-konstanz.de

13. Juli 2010

^{*}Das Skript ist meine private Mitschrift der Vorlesung *Integrierter Kurs IV* (IKIV) im Sommersemester 2010. Es erhebt keinen Anspruch auf Vollständigkeit und Richtigkeit! Wer Fehler findet, darf diese aber gerne an mich an Alexander.Kimmig@uni-konstanz.de melden.

Inhaltsverzeichnis

1 E	inführung	2
1.1	Thema	2
1.2	Historischer Überblick	2
2 A	tom, Bausteine des Atoms, Wechselwirkung der Bausteine	4
2.1 2.1.1 2.1.2 2.1.3	Atom Größe des Atoms Masse des Atoms Bestimmung von N_A	4 4 7 8
2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.3	Elektron Entdeckung des e ⁻ 1897: J.J. THOMSON Bestimmung der Elementarladung Größe des Elektrons Masse des Elektrons Massenspektrometrie	9 9 10 10 11
2.3.1 2.3.2	Teilchen im E- und B-Feld Höchstauflösende Massenspektrometrie Höchstauflösende Massenspektrometrie Höchstauflösende Massenspektrometrie	11 13
2.4	Isotopie	15
2.5 2.5.1 2.5.2 2.5.3	Streuexperimente Der Wirkungsquerschnitt Streuung von Elektronen an Materie Rutherford-Streuung	16 16 17 18
2.6 2.6.1 2.6.2	Photoeffekt und Photonen Der Photoeffekt	25 25 28
2.7 2.7.1 2.7.2	Der Compton-Effekt Röntgenquelle und Röntgenspektrum	28 28 29
2.8 2.8.1 2.8.2 2.8.3 2.9	Elektronenbeugung De-Broglie-Wellenlänge (1924) Das Davisson-Germer-Experiment (1918-1927, NP 1937) Das Debye-Scherrer-Verfahren Schwarzkörperstrahlung, Planck'sches Strahlungsgesetz	31 31 32 32 34 25
2.9.1 2.9.2	Planck'sches Strahlungsgesetz	$\frac{35}{37}$

3	Welle-Teilchen-Dualismus	41
3.1	${\it Interferenzexperimente, Wahrscheinlichkeits interpretation}$	41
3.2	Die Wellenfunktion	44
3.3	Wellenpakete	44
3.4 3.4.	Heisenberg'sche Unschärferelation 1 Analogieversuch zum "Welcher-Weg"-Experiment: "Quantenradierer"	46 47
4	Bohr'sches Atommodell	48
4.1 4.1. 4.1.	Grundlegende Experimente 1 Spektrallinien des Wasserstoffs 2 Franck-Hertz-Versuch	48 48 49
4.2	Bohr'sche Postulate	50
4.3 4.3. 4.3. 4.3. 4.3. 4.3.	Isotopieverschiebung, Spektren H-ähnlicher, myonischer und Rydbergatome 1 Isotopieverschiebung	52 52 52 52 53 53
5	Die Schrödingergleichung	54
5.1	Die Schrödingergleichung für freie Teilchen	54
5.2	Einführung der Schrödingergleichung über die Hamilton-Jacobi-Theorie	55
5.3	Normierbarkeit, Erwartungswerte	59
5.4	Die Wellenfunktion im Impulsraum	61
5.5 5.5. 5.5. 5.5.	Operatoren, der Kommutator, Unschärferelation 1 Der Kommutator 2 Hermite'sche Operatoren 3 Minimale Unschärfe: Heisenberg'sche Unschärferelation	62 63 65 66
6	Teilchen in einer Dimension	67
6.1	Randbedingungen an Unstetigkeiten	67
6.2 6.2.	Potentialstufe 1 Teilchenstromdichte	69 70

6.3	Der Tunneleffekt	72
6.4 6.4. 6.4. 6.4.	Gebundene Zustände: Potentialtopf 1 Potentialtopf mit unendlich hohen Wänden 2 Parität 3 Potentialtopf mit endlich hohen Wänden	75 76 77 78
6.5	Delta-Potential	81
6.6	Periodische Potentiale	82
6.7	Der harmonische Oszillator	86
7	Mathematischer Formalismus der Quantenmechanik	90
7.1 7.1. 7.1.	Zustände und Observablen 1 Zustand 2 Observablen	90 90 91
7.2	Der Hilbertraum	91
7.3	Dualraum, Dirac-Notation	97
7.4	Lineare Operatoren	98
7.5	Das Eigenwertproblem	104
7.6	Messprozess in der Quantenmechanik	107
7.7	Postulate der Quantenmechanik	108
7.8	Anwendung: Harmonischer Oszillator II	111
8	Bewegung im Zentralfeld, H-Atom	115
8.1	Drehimpuls	115
8.2	Ortsdarstellung, Kugelflächenfunktionen	118
8.3	Bewegung im Zentralfeld	120
8.4	Das H-Atom und H-ähnliche Atome	123
9	Magnetische Momente	126
9.1	Magnetisches Moment eines klassischen Kreisstroms	126
9.2	Bahnmoment imäußeren Magnetfeld	127
9.3	Abstrahlung	128

9.3 9.3	B.1ÜbergangswahrscheinlichkeitenB.2Spezialfall: H-Atom	128 129
9.4	H-Atom im Magnetfeld (ohne Spin), Zeeman-Effekt	130
10	Der Elektronenspin	133
10.1	Stern-Gerlach-Experiment, 1922	133
10.2	Eigenschaften des Spins	134
10.3 10 10 10 10	Messung des gyromagnetischen Verhältnisses .3.1 Einstein-de-Haas-Versuch .3.2 Resonanzmethode von Rabi .3.3 Elektronenspinresonanz (ESR), Elektronen-paramagnetische Resonanz Einfluss des Spins auf die Wasserstoff-Energieniveaus	 134 134 135 136
10 10 10	 4.1 Spin-Bahn-Wechselwirkung, Feinstruktur des Spektrums	136 138 139
11	Weitere Effekte auf Spektren des H-Atoms	141
11.1	Relativistische Korrekturen	141
11.2	Die Lamb-Verschiebung	141
11.3	Die Hyperfeinstruktur	142
11.4	Weitere Kerneigenschaften	143
E	Einschub: Wechselwirkung von Strahlung mit Materie und Strahlungsde-	

tektor	5 5		145
E.1 Wechselwirk	ung		145
E.1.1 geladene Tei	lchen		145
E.1.2 Neutrale Tei	lchen (hier: Photonen)		147
E.1.2.1 Nachy	veis zumeist über geladenes Teilchen		147
E.1.2.2 Totale	r Absorptionskoeffizient für elektrom	agnetische Strahlung in Materie	148
Abbildungsverzeich	iis		150

IK4 Teil 1: Integrierter Kurs 4 - Atom und Quantenphysik

2010-04-12

Kapitel 1. Einführung

1.1. Thema

Aufbau und Eigenschaften der Atome, ihre Wechselwirkung untereinander und mit elektrischen und magnetischen Feldern.

Nicht Thema: Wechselwirkungen im Atomkern

Ziele der Atom- und Quantenphysik

- Mikroskopisches Verständnis der Eigenscahften von Atomen
- Beschreibung durch wenige, fundamentale Naturkonstanten (materialunabhängig) z. B. $e,\,m_0,\,c,\,\underline{h}$

PLANCKSches Wirkungsquantum

- Beispiele: Spektren der Atome
- \bullet insbesondere Phänomene, die nicht klassisch verstanden werden können \rightarrow Quantenphysik

1.2. Historischer Überblick

- 5. und 4. Jhdt. v. Chr. DEMOKRIT, PLATON, ARISTOTELES: Begriff *Atom* als kleinste Einheit, die die Eigenschaften bestimmt
- **1803** DALTON: Gesetz der *multiplen Proportionen*: Die Gewichtsverhältnisse zweier sich zu verschiedenen Verbindungen vereinigender Elemente stehen im Verhältnis ganzer Zahlen.

$O_2 + 2N_2$	\rightarrow	$2N_2O$	16:28
$O_2 + N_2$	\rightarrow	$2\mathrm{NO}$	16:14

- 1808 Gesetz von GAY-LUSSAC: entsprechend für Volumina von Gasen
- **1811** AvoGADROSche Hypothese: gleiche Volumina verschiedener Gase enthalten bei gleichen Bedingungen (Druck, Temperatur) gleich viele Bausteine (Moleküle, Atome); 1 Mol (Atomgewicht in Gramm) enthalten immer gleich viele Atome/Moleküle. Avogadrokonstante: $N_A = 6.022 \cdot 10^{23} \,\mathrm{mol}^{-1}$
- **1815** PRONT: Die Massenzahlen der Elemente sind ganzzahlige Vielfache der Masse des Wasserstoffatoms
- 1868 MENDELEW: Periodensystem der Elemente
- **1870** CLAUSIUS, BOLTZMANN: *kinetische Gastheorie*: Erklärung der Gasgesetze aus atomaren Bewegungen und Stößen der Atome/Moleküle
- 1932 CHADWICK: Entdeckung des Neutrons

Atomistik der Elektrizität

1833 FARADAYS elektrolytisches Äquivalenzprinzip

- a) Die Menge eines abgeschiedenen Elements ist der dabei transportierten Ladung proportional (\rightarrow Elektrolyse, galvanische Abscheidung)
- b) Verschiedene Elemente werden von der gleichen Ladungsmenge in äquivalenten Gewichten abgeschieden → kleinste Einheiten der Elektrizität (Elementarladung, Elektronenladung) sind mit der Materie verkoppelt
- **1869** HITTORF: Entdeckung der Kathodenstrahlen ($\hat{=}$ Elektronenstrahlen)
- **1897** J.J. THOMSON: Elektron identifiziert durch $\frac{e}{m}$ -Bestimmung mit Kathodenstrahlröhre, z.B. Schattenkreuzröhre

Abbildung 1.1: Aufbau einer Schattenkreuzröhre

Beobachtung Schattenwurf durch zusätzliche Strahlung (\neq Licht)

- \rightarrow Teilchen oder Wellen (*Objekte*), die sich fortbewegen
- \rightarrow Ablenkung in magnetischen und elektrischen Felder
n $(\frac{e}{m}\text{-}\text{Bestimmung})$

2010-04-13

Atomistik der Energien

um 1850 KIRCHHOFF, BUNSEN: Experimente zur Schwarzkörperstrahlung und Atomspektren

1884 BALMER: empirische Formel für einige Spektrallinien des Wasserstoffs

1887 H. HERTZ: Entdeckung der elektromagnetischen Wellen

1887 HALLWACHS, HERTZ: Entdeckung des Photoeffekts

1895 RÖNTGEN: Entdeckung der Röntgenstrahlung (*x-Ray*)

1896 BECQUEREL: Entdeckung der Radioaktivität (α, β, γ)

1900 LUMMER, PRINGSHEIM: Abweichung vom Wien'schen Strahlungsgesetz

Powerpoint-Präsentation (s. Internet)

Kapitel 2. Atom, Bausteine des Atoms, Wechselwirkung der Bausteine

2.1. Atom

2.1.1. Größe des Atoms

ca. $10^{-10}\,\mathrm{m}=0.1\,\mathrm{nm}=1\,\mathrm{\AAngstrøm}$

- Radius ist schlecht definiert (aufgrund des Wellencharakters der e^-)
- Bindungsabstände eines Atoms im Festkörper sind unterschiedlich z.B.
 - Magnesium in Magnesium: $d=1.6\,{\rm \AA}$
 - Magnesium in Magnesium oxid: $d=0.7\,{\rm \AA}$

typische Atomradien:

Wasserstoff atom $a_0 = r \approx 0.5 \text{ Å} \text{ (klein)}$ Bohr-Radius

Magnesiumatom $r \approx 1.5 \text{ Å} \text{ (mittel)}$

Caesiumatom $r \approx 2.5 \text{ Å} \text{ (groß)}$

Experimentelle Größenbestimmung des Atoms

- 1. grobe Abschätzung aus makroskopischen Größen
 - Betrachte Würfel und bestimme die Oberflächenenergie zur Erzeugung kleiner Würfel, die jeweils 1 Atom enthalten

• Zerlegung in alle 3 Raumrichtungen \rightarrow Aufteilung in einzelne Atome \cong 3S Schritte, Energieaufwand dafür entspricht der Verdampfungsenergie E_V . Bei jedem Schnitt wird eine Fläche von 2 cm² erzeugt \rightarrow Energieaufwand jeweils 2 E_O , E_O : Oberflächenergie/Fläche

$$\rightarrow 3S \cdot E_0 \stackrel{!}{=} E_V \Rightarrow S = \frac{l}{d} = \frac{1}{6} \frac{E_V}{E_O} \tag{2.1}$$

Zahl der Atome $N = S^3$

Werte für Wasser: $E_O = 7.3 \cdot 10^{-2} \frac{\text{J}}{\text{m}^2}, E_V = 226 \cdot 10^9 \frac{\text{J}}{\text{m}^3}$ $\rightarrow S = 5.2 \cdot 10^9 \text{ m}^{-1} \Rightarrow d = 1.9 \cdot 10^{-10} \text{ m} \text{ (beachte } d = 2r!)$ (2.2)

2. Röntgenbeugung an Kristallen

Abbildung 2.2: Schematischer Aufbau des Laue-Verfahrens

Abbildung 2.3: Beugung an Gitterebenen

Interferenz zwischen Lichtstrahlen, die an benachbarten Ebenen gebeugt werden. Bedingung für konstruktive Interferenz: $\Delta=n\lambda$

$$\Rightarrow 2d\sin\vartheta = n\lambda \qquad \text{Laue-/Bragg-Bedingung} \tag{2.3}$$

 \rightarrow Erzeugung von monochromatischer Röntgenstrahlung.

Monochromatische Röntgenstrahlen werden benötigt

- für Strukturbestimmung an Polykristallen (Debye-Scherrer-Verfahren, Drehkristallmethode \rightarrow Stoff der Festkörperphysik)
- Compton-Effekt
- 3. "optisch" abbildende Größenbestimmung

Lichtmikroskop Auflösung begrenzt durch Wellenlänge des Lichts $\approx 5000 \text{ Å} \rightarrow \text{nicht möglich}$

Elektronenmikroskop Vorgriff: ein Elektronenstrahl hat ebenfalls Wellencharakter (Nachweis durch Beugung) mit De-Broglie-Wellenlänge $\lambda = \frac{h}{p}$ mit $p = m_e v$ (nicht relativistisch) gilt

$$\lambda = \frac{h}{\sqrt{2m_0 E_{\rm kin}}} = \frac{12.3\,\text{\AA}}{\sqrt{U(\rm V)}} \tag{2.4}$$

wobei U: Beschleunigungsspannung und $E_{kin} = eU$

jedoch Begrenzung durch Linsenfehler auf $1-10\,\text{\AA}$

Transmissionselektronenmikroskop (höchste Auflösung) ≈ 1 Å-2 Å, aber Modell notwendig zur Berücksichtigung der Beugung, um auf reale Atomanordnungen zurückrechnen zu können.

Feldemissionsmikroskop

• Feldüberhöhung an der Spitze im Experiment mit Krümmungsradius $\approx 100\,\mathrm{nm}$

Abbildung 2.4: Feldüberhöhung an der Spitze

• Kristall hat lokal unterschiedliche Emissionswahrscheinlichkeit in verschiedenen Kristallrichtungen (Festkörperphysik) durch Bedampfen mit geringer Bedeckung eines anderen Elements

Abbildung 2.5: Schematischer Aufbau eines Feldemissionsmikroskops

• Beobachtung des Auftreffens und der Bewegung einzelner Atome und Atomgruppen aus Barium, da dieses die Emissionswahrscheinlichkeit lokal erhöht.

Vergrößerung $V = \frac{R}{r} = 500.000$ Bildgröße $B \approx 1 \text{ mm}$ Objektgröße $G \approx 2 \text{ nm}$ Größe Barium-Atom $\approx 0.4 \text{ nm}$

• Beobachtung sind Beugungsscheib
chen der e^- am Barium-Atom

Abbildung 2.6: Aufbau eines Rastertunnelmikroskops

Rastertunnelmikroskop abtastende Spitze mit konstantem Abstand d

- Messsignal: Tunnelstrom
- Auflösung: lateral ≈ 0.05 Å, vertikal < 1 fm
- Einstellgenauigkeit durch Piezoelektrischen Effekt bestimmt
- Probleme: mechanische Vibrationen, konstante Temperatur notwendig

Beispiele auf Folien (s. Internet)

- Hochauflösende Elektronenmikroskopie
- Feldemissionsmikroskop
- Nickel (110) (IBM Almaden D. Eigler et. al)
- 48 Fe-Atome auf Cu (111) (IBM Almaden D. Eigler et. al)
- Atomradien

2010-04-16

2.1.2. Masse des Atoms

Relative Atommassen $A_{\rm rel}$ (*Atomgewichte*) aus DALTONS Gesetz der multiplen Proportionen, seit 1961 Definition der atomaren Masseneinheit (a. u. oder u)

atomic unit

$$1 u \equiv \frac{1}{12} \text{ der Masse des Atoms } {}_{6}^{12}C$$

$$1 u = (1.660565 \pm 0.000005) \cdot 10^{-27} kg$$

2.1.3. Bestimmung von N_A

• 1 Mol entspricht der Menge eines Stoffes, die so viel wiegt wie das Atomgewicht (Molekulargewicht) in Gramm.

$$1 \operatorname{Mol} \frac{12}{6} C \cong 12 \mathrm{g}$$

 $1 \operatorname{Mol} H_2 O \approx 18 \mathrm{g}$

• 1 Mol hat immer die gleiche Anzahl Atome bzw. Moleküle

$$N_A \approx N(18 \,\mathrm{g \ H_2O}) \approx N(2 \,\mathrm{g \ H_2}) \approx N(24 \,\mathrm{g \ Mg})$$

$$N_A = 6.022 \cdot 10^{23} \,\mathrm{mol}^{-1}$$
(2.5)

Messung von N_A

- 1. Radioaktiver Zerfall (Zählen von Zerfallsereignissen) (RUTHERFORD und ROYDS, 1909)
- 2. Elektrolyse (aus Faraday'schem Äquivalenzgesetz) Erinnerung: Stoffmenge n ist proportional zur Ladung, 1 Mol einer Substanz benötigt

$$\underbrace{F}_{\text{Faraday-Konstante}} = 96485 \underbrace{\text{As}}_{\text{C}}$$

da jedes Ion die Elementarladung |e| trägt.

$$\rightarrow N_A = \frac{F}{e} \longrightarrow$$
 Voraussetzung: *e* bekannt

- 3. aus Größe des Atoms und Volumen des Festkörpers (über Röntgenbeugung)
- 4. Gas- und Boltzmann-Konstante (BOLTZMANN 1870)

$$k_B = \frac{R}{N_A} \tag{2.6}$$

$$R = 8.314510 \frac{\mathrm{J}}{\mathrm{mol}\,\mathrm{K}} \qquad (\text{aus idealem Gas } pV_{\mathrm{mol}} = RT) \tag{2.7}$$

- \rightarrow Messung von k_B entspricht Messung von N_A
- Brown'sche Molekularbewegung (BROWN 1827)
- Sedimentationsgeschwindigkeit im Schwerefeld (EINSTEIN 1905, PERRIN 1908) \rightarrow Übungsaufgabe
- 5. Drehspiegelmethode

Abbildung 2.7: Aufbau der Drehspiegelmethode und zeitlicher Verlauf

Beobachtung Statistische Schwankungen eines an einem Quarzfaden in einem Gas aufgehängten Drehspiegels.

Kleine Auslenkwinkel $\Phi \rightarrow$ harmonischer Oszillator (analog zur Gravitationswaage) Analytische Mechanik: Virialtheorem für harmonischen Oszillator (quadratisches Potential):

mittlere kinetische Energie = mittlere potentielle Energie (2.8)

$$\left\langle \frac{1}{2} \Theta \dot{\varphi}^2 \right\rangle = \left\langle \frac{1}{2} A \varphi^2 \right\rangle \tag{2.9}$$

wobei

 Θ Trägheitsmoment der Anordnung

A Winkelrichtgröße ($\hat{=}$ Federkonstante) = $\frac{\text{wirksames Drehmoment}}{\text{Auslenkung}}$

Gleichverteilungssatz für Gasmoleküle (Gleichverteilungssatz \rightarrow Übungsaufgabe)

$$E_{\rm kin} = \frac{3}{2}k_bT \quad \to \quad \frac{1}{2}k_BT \quad \text{pro Freiheitsgrad}$$
(2.10)

$$\rightarrow \frac{1}{2}k_B T = \frac{1}{2}\vartheta\overline{\dot{\varphi}^2} = \frac{1}{2}A\overline{\varphi^2}$$
(2.11)

Messung von $\overline{\varphi^2}$ ergibt Messwert für k_B

Literaturwert:
$$k_B = 1.380662 \cdot 10^{-23} \frac{\text{J}}{\text{K}}$$
 (2.12)

2.2. Elektron

2.2.1. Entdeckung des e^- 1897: J.J. Thomson

Durch Kathodenstrahlen in Gasentladungsröhre \rightarrow Übungsaufgabe

2.2.2. Bestimmung der Elementarladung

Millikan-Öltröpf
chen-Versuch (1909-1913) \rightarrow Übungsaufgabe Prinzip:

- geladener Plattenkondensator
- Zerstäubung von Öl zu Tröpfchen
- ionisierende Strahlung \rightarrow viele ungeladene Öltröpfchen, einige gering geladene Öltröpfchen
- Beobachte Bewegung im Plattenkondensator

Kräfte auf Öltröpfchen (aufsteigend) $\uparrow v: \downarrow F_{\rm G}, \downarrow F_{\rm R}, \uparrow F_{\rm A}, \uparrow F_{\rm el}$

Gewichtskraft $F_{\rm G} = mg = \rho_{\rm \ddot{O}l} Vg$ (g: Erdbeschleunigung)

Reibungskraft $F_{\rm R} = 6\pi\eta r v \ (\eta: \text{Viskosität})$

Auftriebskraft $F_{\rm A} = V \rho_{\rm Luft} g$

Beobachtung bei eingeschaltetem E-Feld gibt es diskrete Steiggeschwindigkeiten

Ausschalten \rightarrow Teilchen fallen nach unten $\downarrow v: \downarrow F_{\rm G}, \uparrow F_{\rm R}, \uparrow F_{\rm A}$

Abbildung 2.8: Messwerte des Millikan-Versuchs \rightarrow diskrete Ladungswerte

Literaturwert:
$$e = 1.602192 \cdot 10^{-19} \,\mathrm{C}$$
 (2.13)

2.2.3. Größe des Elektrons

Betrachte e^- al Kugelkondensator mit Radius $e_{\rm el}$

Abschätzung Ladungsenergie des Kugelkondensators $E = \frac{1}{2} \frac{Q^2}{C}$ entspricht Ruheenergie des e^- : $E = m_0 c^2$

Kapazität einer homogen geladenen Kugel: $C=2\pi\epsilon_0 r_{\rm el}$

 \rightarrow $r_{\rm el} \approx 2.8 \cdot 10^{-15} \,\mathrm{m}$ klassischer Elektronenradius (2.14)

Experimente zeigen Elektron ist kleiner!

z. B. aus e^--e^- -Streuug (vgl. Rutherford-Streuung)

 $\rightarrow r_{\rm el} < 10^{-18} \,{\rm m}$ (2.15)

 \rightarrow Annahme eines punktförmigen Elektrons ist sehr gut

2.2.4. Masse des Elektrons

Mithilfe der Massenspektrometrie durch Kombination von elektrischen und magnetischen Feldern kann $\frac{q}{m}$ von Teilchen bestimmt werden.. $\rightarrow \frac{e}{m}$ -Bestimmung (THOMSON, Kathodenstrahl) Voraussetzug dafür ist, dass die Ladung e bekannt ist

$$m_e = 0.1091 \cdot 10^{-31} \,\mathrm{kg} = 5.4859 \cdot 10^{-4} \,\mathrm{u}$$
 (2.16)

bzw. 1 u = 1822.84 $m_e \rightarrow m_e \approx \frac{1}{2000}$ der Masse des H-Atoms

2.3. Massenspektrometrie

2.3.1. Teilchen im *E*- und *B*-Feld

Eigenschaften von Teilchen im statischen *E***-Feld** Trajektorie hängt nur von der Energie an, nicht von der Masse.

Z.B. Zylinderkondensator

Abbildung 2.9: Massenspektrometrie I: Trajektorie von Teilchen im elektrischen Feld hängt nur von der Anfangsenergie ab

$$Fliehkraft = Feldkraft$$
(2.17)

$$\frac{mv^2}{r} = qE \tag{2.18}$$

$$\rightarrow \quad r = \frac{mv^2}{qE} = \frac{2E_{\rm kin}}{qE} \tag{2.19}$$

Teilchen im magnetischen Feld Trajektorie hängt nur vom Impuls ab

$$Lorentzkraft = Fliehkraft$$
(2.20)

$$\frac{qvB}{r} = \frac{mv^2}{r} \tag{2.21}$$

$$\rightarrow \quad r = \frac{mv}{qB} = \frac{p}{qB} \tag{2.22}$$

2010-04-19

Kombination von *E*- und *B*-Feld Energiefilter liefert Teilchen mit gleicher Energie \rightarrow verschiedene Impulse bei gleicher Energie $\hat{=}$ verschiedene $\frac{q}{m}$

Abbildung 2.10: Massenspektrometrie II: Trajektorie von Teilchen im magnetischen Feld hängt nur vom Impuls ab

Abbildung 2.11: Kombination von E- und B-Feld zur Relisierung eines Massenspektrometers

Verschiedene Realisierungen

1. Wien'sches Filter

Teilchen spüren gleichzeitig E- und B-Feld. Kräfte kompensieren sich \rightarrow gerade Bahn

2.3.2. Höchstauflösende Massenspektrometrie

1. Geschwindigkeitsfokussierung

Abbildung 2.12: Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B-Feld nach ASTON, 1919

Geschickte Wahl der Größe der Felder, *B*-Feld fokussiert Teilchen mit verschiedenem v an gleicher Stelle, mit verschiedenen $\frac{q}{m}$ an verschiedenen Stellen \rightarrow höhere Intensität

2. Richtungsfokussierung

Abbildung 2.13: Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektormagnet

Teilchen, die länger das *B*-Feld spüren, werden weiter abgelenkt \rightarrow bei gleichem $\frac{q}{m}$ aber leicht verschiedener Richtung weden die Teilchen im selben Punkt fokussiert.

- 3. Doppelfokussierung \rightarrow gleichzeitige Geschwindigkeits- und Richtungsfokussierung
- 4. Elektrische Wechselfelder Kondensatorspannung an C_1 und C_2 :

$$U_1 = U_2 = U_0 \sin(\omega t)$$

Zeit zum Durchlaufen der Strecke L = vt verschiebt Phasenlage der Spannung an C_2 um $\omega t = \omega \frac{L}{v}$. Die Blende *B* lässt die Teilchen durch, die in C_1 die momentane Spannung $U_1 = 0$ gespürt haben. Für diese gilt in C_2 : $U_2 = U_0 \sin(\omega \frac{L}{v}) \rightarrow \text{Ablenkung}$

$$x_2 = DU_0 \sin\left(\frac{\omega L}{v}\right)$$

Abbildung 2.14: Massenspektrometrie durch elektrische Wechselfelder

mit Proportionalitätskonstante D. Für $\frac{\omega L}{v} = k\pi \ (k = 1, 2, 3, ...)$ ist auch $x_2 = 0$

$$v_0 = \frac{2\nu L}{k}$$
 (ν : Frequenz $\frac{\omega}{2\pi}$) (2.23)

 \rightarrow Frequenz so regeln, dass $x_2 = 0$ ist, k bestimmen durch Abzählen der Nulldurchgänge. Die Teilchen seien durch die Beschleunigungsspannung U_B beschleunigt worden, und somit gilt:

$$qU_B = \frac{1}{2}mv^2 \quad \rightarrow \quad \frac{q}{m} = \frac{2v_0^2 L^2}{k^2 U_B} \tag{2.24}$$

5. Quadrupolmassenspektrometer

Abbildung 2.15: Quadrupolmassenspektrometer

Ähnliches Prinzip aber kompaktere Geometrie \rightarrow messe Frequenz, bei der die Teilchen durchgelassen werden \rightarrow Einsatz in Isotopentrennung

Nachtrag 2010-04-22

Nachtrag: Massenspektrometrie Wien'sches Geschwindigkeitsfilter

Beobachtung

- Ablenkung der e^- im B-Feld kann kompensiert werden durch geeignet gewähltes E-Feld
- geradlinige Bahn bei $F_C = F_L, \ q|\vec{E}| = qvB \quad \Rightarrow \quad v = \frac{|E|}{|B|}$

2010-04-19

IK IV

Abbildung 2.16: Wien'sches Geschwindigkeitsfilter

2.4. Isotopie

Ordnungszahl $Z \cong$ Zahl der Protonen \cong Zahl der Elektronen; bestimmt chemische Eigenschaften

Atomgewicht $A_{\rm rel} \approx {\rm ungefähr} A$

Massenzahl A Anzahl der Protonen + Neutronen

Isotope eines Elements variieren in der Zahl der Neutronen.

Es gibt nur wenige Elemente mit nur einem einzigen stabilen Isotop: ${}^{9}_{4}$ Be, ${}^{27}_{13}$ Al, ${}^{127}_{53}$ J (Bezeichnung ^A_ZElement), für diese Elemente ist $A \approx A_{rel}$

Bei einigen Elementen kommen mehrere Isotope ungefähr gleich häufig vor, z. B. $^{35}_{17}$ Cl (75%), $^{37}_{17}$ Cl (25%) \rightarrow krummes Atomgewicht A = 35.5

Problem bei Massenspektrometrie: mehrfach geladene Teilchen möglich, z. B. $^{40}_{18}{\rm Ar}^{++}~\stackrel{_\frown}{=}~^{20}_{10}{\rm Ne}^+$ \rightarrow Übungsaufgabe

 \rightarrow Anwendung der höchstauflösenden Massenspektrometrie

Isotope des Wasserstoffs

- ¹₁H 1 Proton, 1 Elektron $\rightarrow A = 1, Z = 1$
- $^2_1\mathrm{H}=\mathrm{D}$ (Deuterium) 1 Proton, 1 Neutron, 1 Elektron \rightarrow A=2, Z=1 (0.014 % natürliches Vorkommen)
- $^3_1\mathrm{H}=\mathrm{T}$ (Tritium) 1 Proton, 2 Neutronen, 1 Elektron $\rightarrow A=3,\,Z=1$ (künstlich erzeugt in kerntechnischen Anlagen)

Moleküle: D⁺ hat ähnliches $\frac{q}{m}$ wie H₂⁺. D hat etwas geringere Masse als H₂ (Massendefekt der Kernphysik)

- Folie: Massenspektrometrie
- Folie: Periodensystem der Elemente

Zusammenfassung 2.2-2.4 Massenverhältnisse im Atom:

Einheit	e^-	р	Н
kg	$9.11 \cdot 10^{-31}$	$1.672 \cdot 10^{-27}$	$1.6735 \cdot 10^{-27}$
u	$5.48 \cdot 10^{-4}$	1.00728	1.007825
m_e	1	1836.11	1837.11
$m_{ m p}$	$5.4463 \cdot 10^{-4}$	1	1.005445
$m_{ m H}$	$5.4433 \cdot 10^{-4}$	0.9946	1

Tabelle 1: Massenverhältnisse im Atom

Abbildung 2.17: Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2

2.5. Streuexperimente

2.5.1. Der Wirkungsquerschnitt

Betrachte Stoß zwischen Teilchen mit Radius r_1 und mit Radius r_2 :

- Teilchenstrom der Teilchen mit Radius r_1 mit Querschnittsfläche $\pi r_1^2,$ Dichte N_0
- Ziel (Target): Teilchen mit Radius r_2 . Schichtdicke Δx , Dichte n

Abbildung 2.18: Teilchenstrom, gesucht: Anzahl der abgelenkten Teiclchen

Wirkungsquerschnitt (Streuquerschnitt) $\sigma = (r_1 + r_2)^2 \pi$: Trefferfläche für einen Stoß Stoßwahrscheinlichkeit $W = \frac{\text{Summe aller Trefferflächen}}{\text{Gesamtfläche } A}$

Annahme hier: keine Abdeckung eines Target-Teilchens durch andere, d. h. x und n genügend klein \rightarrow Zerlegung in kleine Δx .

Anzahl der abgelenkten Teilchen

$$\Delta N = -WN \tag{2.25}$$

$$= -N\sigma \cdot \frac{\text{Anzahl der Teilchen}}{4}$$
(2.26)

$$=\dots$$
(2.27)

$$= -N\sigma n\Delta x \tag{2.28}$$

Mit dem Übergang $\Delta x \rightarrow dx$ ergibt sich also:

$$\frac{\mathrm{d}N}{N} = -n\sigma\,\mathrm{d}x\tag{2.29}$$

Integration liefert die Anzahl der nicht abgelenkten Teilchen:

$$N(x) = N_0 \exp(-n\sigma x)$$
(2.30)

2010-04-20

Anteil der abgelenkten Teilchen nach der Strecke L:

$$N_{\text{Streu}} = N_0 \left(1 - \exp(-\underbrace{n\sigma}_{\alpha} L) \right)$$
(2.31)

 σ : totaler Streuquerschnitt, α : makroskopischer Streukoeffizient

Allgemein gilt $\alpha = \frac{1}{n} \sum_{i=1}^{N} n_i \sigma_i$, wenn verschiedene Teilchensorten existieren

Analogie Absorption in der Optik (Beer'sches Gesetz): $I(x) = I_0 \exp(-\alpha x)$, α : Absorptionskoeffizient

Abbildung 2.19: Verlauf der Lichtintensität durch ein Medium

Definition: mittlere freie Weglänge entspricht dem mittleren Abstand zwischen Streuereignissen / Stößen

$$\lambda \frac{1}{n\sigma} = \frac{1}{\alpha} \Rightarrow N = N_0 \exp\left(-\frac{L}{\lambda}\right) \tag{2.32}$$

2.5.2. Streuung von Elektronen an Materie

Beobachtung

- $I = I_0 \exp(-\alpha x)$, I bezeichnet hier den elektrischen Strom
- α proportional zum Druck p
- bei $v = \text{const gilt auch } \frac{\alpha}{\rho} = \text{const } (\rho: \text{Dichte})$ für verschiedene Materialien/Gase
- $\frac{\alpha}{\rho}$ sinkt für zunehmendes v

Abbildung 2.20: Messung zur Streuung von Elektronen an Materie

Abbildung 2.21: Messergebnisse zur Elektronenstreuung

Erkenntnis

- Atome sind fast leer
- $\bullet\,$ heute: langsame e^- werden an der Atomhülle gestreut, schnelle Elektronen am Kern

2.5.3. Rutherford-Streuung

- Beschuss von Atomen mit geladenen Teilchen
- α -Teilchen: 2-fach (positiv) ionisierte Helium-Atome (2 Protonen und 2 Neutronen) $m \equiv m_{\alpha} \gg m_{e}$
- GEIGER, MARSDEN, RUTHERFORD: 1909 Experiment: Beschuss einer Goldfolie mit α -Teichen.
- Beobachtungen:
 - die meisten Teilchen werden nicht abgelenkt
 - einige Teilchen werden sehr stark abgelenkt
- Hypothesen:
 - -kleiner, massiver Atomkern mit Ladung +
Z $e \ > 0$ (z. B. Au: Z = 79)
 - Z Elektronen umkreisen den Kern \rightarrow Ladungsneutralität
- Thomson'sches Atommodell: "plum pudding" (positive Ladung gleichmäßig über Atom verteilt, Elektronen sind darin positioniert)
- Rutherford'sches Atommodell (klassisches Modell):
 - 1. $m_{\text{Kern}} \gg m_e, m_{\alpha} = m$ (z. B. $\frac{m_{\text{Au}}}{m} = \frac{197}{4} \approx 50$)

- 2. Kernladung $Ze>0,\,Z:$ ganze Zahl
- 3. Coulomb-Wechselwirkung: $\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{(2e)(Ze)}{r^2} \underbrace{\vec{r}}_{=:\hat{r}}$

Bekannt aus klassischer Mechanik (Planetenbahnen, Gravitation $\vec{F}_G \sim \frac{1}{r^2}$). Bahn des α -Teilchens:

- verläuft in einer Ebene
- ist ein Kegelschnitt (Hyperbel, da Kraft abstoßend)
- 4. Keine Mehrfachstreuung in Au-Folie (da Annäherung an Kern selten)

2010-04-21

Abbildung 2.22: Rutherford-Streuung

b: Streuparameter ($\hat{=}$ Stoßparameter), ϑ : Streuwinkel

Lösung der Bewegungsgleichung Newton:

$$m\ddot{\vec{r}} = \vec{F} = \frac{2Ze^2}{4\pi\epsilon_0}\frac{\hat{r}}{r^2} , \quad \hat{r} = \frac{\vec{r}}{r}$$
 (2.33)

Wandle in Polarkoordinaten um

$$\vec{r} = r \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} = r\hat{r} \tag{2.34}$$

$$\dot{\vec{r}} = \dot{r}\hat{r} + r\dot{\varphi} \underbrace{\begin{pmatrix} -\sin\varphi\\\cos\varphi \end{pmatrix}}$$
(2.35)

$$\ddot{\vec{r}} = \ddot{r}\hat{r} + \underbrace{\dot{r}\dot{\varphi}\hat{t} + \dot{r}\dot{\varphi}\hat{t}}_{2\dot{r}\dot{c}\hat{t}} + r\ddot{\varphi}\hat{t} - r\dot{\varphi}^{2}\hat{r}$$

$$(2.36)$$

Multipliziere die Bewegungsgleichung mit \hat{r} :

$$m(\ddot{r} - r\dot{\varphi}^2) = \frac{2Ze^2}{4\pi\epsilon_0 r^2}$$
(2.37)

Multipliziere die Bewegungsgleichung mit \hat{t} :

$$m(2\dot{r}\dot{\varphi} + r\ddot{\varphi}) = 0 \tag{2.38}$$

Schreibe jetzt 2.38 als vollständige Ableitung:

$$m\frac{\mathrm{d}}{\mathrm{d}t}(r^2\dot{\varphi}) = 0 \quad \Rightarrow \quad mr^2\dot{\varphi} = \mathrm{const} =: -L$$
 (2.39)

 \rightarrow Drehimpulserhaltung!

$$\vec{L} = \vec{p} \times \vec{r} = m\dot{\vec{r}} \times \vec{r} \tag{2.40}$$

$$= m(\dot{r}\hat{r} + r\dot{\varphi}\hat{t}) \times r\hat{r} \tag{2.41}$$

$$\stackrel{\hat{t}\times\hat{r}\equiv-\hat{e}_z}{=}-mr^2\dot{\varphi}\hat{e}_z \equiv \underbrace{L_z}_{\equiv L}\hat{e}_z \tag{2.42}$$

Vor der Streuung gilt für $r \to \infty$:

$$L = m\vec{v}_0 \times \vec{r} = mv_0 b \tag{2.43}$$

mit
$$\dot{\vec{r}} = \vec{v}_0 = \begin{pmatrix} v_0 \\ 0 \\ 0 \end{pmatrix}$$
 und $\vec{r} = \begin{pmatrix} r_x \\ b \\ 0 \end{pmatrix}$

nach der Streuung gilt für $r \to \infty$, $|\dot{\vec{r}}| = v_0$ (wegen Erhaltung der kinetischen Energie):

$$L' = mv_0 b' = L \quad \Rightarrow \quad b' = b \tag{2.44}$$

Aus 2.39 und 2.43 folgt:

$$r^2 \dot{\varphi} = -v_0 b = \text{const} \quad \Rightarrow \quad \dot{\varphi} = -\frac{v_0 b}{r^2}$$
 (2.45)

einsetzen in 2.37 ergibt:

$$\ddot{r} - \frac{v_0^2 b^2}{r^3} = \frac{2Ze^2}{4\pi\epsilon_0 mr^2}$$
(2.46)

- *direkte* Methode:
 - 1. löse 2.46 $\sim r(t)$
 - 2. einsetzen in 2.45 und auflösen $\rightsquigarrow \varphi(t)$
- etwas einfacher: eliminiere t und erhalte die geometrische Bahn $r(\varphi)$:

$$r = r(\varphi)$$
 : $\dot{r} = \frac{\mathrm{d}r}{\mathrm{d}\varphi}\dot{\varphi} = -\frac{v_0 b}{r^2}\frac{\mathrm{d}r}{\mathrm{d}\varphi}$ (2.47)

definiere jetzt $r =: \frac{1}{u}$

$$\ddot{r} \stackrel{2.47}{=} \frac{\mathrm{d}}{\mathrm{d}t} \left(-\frac{v_0 b}{r^2} \frac{\mathrm{d}r}{\mathrm{d}\varphi} \right) \tag{2.48}$$

$$= \underbrace{\dot{\varphi}}_{=-v_0bu^2} \frac{\mathrm{d}}{\mathrm{d}\varphi} \left(-v_0 bu^2 \underbrace{\frac{\mathrm{d}}{\mathrm{d}\varphi} \frac{1}{u}}_{=-\frac{1}{u^2} \frac{\mathrm{d}u}{\mathrm{d}\varphi}} \right)$$
(2.49)

$$= -v_0^2 b^2 u^2 \frac{\mathrm{d}^2 u}{\mathrm{d}\varphi^2} \tag{2.50}$$

Einsetzen in 2.46:

$$-v_0^2 b^2 u^2 \frac{\mathrm{d}^2 u}{\mathrm{d}\varphi^2} = v_0^2 b^2 u^3 + \frac{2Ze^2}{4\pi\epsilon_0 m} u^2$$
(2.51)

Somit ergibt sich die Differentialgleichung für $u(\varphi) = \frac{1}{r(\varphi)}$:

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\varphi^2} = -\underbrace{\left(u + \frac{2Ze^2}{4\pi\epsilon_0 m v_0^2 b^2}\right)}_{=:w} \tag{2.52}$$

$$\frac{\mathrm{d}^2 w}{\mathrm{d}\varphi^2} = -w \tag{2.53}$$

$$\Rightarrow w(\varphi) = A\cos(\varphi + \delta) \quad \text{(allgemeine Lösung)} \tag{2.54}$$

$$\Rightarrow \left[\frac{1}{r(\varphi)} = u(\varphi) = A\cos(\varphi + \delta) - \frac{2Ze^2}{4\pi\epsilon_0 m v_0^2 b^2} \right]$$
(2.55)

- Lösung $r(\varphi)$ von 2.45 und 2.46
- Konstanten A und δ werden durch die Anfangsbedingungen bestimmt
- minimaler Abstand bei $\varphi=\pi-\delta~(\rightarrow \ddot{\mathrm{U}}\mathrm{bungen})$
- leite 2.55 nach t ab:

$$-\frac{1}{r^2}\dot{r} = -A\sin(\varphi+\delta)\dot{\varphi} \stackrel{2.45}{=} A\sin(\varphi+\delta)\frac{v_0b}{r^2}$$
(2.56)

$$\Rightarrow \dot{r}(\varphi) = -Av_0 b \sin(\varphi + \delta) \tag{2.57}$$

vor Streuung gilt für $r \to \infty$: $\varphi \to \pi$, $\dot{r} \to -v_0$. In 2.55 und 2.57 einsetzen:

$$A\underbrace{\cos(\pi+\delta)}_{=-\cos(\delta)} = \frac{2Ze^2}{4\pi\epsilon_0 m v_0^2 b^2}$$
(2.58)

$$Abv_0 \underbrace{\sin(\pi + \delta)}_{=-\sin(\delta)} = -v_0 \tag{2.59}$$

• zusammengefasst:

$$\cos(\delta) = -\frac{2Ze^2}{4\pi\epsilon_0 m v_0^2 b^2 A} \tag{2.60}$$

$$\sin(\delta) = -\frac{1}{bA} \tag{2.61}$$

(2.62)

$$\Rightarrow \tan \delta = \frac{4\pi\epsilon_0 m v_0^2 b}{2Ze^2} \tag{2.63}$$

Bemerkung mit $0 \le \delta < \frac{\pi}{2}$ folgt A < 0 (bei $b \ge 0$)

Streuwinkel ϑ aus 2.55 folgt bei $r \to \infty$

vor Streuung nach Streuung

$$\cos(\pi + \delta) = \cos(\vartheta + \delta)$$

 $= \cos(\delta - \pi)$
 $= \cos(\pi - \delta) \implies \overline{\pi - \delta = \vartheta + \delta}$

$$\Rightarrow \boxed{2\delta + \vartheta = \pi} \tag{2.64}$$

$$\Rightarrow \delta = \frac{\pi}{2} - \frac{\sigma}{2} \tag{2.65}$$

$$\Rightarrow \tan \delta = \cot \frac{\vartheta}{2} \tag{2.66}$$

$$\Rightarrow b = \frac{2Ze^2}{4\pi\epsilon_0 m v_0^2} \cot\frac{\vartheta}{2}$$
(2.67)

Abbildung 2.23: Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung

Abbildung 2.24: Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$

Differentieller Sreuquerschnitt

- Wir haben einen eindeutigen Zusammenhang: $b = b(\vartheta)$ (bzw. $\vartheta = \vartheta(b)$)
- Streuquerschnitt für jedes b separat \rightarrow differentieller Streuquerschnitt

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\vartheta,\varphi) \tag{2.68}$$

wobe
i $\,\mathrm{d}\Omega=\sin\vartheta\,\mathrm{d}\vartheta\,\mathrm{d}\varphi$: Raumwinkele
lement

Abbildung 2.25: Herleitung zum differentiellen Streuquerschnitt

Der (totale) Streuquerschnitt ist dann

$$\sigma = \int d\Omega \frac{d\sigma}{d\Omega}(\vartheta, \varphi)$$
(2.69)

- Anzahl der einfallenden Teilchen (pro Fläche): N
- Anzahl der einfallenden Teilchen in Flächenelement $d\sigma = b d\varphi db$: $dN = N d\sigma = Nb db d\varphi$
- Streuung: Austritt durch Flächenelement $d\Omega = \sin\vartheta \, \mathrm{d}\vartheta \, \mathrm{d}\varphi$ wobei $[b, b + \mathrm{d}b] \stackrel{2.67}{\rightarrow} [\vartheta, \vartheta + \mathrm{d}\vartheta]$

$$dN = N \, d\sigma = Nb \, db \, d\varphi =: N \frac{d\sigma}{d\Omega} \, d\Omega = N \frac{d\sigma}{d\Omega} \sin \vartheta \, d\vartheta \, d\varphi$$
(2.70)

differentieller Streuquerschnitt:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\vartheta) = \frac{b(\vartheta)}{\sin(\vartheta)} \left| \frac{\mathrm{d}b}{\mathrm{d}\vartheta} \right|$$
(2.71)

$$b(\vartheta) \propto \cot \frac{\vartheta}{2}, \ \cot' x = -\frac{1}{\sin^2 x}, \ \sin(2x) = \frac{1}{2}\sin(x)\cos(x) \ \text{mit} \ x = \frac{\vartheta}{2}$$
$$\Rightarrow \frac{\cot \frac{\vartheta}{2}}{\sin \vartheta} = 2\frac{\cos \frac{\vartheta}{2}}{\sin \frac{\vartheta}{2}\sin \frac{\vartheta}{2}\cos \frac{\vartheta}{2}}$$
(2.72)

$$\Rightarrow \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\vartheta) = \left(\frac{1}{4\pi\epsilon_0}\right)^2 \frac{Z^2 e^4}{m^2 v_0^4} \frac{1}{\sin^4 \frac{\vartheta}{2}} \qquad Rutherford-Streuformel \tag{2.73}$$

2010-04-22

Abbildung 2.26: Potentialverlauf in Abhängigkeit des Abstandes

Diskussion der Rutherford-Streuformel

- Intensitätsverlauf $I\propto \frac{1}{\sin^4\frac{\vartheta}{2}},\,I\propto \frac{1}{E_{\rm kin}^2}$
- Herleitung hier aus klassischer Physik (Newton), später quantenmechanische Behandlung mittels Born'scher Näherung liefert in 1. Ordnung das gleiche Ergebnis
- Für $\vartheta = 0$, $\frac{d\sigma}{d\Omega} \to \infty$: Problem für große *b*. Sobald aber $b \ge r_{Atom}$ stimmt das $\frac{Z^2 e^2}{r^2}$ -Kraftgesetz nicht mehr, da die Kernladung durch e^- abgeschirmt wird (Atom ist neutral)
- Totaler Streuquerschnitt

$$\sigma = 2\pi \int_0^\pi \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\vartheta) \sin\vartheta \,\mathrm{d}\vartheta \tag{2.74}$$

$$= \ldots = \infty$$
 (wegen Divergenz) (2.75)

Grund für Divergenz: ∞-Reichweite des Coulomb
potentials, aber für $b \geq r_{\rm Atom}$ wird Coulomb-kraft abgeschirmt

- Nicht-relativistische Rechnung erlaubt, da im Experiment typischerweise $\frac{v_0}{c} \approx \frac{1}{20}$. Typische $E_{\rm kin}$ von α -Teilchen: 4 8 MeV
- Obere Schranke für Kernradius aus minimalem Abstand (bei Rückstreuung $\vartheta = \pi$: $R_{\pi} = \frac{1}{4\pi\epsilon_0} \frac{2Ze^2}{M^{\frac{v_0^2}{2}}}$); $R_{\text{Kern}} \lesssim \text{fm.}$
- Vergleich mit Thomson'schem Atommodell: Thomson weniger starke Ablenkung, aber für größere Anzahl einfallender Teilchen

Rutherford-Streuversuch

Abbildung 2.27: Aufbau des Rutherford-Streuversuchs

	Winkel	mit/oder Target	Zählrate
	0°	ohne Target	$1456~\mathrm{in}~20\mathrm{s}$
Zählraten im Vakuum:	0°	mit Target	1304 in $20\mathrm{s}$
	15°	ohne Target	1 in 60 s
	15°	mit Target	120 in $60s$
		4	

theoretische Abnahme: $\left(\frac{1}{\sin(7.5^{\circ})}\right)^4 = 3445$ Ohne Vakuum bei 0° und $p \approx 1000$ mbar werden keine α -Teilchen gemessen

- Folie ist für
 $\alpha\mbox{-Teilchen}$ nahezu transparent
- Zählrate stark winkelabhängig
- Reichweite der α -Teilchen in Luft $\approx 3 4 \,\mathrm{cm}$

2.6. Photoeffekt und Photonen

2.6.1. Der Photoeffekt

qualitativer Photoeffekt

 \rightarrow UV-Licht löst e^- aus Metall aus

Abbildung 2.28: qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht entladen

Anmerkung Vorlesungsversuch war nicht erfolgreich, da die Zinkplatte stark oxidiert war. Nach Reinigung der Platte konnte Entladung gezeigt werden.

quantitativer Versuch zum Photoeffekt

		$U_G \mathbf{V}$	$\lambda[{ m nm}]$	$\nu[10^{14}\mathrm{Hz}]$
Messwerte:	gelb	0.23	578	5.19
	grün	0.32	546	5.49
	blau	0.9	436	6.88
	violett	1.23	405	7.41

Abbildung 2.29: Aufbau einer Photozelle (Polarität der Spannung so, dass alle ausgelösten e^- zur Anode gelangen)

Abbildung 2.30: Versuchsaufbau zum quantitativen Photoeffekt

Abbildung 2.31: Ergebnisse des Photoeffekt-Versuchs

Die Ausgleichsgerade hat die Steigung

$$\frac{\Delta U}{\Delta \nu} \approx \frac{1 \,\mathrm{V}}{2.4 \cdot 10^{14} \,\mathrm{s}^{-1}} \tag{2.76}$$

2010-04-26

Beobachtungen

- 1. Beleuchtung einer Metallplatte erzeugt elektrischen Strom. Empfindlichkeit erst ab einer Mindestfrequenz (maximale Wellenlänge). Grenzfrequenz $\nu_{\rm G}$
- 2. I hängt von der Intensität P ab, $\nu_{\rm G}$ hängt aber nicht von P ab!
- 3. ν_G hängt vom Metall ab (z. B. für Na: $\lambda_G = 543 \text{ nm}$, Ca: $\lambda_G = 277 \text{ nm}$)

Abbildung 2.32: Abhängigkeit des Photostroms I und der Grenzfrequenz $\nu_{\rm G}$ von der IntensitätPund vom Metall

- 4. Ab einer negativen Bremsspannung U_0 wird Stromfluss verhindert.
- 5. U_0 hängt nicht von der Lichtintensität P ab. (Dies steht im Widerspruch zur Erwartung für klassische Lichtwellen)
- 6. U_0 hängt linear von der Frequenz ν ab.
- 7. U_0 und U_A hängen vom Kathodenmetall ab.

Abbildung 2.33: Abhängigkeit der Energi
e U_0 und der Austrittsenergie $U_{\rm A}$ von der Frequenz und vom Met
all

- 8. Steigung hängt nicht vom Kathodenmetall ab.
- 9. Sättigungsstrom I_S (maximaler Strom bei fester Frequenz und festem Metall) hängt linear von P ab.

Interpretation

- 1. Lichtteilchen (Photonen) ab einer gewissen Energie lösen Elektronen aus der Kathode aus.
- 2. Ist U groß genug, gelangen alle e^- zur Anode \rightarrow Sättigungsstrom I_S
- 3. Bei Gegenspannung $U_{\rm G} = U_0$ ist Geschwindigkeit der e^- gleich Null

$$\left(\frac{1}{2}mv^2\right)_{U_{\rm G}=U_0} = e|U_0|$$

4. $\nu_{\rm G}$: Austrittsarbeit $eU_{\rm A}$ muss aufgebracht werden, um e^- aus Festkörper herauslösen zu können

$$\left(\frac{1}{2}mv^2\right)_{U_{\rm G}=U_0} = e|U_0| = E_{\rm P} - eU_{\rm A} = \underbrace{\mathbf{h}}_{\text{Planck'sches Wirkungsquantum}} \nu - eU_{\rm A}$$

5. Bestimmung von h aus Steigung mit Werten aus Experiment:

$$h = \frac{e\Delta U}{\Delta \nu} \approx 6.8 \cdot 10^{-34} \,\text{Js}$$
(2.77)

Literaturwert
$$h = 6.636 \cdot 10^{-34} \text{ Js} = 4.14 \cdot 10^{-15} \text{ eVs}$$
 (2.78)

2.6.2. Lichtquantenhypothese (Photonen)

EINSTEIN postuliert (1905): Licht besteht aus Korpuskeln (Teilchen), die Photonen genannt werden, mit wohldefinierter Energie und Impuls

$$E_{\rm Photon} = \varepsilon = h\nu = \underbrace{\hbar}_{\frac{h}{2\pi}} \omega \tag{2.79}$$

$$\vec{p}_{\nu} = \hbar |\vec{k}| \quad \leftarrow \text{ experimenteller Nachweis durch Compton-Effekt}$$
(2.80)

 \vec{k} : Wellenvektor

Zusammenhang: $|\vec{p}_{\nu}| = \hbar |\vec{k}|$ folgt aus Relativität $\varepsilon = c \sqrt{\frac{m_0^2}{m_0^2}c^2 + p^2}$ Ruhemasse

Photonen bewegen sich mit Lichtgeschwindigkeit $v = c \Rightarrow \varepsilon = cp \ (m_0 = 0)$

$$|\vec{p}_{\nu}| = \frac{\varepsilon}{c} = \frac{\hbar\omega}{c} = \hbar |\vec{k}|$$
(2.81)

$$c = \lambda \nu = \frac{2\pi}{k} \nu = \frac{2\pi}{k} \frac{\omega}{2\pi} = \frac{\omega}{k}$$
(2.82)

2.7. Der Compton-Effekt

2.7.1. Röntgenquelle und Röntgenspektrum

Bremsstrahlung Umkehrung des Photoeffekts: e^- verlieren im Metall kinetische Energie, diese wird an Photon abgegeben.

Grenzfrequenz ν_{max} bzw. (λ_{\min}) : $eU_{\text{B}} = h\nu_{\max} = \frac{hc}{\lambda_{\min}}$

Abbildung 2.34: Aufbau zum Erzeugen von Röntgenstrahlung und Röntgenspektrum

Abbildung 2.35: Intensität der Röntgenstrahlung für Molybdän

Linien der charakteristischen Strahlung Anregungen der Atomhülle

Wirkung des Kantenfilters Absorbiert alle Photonen ab einer bestimmten Energie

2.7.2. Der Compton-Versuch (1921, NP 1927)

Abbildung 2.36: Aufbau des Compton-Versuchs

PMMA enthält viele (fast-) frei
e e^- und besteht im Wesentlichen aus C und H

Anmerkung Wirkungsquerschnitt für Photoeffekt ist proportional zu Z^5 (Z: Kernladungszahl), der für Compton-Effekt ist proportional zu Z. Der Compton Effekt ist deshalb beileichten Elementen einfacher zu beobachten, da bei schweren Elementen durch Photoeffekt verdeckt.

Experimentelle Beobachtungen

Bei Röntgenbeugung an Festkörpern tritt zusätzlich eine zu längeren Wellenlängen verschobene Linie auf:

Abbildung 2.37: Experimentelle Beobachtung des Compton-Effekts: Die Intensitätsspitze wird mit zunehmendemStreuwinkel in den niederenergetischeren Bereich verschoben

- Intensitätsanteil der verschobenen Linie wächst mit dem Streuwinkel ϑ
- Wellenlängenzunahme $\Delta \lambda$ wächst mit ϑ
- Analogie zum Stoß von Punktmassen in der Mechanik

2010-04-27

Interpretation 3-Körperstoß eines Photons mit einem Elektron (niederenergetischeres Photon tritt aus)

Berechnung der Compton-Verschiebung $\Delta\lambda(\vartheta)$ Annahme: e^- vor dem Stoß in Ruhe, e^- ist schwachgebunden, Bindungsenergie $\ll h\nu$

Abbildung 2.38: Stoßvorgang beim Compton-Effekt

Energiesatz

$$h\nu + m_0 c^2 = h\nu' + mc^2 \tag{2.83}$$

 $m = \gamma m_0, \, \gamma = \frac{1}{\sqrt{1-\beta^2}}, \, \beta = \frac{v}{c}$

Impulssatz *x*-Richtung:

$$\frac{\mathrm{h}\nu}{c} = \frac{\mathrm{h}\nu'}{c}\cos(\vartheta) + mv\cos(\varphi) = \frac{\mathrm{h}\nu'}{c}\cos(\vartheta) + \beta\gamma cm_0\cos(\varphi)$$
(2.84)

y-Richtung:

$$0 = \frac{h\nu'}{c}\sin(\vartheta) - \beta\gamma cm_0\sin(\varphi)$$
(2.85)

Seite~30

Normierung der Energien auf Ruheenergie des Elektrons:

$$\alpha = \frac{\mathbf{h}\nu}{m_0c^2} \quad , \quad \alpha' = \frac{\mathbf{h}\nu'}{m_0c^2}$$

Rechnung liefert: (Übungsaufgabe)

$$h\nu' = \frac{h\nu}{1 + \frac{h\nu}{m_0 c^2} (1 - \cos\vartheta)} \qquad (Compton-Verschiebung) \tag{2.86}$$

Übliche Notation durch Übergang zu Wellenlängen:

$$\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \vartheta) = \lambda_{\rm C} (1 - \cos \vartheta)$$
(2.87)

mit der Compton-Wellenlänge des Elektrons:

$$\lambda_{\rm C} = \frac{\rm h}{m_0 c} \tag{2.88}$$

Bemerkung

- 1. Röntgenquant mit $\lambda = \lambda_{\rm C}$ hat Energie $m_0 c^2 = 511 \, \rm keV$
- 2. $\lambda_{\rm C} = 2.4 \, {\rm pm} = 0.024 \, {\rm \AA} = 2.4 \cdot 10^{-3} \, {\rm nm}$
- 3. $\Delta \lambda$ hängt nicht von λ ab
- 4. Maximale Compton-Verschiebung beträgt $\Delta \lambda_{\text{max}} = 2\lambda_{\text{C}}$ bei $\vartheta = \pi$
- 5. Man kann auch $\lambda_{C,Proton}$ definieren mit $m_{0,Proton}$ statt m_0 : $\lambda_{C,Proton} = 1.32 \text{ fm}$
- 6. Nachweis, dass e^- und Wellenlängenverschobenes Röntgenphoton gleichzeitig ausgesandt werden durch Koinzidenzmessung
- 7. Compton-Effekt wichtig in der Kernphysik: hochenergetische Photonen (γ -Quanten) werden stark Compton-verschoben (relative Verschiebung $\frac{\Delta \lambda}{\lambda}$ wird größer mit abnehmenden λ , da $\Delta \lambda$ unabhängig von λ ist!)

2.8. Elektronenbeugung

2.8.1. De-Broglie-Wellenlänge (1924)

Auch Teilchen mit Ruhemasse haben eine Wellenlänge.

Erinnerung Für Photonen gilt $\vec{p} = \hbar \vec{k}, |\vec{k}| = \frac{2\pi}{\lambda}$

$$\Rightarrow \lambda = \frac{h}{p} = \frac{h}{mv} \quad (De\text{-}Broglie\text{-}Wellenlänge) \tag{2.89}$$

m: Masse des Teilchens, v: Geschwindigkeit

Verallgemeinerung gilt für massebehaftete Teilchen (wie z. B. Elektronen, Atome, Moleküle)

Abbildung 2.39: Aufbau zum Davisson-Germer-Versuch

Abbildung 2.40: Polardiagramme der Ergebnisse des Davisson-Germer-Experiments bei 40 V und $54\,\mathrm{V}$

2.8.2. Das Davisson-Germer-Experiment (1918-1927, NP 1937)

Versuch Reflexion langsamer Elektronen an Kristallen $(50 - 100 \,\mathrm{eV})$

Beobachtung

- es treten Maxima und Minima der Intensität auf als Funktion des Streuwinkels (vgl. Interferenz)
- Extrema hängen ab von der Energie der e^- und von der Kristallorientierung

2010-04-28

2.8.3. Das Debye-Scherrer-Verfahren

Erinnerung Bragg-Bedingung: $2d \sin \vartheta = n\lambda$, n = 1, 2, 3, ...

Wenn Probe polykristallin, dann sind alle Orientierungen vorhanden \rightarrow Rotationssymmetrie. Man erhält also ein ringförmiges Interferenzmuster mit Öffnungswinkel 2 ϑ . Falls es mehrere charakteristische Abstände gibt, so gibt es mehrere Ringe.

Versuch Elektronenbeugung an polykristalliner Graphitfolie

Abbildung 2.41: Aufbau zum Debye-Scherrer-Verfahren

Abbildung 2.42: Bragg-Bedingung

Abbildung 2.43: Elektronenbeugung an polykristalliner Graphitfolie

Beobachtung

- 2 konzentrische Interferenzringe um hellen zentralen Fleck
- Interferenzringe und zentraler Fleck durch Magnet ablenkbar
- Durchmesser der Interferenzringe sinkt mit zunehmender $U_{\rm B}$
- Aus geometrischen Überlegungen

Abbildung 2.44: Geometrie der Öffnungswinkel beim Debye-Scherrer-Verfahren

folgt: $\tan(2\vartheta) = \frac{R}{L} \approx \sin(2\vartheta)$, $\sin(2\vartheta) = \frac{n\lambda}{d}$, für die Wellenlänge folgt mit der de-Broglie-Beziehung $\lambda = \frac{h}{\sqrt{2emU_{\rm B}}}$

Folie Dopelspaltversuch für e^- (MÖLLENSTEDT, 1956)

Folie Aharanov-Bohm-Effekt: Verschiebung der Interferenzlinien durch Magnetfeld oder magnetisches Vektorpotential

später Interferenz auch bei Atom- und Molekülstrahlen beobachtet, z. B.

He (STERN et al. 1931)

Neutronen Standardanalyseverfahren in Festkörperphysik

C60 (Fußballmoleküle, $\emptyset \approx 1 \, \mathrm{nm}$) (Zeilinger, Arndt 1995) \rightarrow Folie

2.9. Schwarzkörperstrahlung, Planck'sches Strahlungsgesetz

- Planck 1900: Beginn der Quantenmechanik
- spektrale Intensitätsverteilung der Wärmestrahlung eines schwarzen Körpers
- schwarzer Körper: Idealisierung \rightarrow heißes Metall, Sonne, Universum, \ldots
- universelles Gesetz (KIRCHHOFF,...)
- eine Realisierung eines schwarzen Körpers: Hohlraum
- Loch ist schwarzer Körper.
- Intensitätsverteilung der austretenden Wärmestrahlung ist identisch mit derjenigen des sich im Hohlraum befindlichen elektromagnetischen Feldes.

Abbildung 2.45: Hohlraum als Realisierung eines schwarzen Körpers

Abbildung 2.46: Hohlraum mit Öffnung

2.9.1. Elektromagnetische Felder im Hohlraum

Betrachte kubischen Hohlraum mit Kantenlänge L:

Wände sollen leitend sein, dann gilt:

$$\vec{E}_{\parallel} \begin{vmatrix} x = 0, L = 0 \\ y = 0, L \\ z = 0, L \end{vmatrix}$$
(2.90)

Maxwell-Gleichungen
$$\rightarrow$$
 Wellengleichungen:

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0 \tag{2.91}$$

mit den Randbedingungen 2.90:

$$\vec{E}_{\vec{k},\lambda}(\vec{r},t) = a_{\vec{k},\lambda} \begin{pmatrix} E_{\vec{k},\lambda}^{(x)} \cos(k_x x) \sin(k_y y) \sin(k_z z) \\ E_{\vec{k},\lambda}^{(y)} \sin(k_x x) \cos(k_y y) \sin(k_z z) \\ E_{\vec{k},\lambda}^{(z)} \sin(k_x x) \sin(k_y y) \cos(k_z z)) \end{pmatrix}$$
(2.92)

mit

$$k_i = \frac{\pi}{L} n_i$$
 , $n_i = 1, 2, 3, \dots$, $i = x, y, z$ (2.93)

ergibt sich:

$$\vec{\nabla} \cdot \vec{E} = 0 \Rightarrow E_{\vec{k},\lambda}^{(x)} k_x + E_{\vec{k},\lambda}^{(y)} k_y + E_{\vec{k},\lambda}^{(z)} k_z = \vec{E}_{\vec{k},\lambda} \cdot \vec{k} = 0$$
(2.94)

 $\rightarrow \text{für jedes } \vec{k} = \frac{\pi}{L} \vec{n} = \frac{\pi}{L} \begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix} \text{gibt es zwei mögliche (zu <math>\vec{k} \text{ senkrecht stehende, linear unabhängige)}}$

Polarisationsvektoren (Polarisationen), $\lambda = 1, 2$.

Setze 2.92 in 2.91 ein:

$$\nabla^2 \to -k^2 = -k_x^2 - k_y^2 - k_z^2 \rightsquigarrow -k^2 a_{\vec{k},\lambda} - \frac{1}{c^2} \ddot{a}_{\vec{k},\lambda} = 0$$
(2.95)

Stand: 13. Juli 2010, 20:05

$$\omega_{\vec{k}} = c|\vec{k}| = ck \Rightarrow \ddot{a}_{\vec{k},\lambda} = -\omega_{\vec{k}}^2 a_{\vec{k},\lambda}$$
(2.96)

d. h. jede Mode (\vec{k},λ) des elektromagnetischen Feldes entspricht einem harmonischen Oszillator. klassisch

 $SS \ 10$

$$a_{\vec{k},\lambda}(t) = a_{\vec{k},\lambda}(0)\cos(\omega_{\vec{k}}t) \tag{2.97}$$

allgemeine Lösung

$$\vec{E} = \sum_{\vec{k},\lambda} \vec{E}_{\vec{k},\lambda} \tag{2.98}$$

Energiedichte des elektromagnetischen Feldes (im Vakuum)

$$U(\vec{r}) = \frac{1}{2} \Big(\epsilon_0 E(\vec{r})^2 + \frac{1}{\mu_0} B(\vec{r})^2 \Big)$$
(2.99)

Mittelung über eine Wellenlänge:

$$U = \langle U(\vec{r}) \rangle = \frac{1}{2} \left(\epsilon_0 \langle E(\vec{r})^2 \rangle + \frac{1}{\mu_0} \langle B(\vec{r})^2 \rangle \right)$$

$$= \frac{1}{2} \sum_{\vec{k},\lambda} \left(\frac{(\frac{1}{2})^3 \epsilon_0 a_{\vec{k},\lambda}^2}{E\text{-Feld}} + \frac{(\frac{1}{2})^3 \epsilon_0 a_{\vec{k},\lambda}^2}{B\text{-Feld}} \right)$$

$$= \sum_{\vec{k},\lambda} \left(\frac{1}{2} \right)^3 \epsilon_0 a_{\vec{k},\lambda}^2$$

$$=: \frac{1}{L^3} \sum_{\vec{k},\lambda} \varepsilon_{\vec{k},\lambda}$$

$$U = \frac{1}{L^3} \sum_{\vec{k},\lambda} \varepsilon_{\vec{k},\lambda}$$

$$U = \frac{1}{L^3} \sum_{\vec{k},\lambda} \varepsilon_{\vec{k},\lambda}$$

$$(2.100)$$

Abbildung 2.47: Moden im 3-dimensionalen Koordinaten
system im $\vec{k}\text{-}\mathrm{Raum},\,k_i>0$

Bilde den Kontinuumslimes:

$$\sum_{\vec{k},\lambda} \to \underbrace{\frac{1}{8}}_{k_i > 0} \left(\frac{L}{\pi}\right)^3 \int d^3k$$
(2.101)

$$U = \frac{1}{8} \left(\frac{L}{\pi}\right)^3 \frac{1}{L^3} \int d^3k \varepsilon_{\vec{k},\lambda}$$
(2.102)

$$= \left(\frac{1}{2\pi}\right)^3 \int \mathrm{d}^3k\varepsilon_{\vec{k},\lambda} \tag{2.103}$$

2010-04-30

Mittlere Energie im thermischen Gleichgewicht bei einer Temperatur T:

$$\langle \varepsilon_{\vec{k},\lambda} \rangle_T = \langle \varepsilon_k \rangle_T$$
 unpolarisiertes, isotropes Feld (2.104)

$$U(T) = \frac{1}{8\pi^3} \cdot \underbrace{2}_{\text{Polarisierungen}} \cdot 4\pi \int_0^\infty \mathrm{d}k \, k^2 \langle \varepsilon_k \rangle_T \tag{2.105}$$

Umrechnung in Frequenzen: $\omega = 2\pi\nu = ck \Rightarrow k = \frac{2\pi}{c}\nu$ liefert

$$U(T) = \frac{1}{8\pi^3} \cdot 2 \cdot 4\pi \left(\frac{2\pi}{c}\right)^3 \int_0^\infty d\nu \,\nu^2 \langle \varepsilon_\nu \rangle_T$$
(2.106)

$$= \frac{8\pi}{c^3} \int_0^\infty \mathrm{d}\nu \,\nu^2 \langle \varepsilon_\nu \rangle_T \tag{2.107}$$

$$=: \int_0^\infty \mathrm{d}\nu \, u(\nu, T) \tag{2.108}$$

mit der spektralen Energiedichte

$$u(\nu,T) = \frac{8\pi}{c^3} \nu^2 \langle \varepsilon_\nu \rangle_T$$
(2.109)

 $\frac{8\pi}{c^3}\nu^2$: Zustandsdichte des elektromagnetischen Feldes: Anzahl der Zustände im Frequenzintervall $[\nu, \nu + d\nu]$ ist $\frac{8\pi}{c^3}\nu^2 d\nu$.

Es bleibt: Berechnung von $\langle \varepsilon_{\nu} \rangle_T$ =mittlere Energie eines harmonischen Oszillators der Frequenz ν bei der Temperatur T

klassisch $(\rightarrow \ddot{U}$ bungsaufgabe)

$$\langle \varepsilon_{\nu} \rangle_{T} = k_{\rm B}T$$

 $\stackrel{\rm mit 2.109}{\Rightarrow} u(\nu, T) = \frac{8\pi}{c^{3}} \nu^{2} k_{\rm B}T \qquad Rayleigh-Jeans-Gesetz$ (2.110)

Problem:

$$u(T) = \int_0^\infty d\nu \, u(\nu, T)$$

= $\frac{8\pi}{c^3} k_{\rm B} T \int_0^\infty d\nu \, \nu^2 \to \infty$ "UV-Katastrophe"

2.9.2. Planck'sches Strahlungsgesetz

Quantenhypothese: $\varepsilon_{\nu} = nh\nu, n = 0, 1, 2, \dots$

Wahrscheinlichkeit, dass sich der harmonische Oszillator im Zustand mit n Quanten befindet:

$$p_n = C e^{-\varepsilon_\nu/k_{\rm B}T} = C \underbrace{e^{-nh\nu/k_{\rm B}T}}_{=:\tilde{p}_n} = C\tilde{p}_n$$
(2.111)

wobei man \tilde{p}_n als Boltzmann-Faktor bezeichnet.

$$\langle \varepsilon_{\nu} \rangle_T \equiv \langle \varepsilon_{\nu} \rangle = \langle nh\nu \rangle = h\nu \langle n \rangle$$
 (2.112)

$$\langle n \rangle = \frac{\sum_{n=0}^{\infty} n \tilde{p}_n}{\sum_{n=0}^{\infty} \tilde{p}_n} \stackrel{\frac{h\nu}{k_{\rm B}T} =:x}{=} \frac{\sum_{n=0}^{\infty} n {\rm e}^{-nx}}{\sum_{n=0}^{\infty} {\rm e}^{-nx}}$$
(2.113)

Stand: 13. Juli 2010, 20:05

Es gilt:

$$\sum_{n=0}^{\infty} e^{-nx} = \sum_{n=0}^{\infty} (e^{-x})^n = \frac{1}{1 - e^{-x}}$$
(2.114)

und

$$\sum_{n=0}^{\infty} n e^{-nx} = -\frac{d}{dx} \sum_{n=0}^{\infty} e^{-nx} = \frac{e^{-x}}{\left(1 - e^{-x}\right)^2}$$
(2.115)

Daraus folgt:

$$\langle n \rangle = \frac{1}{\mathrm{e}^{\mathrm{h}\nu/k_{\mathrm{B}}T} - 1} \qquad Bose-Einstein-Verteilung \qquad (2.116)$$

$$\langle \varepsilon_{\nu} \rangle = \frac{\mathrm{h}\nu}{\mathrm{e}^{\mathrm{h}\nu/k_{\mathrm{B}}T} - 1} \tag{2.117}$$

 $\langle n \rangle = \frac{1}{\mathbf{e}^x - 1}$

Abbildung 2.48: Vergleich der $\langle \varepsilon_{\nu} \rangle$ für den klassischen Fall und nach der Quantenhypothese

Einsetzen in 2.109:

$$u(\nu,T) = \frac{8\pi}{c^3} \nu^3 \frac{h}{e^{h\nu/k_B T} - 1} \qquad Planck'sche Strahlungsformel$$
(2.118)

1. Quantenhypothese: $\varepsilon_{\nu} = nh\nu$ kann aus dem Formalismus der Quantenmechanik hergeleitet werden \rightarrow später: harmonischer Oszillator

Abbildung 2.49: Verlauf der Planck'schen Strahlungsformel

2. Grenzfälle:

• $h\nu \ll k_{\rm B}T$:

$$e^{h\nu}k_{\rm B}T - 1 \approx 1 + \frac{h\nu}{k_{\rm B}T} - 1 + \dots \approx \frac{h\nu}{k_{\rm B}T}$$
$$\Rightarrow u \approx \frac{8\pi}{c^3}\nu^2 k_{\rm B}T \qquad (\text{Rayleigh-Jeans}) \tag{2.119}$$

- $h\nu \gg k_{\rm B}T$: $u \approx \frac{8\pi}{c^3} \nu^3 h e^{-h\nu/k_{\rm B}T} \qquad (Wien)$ (2.120)
- 3. Gesamte räumliche Energiedichte:

$$U(T) = \int_{0}^{\infty} d\nu \, u(\nu, T)$$

$$= \frac{8\pi}{c^{3}} h \int_{0}^{\infty} d\nu \frac{\nu^{3}}{e^{h\nu/k_{B}T} - 1}$$

$$x := \frac{h\nu}{k_{B}T} \iff \nu = \frac{k_{B}Tx}{h}$$

$$= \frac{8\pi}{c^{3}} \left(\frac{k_{B}T}{h}\right)^{4} \int_{0}^{\infty} dx \frac{x^{3}}{e^{x} - 1}$$

$$\pi^{4/15}$$

$$U(T) = \underbrace{\frac{8\pi^{5}k_{B}^{4}}{15c^{3}h^{4}}}_{T^{4}} \qquad (Stefan-Boltzmann-Gesetz) \qquad (2.121)$$

4. Wien'sches Gesetz:

$$u(\nu,T) = \nu^3 g(\frac{\nu}{T}) \tag{2.122}$$

wobe
igeine universelle Funktion ist, die nur noch vom Verhältni
s $\frac{\nu}{T}$ abhängt.

5. Wien'sches Verschiebungsgesetz

$$0 \stackrel{!}{=} \frac{\mathrm{d}u}{\mathrm{d}\nu} \bigg|_{\nu=\nu_0} = 3\nu_0^2 g\bigg(\frac{\nu_0}{T}\bigg) + \nu_0^3 g'\bigg(\frac{\nu_0}{T}\bigg)\frac{1}{T} \qquad |\cdot\frac{T}{\nu_0^3}|, \quad x_0 := \frac{\nu_0}{T}$$
$$= \frac{3}{x_0} g(x_0) + g'(x_0) = 0$$
$$\Rightarrow x_0 = \frac{\nu_0}{T} = \mathrm{const}$$
$$\Rightarrow \boxed{\nu \propto T} \qquad (2.123)$$

Die Proportionalitätskonstante folgt direkt aus dem Planck'schen Strahlungsgesetz

Nachtrag 2010-07-05

Abbildung 2.50: Abhängigkeit der Planck'schen Strahlungsformel von der Temperatur

Abbildung 2.51: Aufbau zur Messung des Planck'schen Strahlungsgesetzes

2010-05-03

Kapitel 3. Welle-Teilchen-Dualismus

Frage Ist ein Elektron (Photon) eine Welle oder ein Teilchen?

Antwort \rightarrow sowohlals auch

Teilchen $\frac{e}{m}$, Massenspektrometer, Photoeffekt, Compton-Streuung

Welle Beugung, Interferenz

Quantenmechanik weder Welle noch Teilchen, sondern etwas Neues \rightarrow Sprachgebrauch: "*Teilchen"* (manchmal auch "*Wellen"*)

3.1. Interferenzexperimente, Wahrscheinlichkeitsinterpretation

Interferenz am Doppelspalt

Abbildung 3.1: Grundsätzlicher Aufbau des Doppelspaltexperiments

1. klassisches Teilchen (Kugeln, Schrot, Tennisbälle,...)

Abbildung 3.2: Doppelspaltexperiment mit klassischen Teilchen und dessen Wahrscheinlichkeitsverteilung

- fahre mit dem Detektor nache
inander eine Reihe von Positionen \boldsymbol{x} an
- zähle an jeder Position die Anzahl der eintreffenden Teilchen während einer festen Zeit $T\colon N(X)\geq 0$

- wähle Schrittweite so klein, dass N(x) als kontinuierliche Funktion von x aufgefasst werden kann
- $N_{\rm D} = \int N(x) \, dx \cong$ Anzahl der Teilchen, die den Doppelspalt während der Zeit T passieren, $N_0 \leq N$ (N: insgesamt durch die quelle emittierte Teilchen in der Zeit T)
- Wahrscheinlichkeitsverteilung $(N, N_D \gg 1)$:

$$P(x) := \frac{N(x)}{N} \qquad , \qquad \int P(x) \,\mathrm{d}x = \frac{N_{\mathrm{D}}}{N} \le 1 \tag{3.1}$$

- Ein Loch wird abgedeckt:
 - $P_1(x)$ nur Loch 1 offen
 - $P_2(x)$ nur Loch 2 offen
- es gilt:

$$P(x) = P_1(x) + P_2(x)$$
(3.2)

 \rightarrow jedes Teilchen, welches auf den Schirm trifft, ist
entweder durch Loch 1 oder durch Loch 2 geflogen

2. klassische Wellen (Wasser,...) am Doppelspalt

Abbildung 3.3: Doppelspaltexperiment mit klassischen Wellen und dessen Wahrscheinlichkeitsverteilung

- Wenn die Spaltbreite $d \ll \lambda$, dann werden an den beiden Öffnungen zwei Kugelwellen erzeugt (Huygens'sches Prinzip).
- Amplituden h(x) (Höhe der Wasserwelle bzgl. der ruhenden Wasseroberfläche) oszillieren, können sowohl positive als auch negative Werte annehmen.
- Detektor misst **Intensität** der Welle $I(x) = |h(x)|^2$, man kann $h(x) \sim e^{ikx}$ komplex wählen $\rightarrow h_{phys} = \text{Re } h$.
- Bei abgedecktem Loch $I_1(x) = |h_1(x)|^2$, $I_2(x) = |h_2(x)|^2$
- Amplituden addieren sich: $h(x) = h_1(x) + h_2(x)$
- Intensität:

$$I(x) = |h(x)|^2 = |h_1(x) + h_2(x)|^2$$
(3.3)

$$= |h_1(x)|^2 + |h_2(x)|^2 + 2\operatorname{Re} h_1^*(x)h_2(x)$$
(3.4)

$$= I_1(x) + I_2(x) + 2\cos(\varphi_1 - \varphi_2)\sqrt{I_1I_2} \qquad | I_i = |I_i|e^{i\varphi_i} \qquad (3.5)$$

relative Phase der Teilwellen

es gilt offensichtlich

$$I(x) \neq I_1(x) + I_2(x)$$
 (3.6)

Abbildung 3.4: Doppelspaltexperiment mit Elektronen (Photonen) und dessen Wahrscheinlichkeitsverteilung

3. Elektronen (Photonen) am Doppelspalt

- Detektion: wie bei 1: "Teilchen", $P(x) = \frac{N(x)}{N}$
- Beobachtung: wenn eines der Löscher abgedeckt wird: wie bei 1
- wenn beide Löcher offen sind, so erscheint Interferenz! \rightarrow "Wellen"
- Wahrscheinlichkeitsverteilung entspricht Intensität. Quadrat einer Amplitude:

$$P(x) = |\Psi(x)|^2$$
(3.7)

- $\Psi(x)$: Wahrscheinlichkeitsamplitude, Wellenfunktion
- hier: $\Psi(x)$ tatsächlich komplex! Im Allgemeinen nicht direkt beobachtbar.
- Interferenz:

$$P(x) = |\Psi(x)|^2 = |\Psi_1(x) + \Psi_2(x)|^2$$
(3.8)

$$= |\Psi_1(x)|^2 + |\Psi_2(x)|^2 + 2\operatorname{Re}\Psi_1^*(x)\Psi_2(x)$$
(3.9)

$$= P_1(x) + P_2(x) + 2\cos(\varphi_1 - \varphi_2)\sqrt{P_1P_2} \qquad | \Psi_i = |\Psi_i|e^{i\varphi_i} \qquad (3.10)$$

Diskussion

- 1. klassische Teilchen: müssten diese nicht auch interferieren? \rightarrow im Prinzip ja, aber: die de-Broglie-Wellenlänge $\lambda = \frac{h}{p}$ ist für makroskopische Objekte sehr klein
- 2. klassisch: "Teilchen" kommt entweder durch Loch 1 oder durch Loch 2 zum Schirm $\rightarrow P = P_1 + P_2$
 - \rightarrow ist aber nicht der Fall (Gleichung 3.10), d. h. diese Aussage gilt hier nicht mehr!

Wieso nicht "hinschauen" (messen), welchen Weg das Teilchen nimmt? \rightarrow wenn man dies tut (z. B. Detektor bei den Löchern), dann verschwindet die Interferenz $\rightarrow P = P_1 + P_2$

Grund: Messung des Weges (Ort) stört die Bewegung des Elektrons. Im Gegensatz zur klassischen Physik ist diese Limitierung**grundsätzlicher Natur**, d. h. es ist prinzipiell unmöglich, den Weg der Elektronen zu bestimmen **und** gleichzeitig Interferenz zu messen.

 \rightarrow Heisenberg'sche Unschärfere
lation

2010-05-04

3.2. Die Wellenfunktion

PLANCK, EINSTEIN:

$$E = h\nu = \underbrace{\hbar}_{h/2\pi} \tag{3.11}$$

DE-BROGLIE:

$$\vec{p} = \hbar \vec{k} \tag{3.12}$$

Gleichung 3.11 gilt auch für massive Teilchen, im nicht-relativistischen Fall gilt: $\vec{p} = m\vec{v}$ und $E = \frac{p^2}{2m}$. Deshalb gilt:

$$E = \hbar\omega = \begin{cases} \hbar ck & \text{für Photonen } (m = 0) \\ \frac{\hbar^2 k^2}{2m} & \text{für Elektronen } (m > 0) \rightarrow \text{Materiewelle} \end{cases}$$
(3.13)

freie Teilchen \rightarrow ebene Wellen

$$\Psi(\vec{r},t) = C e^{i(\vec{k}\cdot\vec{r}-\omega t)} = C e^{i(\vec{p}\cdot\vec{r}-Et)/\hbar}$$
(3.14)

Interpretation Ψ : Wahrscheinlichkeitsamplitude, d. h. Aufenthaltswahrscheinlichkeit ist

_

$$P(\vec{r},t) = |\Psi(\vec{r},t)|^2$$
(3.15)

für ebene Wellen:

$$P(\vec{r},t) = |C|^2 = \text{const}$$

Lege Normierung der Wahrscheinlichkeitsverteilung fest:

$$\int_{V} \mathrm{d}^{3} r \, P(\vec{r}, t) = 1 \qquad \text{(für alle } t) \tag{3.16}$$

$$\Rightarrow |C|^2 V = 1 \Rightarrow C = \frac{1}{\sqrt{V}} \qquad (\text{Phase irrelevant}) \Rightarrow P(\vec{r}, t) \qquad = \frac{1}{V} = \text{const} \qquad (3.17)$$

V' < V:

$$P_{V'} = \frac{V'}{V}$$

Zusammenfassend

- 1. ebene Welle hat einen wohldefinierten Impuls $\vec{p}=\hbar\vec{k}$
- 2. Ort des Teilchens ist völlig umbestimmt (Wahrscheinlichkeit für Ort des Teilchens ist gleichmäßig über den Raum verteilt)

3.3. Wellenpakete

Wie beschreibt man ein Teilchen, welches einen genauer definierten Aufenthaltsort besitzt?

$$\Psi(\vec{r},t) = \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \underbrace{\hat{\Psi}(\vec{k})}_{\mathrm{FT \ von \ }\Psi(\vec{r},t=0)} \underbrace{\hat{\psi}(\vec{k})}_{\omega(\vec{k})} \exp\left(\frac{\mathrm{d}^{3}k}{\omega(\vec{k})}\right) \left(3.18\right)$$

Abbildung 3.5: Gauß'sches Wellenpaket

Gauß'sches Wellenpaket

$$\hat{\Psi}(\vec{k}) = A \mathrm{e}^{-(\vec{k} - \vec{k}_0)^2 / 4\sigma_k^2} \tag{3.19}$$

berechne $\Psi(\vec{r},t)$ bzw. $|\Psi(\vec{r},t)|^2$ durch quadratisches Ergänzen (\rightarrow Übung) Ergebnis in 3D:

$$P(\vec{r},t) = |\Psi(\vec{r},t)|^2 = \left(\frac{1}{\sqrt{2\pi}\sigma(t)}\right)^{3/2} e^{-(\vec{r}-\vec{v}t)/2\sigma(t)^2}$$
(3.20)

Diskussion

1. Wellenpaket bewegt sich

$$\langle \vec{r} \rangle = \int \mathrm{d}^3 r \, \vec{r} P(\vec{r}, t) = \vec{v} t$$

 mit

$$\vec{v} = \frac{\hbar \vec{k}_0}{m} = \frac{\partial \omega(\vec{k})}{\partial \vec{k}} \bigg|_{\vec{k}_0}$$
 Gruppengeschwindigkeit (3.21)

2. Wellenpaket im Ortsraum ist ebenfalls Gauß-Funktion, bei t = 0:

$$\sigma(0) = \frac{1}{2\sigma_k} \tag{3.22}$$

3. "Zerfließen" des Wellenpakets $(t>0)\colon$

$$\sigma(t)^{2} = \sigma(0)^{2} + \left(\frac{\hbar t}{2\sigma(0)m}\right)^{2} > \sigma(0)^{2}$$
(3.23)

Abbildung 3.6: Gauß'sches Wellenpaket im Ortsraum zerfließt mit der Zeit

2010-05-05

3.4. Heisenberg'sche Unschärferelation

Die Fouriertransformierte in 3.18 erhält Quadratnorm (Parseval-Theorem)

$$\int d^3r \, |\Psi(\vec{r},t=0)|^2 = \int \frac{d^3k}{(2\pi)^3} |\hat{\Psi}(\vec{k})|^2 \tag{3.24}$$

mit $\vec{p} = \hbar \vec{k}$ folgt:

$$1 = \int \underbrace{\mathrm{d}^3 r \, |\Psi(\vec{r}, t=0)|^2}_{P\text{-Verteilung des Ortes}} = \int \underbrace{\frac{\mathrm{d}^3 p}{(2\pi\hbar)^3} |\hat{\Psi}(\vec{p})|^2}_{P \, \mathrm{Verteilung des Drues}}$$
(3.25)

P-Verteilung des Impulses

$$\Rightarrow W(\vec{p}) = \frac{1}{(2\pi\hbar)^3} |\Psi(\vec{p})|^2 = \frac{|A|^2}{(2\pi\hbar)^3} e^{-(\vec{p}-\vec{p}_0)^2/4\hbar^2 \sigma_k^2}$$
(3.26)

ist Wahrscheinlichkeitsverteilung im Impulsraum

 $P(\vec{r})\Delta V = |\Psi(\vec{r})|^2 \Delta V$: Wahrscheinlichkeit, Teilchen im Volumen ΔV um \vec{r} zu finden. $W(\vec{p})\Delta V_p$: Wahrscheinlichkeit, dass Teilchen einen Impuls im Bereich ΔV_p um \vec{p} hat. Mittelwerte von \vec{r} :

$$\langle \vec{r} \rangle = \int \mathrm{d}^3 r \, P(\vec{r}) \vec{r} = \vec{v} t = \frac{\vec{p}_0}{m} t$$

Schwankungsquadrat:

$$\Delta x^{2} := \left\langle \left(\vec{r} - \langle \vec{r} \rangle \right)^{2} \right\rangle = \sigma(0)^{2} + \left(\frac{\hbar t}{2\sigma(0)m} \right)^{2} \ge \sigma(0)^{2}$$
$$\Rightarrow \Delta x \ge \sigma$$
(3.27)

Mittelwert von \vec{p} :

$$\langle \vec{p} \rangle = \int \frac{\mathrm{d}^3 p}{(2\pi\hbar)^3} W(\vec{p}) \vec{p} = \underbrace{\int \frac{\mathrm{d}^3 p}{(2\pi\hbar)^3} \underbrace{(\vec{p} - \vec{p}_0)}_{=: \vec{p}'} W(\vec{p})}_{=: \vec{p}'} + \int \frac{\mathrm{d}^3 p}{(2\pi\hbar)^3} \vec{p}_0 W(\vec{p}) = \vec{p}_0 = \hbar \vec{k}_0$$

Schwankungsquadrat für \vec{p} :

$$\Delta p^{2} = \left\langle \left(\vec{p} - \left\langle \vec{p} \right\rangle \right)^{2} \right\rangle = \hbar^{2} \sigma_{k}^{2}$$
$$\Rightarrow \boxed{\Delta p = \hbar \sigma_{k} = \frac{\hbar}{2\sigma}}$$
(3.28)

Aus 3.27 und 3.28 folgt dann:

$$\Delta x \cdot \Delta p \ge \frac{\hbar}{2} \qquad Heisenberg'sche Unschärferelation \tag{3.29}$$

Abbildung 3.7: Aufbau zum "Quantenradierer"

3.4.1. Analogieversuch zum "Welcher-Weg"-Experiment: "Quantenradierer"

Beobachtung

- Wenn $P_1 \parallel P_2$: Doppelspaltinterferenzmuster (D) ist beobachtbar; wenn $P_1 \parallel P_2 \perp A$ oder $\perp P_0$ verschwinget gesamte Intensität wegen Absorption.
- Wenn $P_1 \perp P_2$ und eines der beiden $\parallel P_0$ ist nur Einzelspaltinterferenz eines Spaltes (1E) beobachtbar für beliebige Stellung von A.

Erklärung Der Spalt $\perp P_0$ lässt keine Intensität durch.

• Wenn $P_1 \perp P_2$ und keines der beiden $|| P_0$ ist nur Einzelspaltinterferenz von beiden Spalten (2E) zu beobachten.

 ${\bf Erklärung}$ Durch Messung der Polarisation der Lichtwelle auf dem Schirm wäre "Welcher-Weg"-Information vorhanden \rightarrow Komplementarität verlangt, dass Interferenz der Doppelspalte verschwindet.

• Wenn $P_1 \perp P_2$ und keines der beiden $\parallel P_0$, und A unter $\pm 45^{\circ}$ zu P_1 und P_2 , dann erscheint das Doppelspaltinterferenzmuster wieder mit reduzierter Intensität.

Erklärung hinter A ist "Welcher-Weg"-Information wieder gelöscht ("Quantenradierer")

Bemerkung Die Polarisation der elektromagnetischen Welle entspricht dem Spin der Photonen (später mehr dazu).

Achtung hier *kein* Quantenexperiment, sondern durch klassische Theorie der elektromagnetischen Wellen beschreibbar, aber das Experiment wurde auch schon mit gleichem Ergebnis mit Einzelphotonen (inzwischen auch mit Atomen) durchgeführt.

Kapitel 4. Bohr'sches Atommodell

4.1. Grundlegende Experimente

- Bereits beim Photoeffekt gesehen: Spektrum der Hg-Hochdrucklampe zeigt scharfe Linien
- Röntgenspektrum: scharfe Linien, z. B. k_{α}

4.1.1. Spektrallinien des Wasserstoffs

Balmerserie Aufbau: Glimmentladungsröhre, gefüllt mit Wasserstoff, Energieübertrag durch e^- -Stöße führen zur Dissoziation der H₂-Moleküle \rightarrow atomarer Wasserstoff, und Anregung zum Leuchten.

Abbildung 4.1: Aufbau zur Messung der Spektrallinien

Beobachtung	4 Linien im sichtbaren Bereich	
Farbe	Bezeichnung	$\lambda \; [\mathrm{nm}]$
rot	H_{lpha}	656
blau	${ m H}_eta$	486
violett I	H_{γ}	434
violett II	H_{δ}	410
~1 · 1 · · ·	1	1 01

Gleicher Versuch mit Hg und Gitterspektrometer: gelbe Linie ist aufgespalten, $\Delta \lambda = 2 \text{ nm} (\lambda_1 = 577 \text{ nm}, \lambda_2 = 579 \text{ nm})$. Für Na ergibt sich $\Delta \lambda = 0.6 \text{ nm} (\lambda_1 = 589.99 \text{ nm}, \lambda_2 = 590.59 \text{ nm})$

zu klären

- Warum gibt es diskrete Linien?
- Warum genau diese Wellenlängen?

Für Wasserstoff: empirische Formel von BALMER: $\lambda=\frac{m^2}{m^2-4}G$ mit $m=3,4,\ldots$ und $G=364.56\,\mathrm{nm}.$

Umschreibung der Balmer-Formel

$$\frac{1}{\lambda} = R_{\rm H} \left(\frac{1}{4} - \frac{1}{m^2} \right) = R_{\rm H} \left(\frac{1}{2^2} - \frac{1}{m^2} \right) \tag{4.1}$$

mit $R_{\rm H} = \frac{4}{G} = 10967758.1 \,\mathrm{m}^{-1}$

Grenzwellenlänge der Balmerserie

$$\frac{1}{\lambda_{\infty}} = \frac{R_{\rm H}}{4} \qquad \text{mit} \qquad m = \infty \qquad \Rightarrow \quad \lambda_{2,\infty} = 364.56 \,\text{nm} \stackrel{\frown}{=} h\nu = 3.4 \,\text{eV} \tag{4.2}$$

Vorhersage weiterer Linien außerhalb des sichtbaren Bereichs durch Rydberg-Ritz-Formel:

$$\frac{1}{\lambda_{n,m}} = R_{\rm H} \left(\frac{1}{n^2} - \frac{1}{m^2} \right) \qquad \text{mit} \qquad n < m \in \mathbb{N}$$

$$\tag{4.3}$$

n = 1: Lyman-Serie (UV)

 $m = 2 \ 121.6 \,\mathrm{nm}$

 $m=5~95\,\mathrm{nm}$

 $\lambda_{1,\infty}$ 91.1 nm $\hat{=}$ h $\nu = 13.6 \,\mathrm{eV}$

n = 3: Paschen-Serie (IR)

 $m=4~1875\,\mathrm{nm}$

 $\lambda_{3,\infty} 820 \,\mathrm{nm} \cong \mathrm{h}\nu = 1.51 \,\mathrm{eV}$

```
n = 4: Brackett-Serie (fernes IR)
```

 $\lambda_{4,\infty}$ 1458 nm $\hat{=}$ h $\nu = 0.85 \,\mathrm{eV}$

Ritz'sches Kombinationsprinzip Durch Addition und Subtraktion der Frequenzen (inverse Wellenlänge) der bekannten Spektrallinien findet man weitere Spektrallinien

2010-05-07

Versuch: Messung der Na-Doppellinie

Abbildung 4.2: Messung der gelben Na-Doppellinie mit Hilfe eines Gitterspektrometers

Ritz'sches Kombinationsprinzip

4.1.2. Franck-Hertz-Versuch

Aus der Kathode werden e^- emittiert und durch Sägezahnspannung zum Gitter G beschleunigt. Sie können nur zur Anode A gelangen, wenn ihre kinetische Energie ausreicht um U_{Brems} zu überwinden. Messe den Strom $I_{K\to A}$ durch Messverstärker.

Abbildung 4.3: Ritz'sches Kombinationsprinzip \rightarrow Vermutung gleicher, diskreter Energieniveaus der $e^-\mathrm{im}$ Atom

Abbildung 4.4: Aufbau des Franck-Hertz-Versuchs und dessen Ergebnis

Interpretation Haben die e^- die Energie 4.9 eV erreicht, verlieren die die kinetische Energie durch Anregung eines Hg-Atoms. Das Hg-Atom strahlt die (bekannte) Linie mit $\lambda = 254$ nm aus $\hat{=} h\nu = 4.9 \text{ eV}$. e^- , die Stoßanregungen gemacht haben, gelangen nicht mehr nach $A \to I$ sinkt. Wenn $E_{\text{kin}} = 9.8 \text{ eV}$ erreicht, dann kann jedes e^- zwei Hg-Atome anregen \to im Atom gibt es diskrete Energieniveaus: zum Übergang ist ein bestimmter Energiebetrag notwendig. Anregungsenergie kann durch elektromagnetische Strahlung abgegeben werden \to Spektrallinien sind Übergänge zwischen Energieniveaus. Maximale Energie ist die Ionisierungsenergie.

4.2. Bohr'sche Postulate

- 1. Elektronen bewegen sich auf Kreisbahnen um positiv geladenen Kern mit diskreten Energien $(E_n, \text{strahlungslos}) \rightarrow stationäre Zustände (Erweiterung des Rutherford'schen Atommodells, nach welchem Kreisbahnen mit beliebigen Radien und Energien erlaubt waren)$
- 2. Übergänge zwischen stationären Zuständen sind mit Emission oder Absorption (Versuch: Resonanzfluoreszenz) eines Photons der Energie $h\nu = E_{n_1} - E_{n_2}$ verbunden.
- 3. Drehimpuls auf stationären Bahnen ist diskret (gequantelt)

$$J = \int p \, \mathrm{d}x = n\hbar \qquad \text{mit} \qquad n \in \mathbb{N}$$

Anmerkung Bohr'sches Atommodell veraltet, aber Zusammenhänge zwischen Kernladungszahl Z, den Energien E_n , den Radien r_n behalten auch bei quantenmechanischer Behandlung Gültigkeit!

Bestimmung der Energien E_n , der Radien r_n und Zusammenhang mit $R_{\rm H}$ aus Coulomb-Gesetz, Energieerhaltung und dem 3. Postulat (Drehimpulsquantisierung) Gesamtenergie eines e^- im Coulombpotential

$$E_{\rm ges} = \frac{1}{2}mv^2 - \frac{Ze^2}{4\pi\epsilon_0 r}$$

für Wasserstoffähnliche Atome mit Kernladungszahl Z aber nur $1e^-$ (H: Z = 1)

- Auf stationären Bahnen gilt: $|F_{\text{Coulomb}}| = |F_{\text{Zentrifugal}}|$
- Virialtheorem: $E_{\text{pot}} = -2E_{\text{kin}}$
- Drehimpulserhaltungssatz und 3. Postulat $J = n\hbar$:

$$r_n = \frac{J}{mv} = \frac{4\pi\epsilon_0 n^2\hbar^2}{Zme^2} \qquad \text{Radius} \tag{4.4}$$

$$E_{\text{ges},n} = -\frac{Z^2 e^4 m}{2(4\pi\epsilon_0)^2 \hbar^2} \frac{1}{n^2} \qquad \text{Energie} \tag{4.5}$$

$$\Rightarrow r_n \propto \frac{1}{Z} \quad , \quad r_n \propto n^2 \quad , \quad r_n \propto \frac{1}{m} \tag{4.6}$$

$$\Rightarrow E_n \propto Z^2 \quad , \quad E_n \propto \frac{1}{n^2} \quad , \quad E_n \propto m \tag{4.7}$$

2010-05-10

Bemerkung

1. Feinstrukturkonstante

$$\alpha := \frac{e^2}{4\pi\epsilon_0\hbar c} = \frac{e^2}{2\epsilon_0 h c} = \frac{1}{137}$$
(4.8)

$$r_n = \frac{\hbar}{\alpha m c Z} n^2 \quad , \quad E_{\text{ges},n} = -\frac{\alpha^2 m c^2}{2} \frac{Z^2}{n} \tag{4.9}$$

- 2. Bisher betrachtet: Näherung mit unendlich schwerem Kern
 - a) Schwerpunktsystem

Abbildung 4.5: Zur Berechnung im Schwerpunktsystem

es gilt: mr = MR, $\frac{R}{g} = \frac{m}{M} =: \mu \ll 1$ daraus ergibt sich: r_n unverändert $(E_{\text{ges},n})_{\text{S}} = \frac{E_{\text{ges},n}}{1+\mu}$ für H-Atom gilt $\mu \approx \frac{1}{1800} < 10^{-3}$ b) Betrachtung im Ruhesystem des Kerns $r_{\text{relativ}} = r + R$, $v_{\text{relativ}} = v + V$ mit reduzierter Masse $m_{\text{R}} = \frac{m}{1+\mu} = \frac{mM}{m+M}$

daraus ergibt sich:

$$(r_n)_{\rm rel} = \frac{\hbar}{\alpha m_{\rm R} c} n^2 \frac{1}{Z^2}$$
$$(E_{{\rm ges},n})_{\rm rel} = -\frac{\alpha^2 m_{\rm R} c^2}{2} \frac{1}{n^2} Z^2$$

3. Zahlenwerte

$$(E_{\text{ges},n})_{\text{S}} = \underbrace{-\frac{\alpha^2 m c^2}{2(1+\mu)}}_{E_{1,\text{H}}} \frac{Z^2}{n^2}$$

wobei $E_{1,\mathrm{H}} = -13.59\,\mathrm{eV}$ die Ionisierungsenergie des Wasserstoffs ist.

Für größere wasserstoffähnliche Atome gilt

• $E_1(Z) = Z^2 E_{1,\mathrm{H}}$

•
$$R_{\rm H} = \frac{me^4}{8\epsilon_0^2 h^3 c(1+\mu)} = 10967758.1 \,\mathrm{m}^{-1}$$

• Radius des H-Atoms: $a_0 := r_1 = r(Z = 1, n = 1) = \frac{h}{\alpha mc} = 0.529 \text{ Å} \approx 0.5 \text{ Å}$

4.3. Isotopieverschiebung, Spektren H-ähnlicher Atome, myonische Atome, Rydbergatome

4.3.1. Isotopieverschiebung

Spektrallinien der Isotope mit gleichem Z aber unterschiedlichem A sindleicht verschieden, da μ verschieden.

Beispiel

Wasserstoff H: Z = 1, A = 1

Deuterium D: Z = 1, A = 2

 $\Rightarrow \mu = \frac{m}{M} \Rightarrow \mu_{\rm D} = 2\mu_{\rm H} \ (\rightarrow \ddot{\rm U}$ bungsaufgabe)

4.3.2. H-ähnliche Atome

z. B. He⁺, Li⁺⁺, Be⁺⁺⁺, U⁹¹⁺,...

$$\frac{1}{\lambda_x} = Z^2 \frac{1}{\lambda_{\rm H}} \frac{1+\mu_{\rm H}}{1+\mu_x}$$

4.3.3. Myonische Atome

Ersetze e^- durch Myon μ^-

- μ^- hat ebenfalls negative Elementarladung $(Q_{\mu^-} = -e)$, aber $m_{\mu} = 207m_e$.
- μ^- entsteht bei Zerfällen von Pionen, Lebensdauer $\approx 2\,\mu$ s, zerfällt dann weiter in e^- und Neutrinos. Können für kurze Zeit eingefangen werden und *myonische Atome* bilden.

- $r_{n,\mu} \approx r_n \frac{m_e}{m_{\mu}} \Rightarrow 200$ mal kleiner.
- Photonenenergien $h\nu_{\mu} \approx h\nu_{e} \frac{m_{\mu}}{m_{e}} \Rightarrow 200$ mal größer \rightarrow Röntgen- und γ -Strahlung.
- Da μ^- näher an den Kern herankommt, kann dadurch Ladungsverteilung im Kern studiert werden.
- Bemerkung: In manchen Büchern wird das Myon ", μ -Meson" genannt, obwohl es sich nicht um ein Meson in üblicher Klassifizierung handelt sondern um ein Lepton.

4.3.4. Rydbergatome

Rydbergatome sind hoch angeregte Atome (d. h. n ist groß) $\rightarrow r_n$ sehr groß $\approx 10^{-5} \,\mathrm{m} \rightarrow \mathrm{mikrosko-pisch}$ nachweisbar $\rightarrow \mathrm{\ddot{U}bungsaufgabe}$

4.4. Sommerfeld'sche Erweiterung, relativistische Korrekturen und Mängel des Bohr'schen Atommodells

- 1. Wie bei Kepler gibt es nicht nur Kreisbahnen sondern auch Ellipsenbahnen. Energie bleibt gleich, aber Drehimpuls anders \rightarrow Einführung einer zweiten Quantenzahl, welche die Form der Bahn und Drehimpuls beschreibt \rightarrow es gibt mehrere stationäre Zustände mit gleicher Energie \rightarrow Entartung
- 2. Relativistische Korrekturen (Bohr-Sommerfeld relativistisch):

Auch in E_{ges} taucht die Drehimpulsquantenzahl j auf:

Für H-Atom:

$$E_{\text{ges}} \approx \underbrace{m_e c^2 \left(1 - \frac{\alpha^2}{2n^2}}_{\text{Bohr-Sommerfeld}} \underbrace{-\frac{\alpha^4}{2n^4} \left(\frac{n}{j + \frac{1}{2}} - \frac{3}{4}\right)}_{\text{Korrekturen}} \pm \dots \mathcal{O}(\alpha^6)\right)$$

Beispiel dafür ist die Aufspaltung der gelben Na-Doppellinie.

- 3. Mängel des Bohr'schen Atommodells
 - Verquickung von klassicher Physik und Quantenphysik ohne Rechtfertigung
 - Für größere Atome und Moleküle (ab $2e^-)$ quantitativ falsch
 - magnetische Eigenschaften der Atome werden falsch beschrieben
 - \Rightarrow vollständig neue Beschreibung durch Quantenmechanik nötig

Kapitel 5. Die Schrödingergleichung

Ziel Wellengleichung für die Wahrscheinlichkeitsamplitude $\Psi(\vec{r}, t)$ zur Erinnerung: $P(\vec{r}, t) = |\Psi(\vec{r}, t)|^2$

5.1. Die Schrödingergleichung für freie Teilchen

Wellenpaket

$$\Psi(\vec{r},t) = \int \frac{\mathrm{d}^3 p}{(2\pi\hbar)^3} \hat{\Psi}(\vec{p}) \mathrm{e}^{\mathrm{i}\left(\vec{p}\cdot\vec{r} - \frac{p^2}{2m}t\right)/\hbar}$$
(5.1)

wobei $\hat{\Psi}(\vec{p})$ die Fourier-Transformierte von $\Psi(\vec{r}, t = 0)$, d. h. durch die Anfangsbedingung $\Psi(\vec{r}, t = 0)$ vollständig bestimmt.

Um die Wellengleichung zu finden, bilde die Ableitung:

$$\frac{\partial}{\partial t}\Psi(\vec{r},t) = \int \frac{\mathrm{d}^3 p}{(2\pi\hbar)^3} \hat{\Psi}(\vec{p}) \left(-\frac{\mathrm{i}p^2}{2m\hbar}\right) \mathrm{e}^{\mathrm{i}\left(\vec{p}\cdot\vec{r}-\frac{p^2}{2m}t\right)/\hbar}$$
(5.2)

Idee:

$$\vec{\nabla} e^{i\vec{p}\cdot\vec{r}/\hbar} = \frac{\partial}{\partial\vec{r}} e^{i\vec{p}\cdot\vec{r}/\hbar} = \frac{i\vec{p}}{\hbar} e^{i\vec{p}\cdot\vec{r}/\hbar}$$
(5.3)

$$\nabla^2 \mathrm{e}^{\mathrm{i}\vec{p}\cdot\vec{r}/\hbar} = -\frac{p^2}{\hbar^2} \mathrm{e}^{\mathrm{i}\vec{p}\cdot\vec{r}/\hbar}$$
(5.4)

$$\Rightarrow \frac{\partial}{\partial t} \Psi(\vec{r}, t) = \dots = \int \frac{\mathrm{d}^3 p}{(2\pi\hbar)^3} \hat{\Psi}(\vec{p}) \left(-\frac{\mathrm{i}}{2m\hbar}\right) \left(-\hbar^2 \nabla^2\right) \mathrm{e}^{\mathrm{i}(\vec{p}\cdot\vec{r}-\frac{p^2}{2m}t)/\hbar}$$
(5.5)

$$=\frac{\mathrm{i}\hbar}{2m}\nabla^{2}\underbrace{\int\frac{\mathrm{d}^{3}p}{(2\pi\hbar)^{3}}\hat{\Psi}(\vec{p})\mathrm{e}^{\mathrm{i}\left(\vec{p}\cdot\vec{r}-\frac{p^{2}}{2m}t\right)/\hbar}}_{=\Psi(\vec{r},t)}$$
(5.6)

$$=\frac{\mathrm{i}\hbar}{2m}\nabla^{2}\Psi(\vec{r},t) \qquad \qquad \left|\cdot\mathrm{i}\hbar\right. \tag{5.7}$$

 $i\hbar\frac{\partial}{\partial t}\Psi(\vec{r},t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\vec{r},t) \qquad \text{zeitabhängige Schrödingergleichung für freie Teilchen}$ (5.8)

Bemerkung

- 1. lineare, homogene, partielle Differential
gleichung für $\Psi(\vec{r},t)$
- 2. erste Ordnung in $\frac{\partial}{\partial t} \equiv \partial_t$
- 3. Anfangsbedingung $\Psi(\vec{r},0)$ bestimmt die Lösung vollständig.
- 4. Weshalb ist die Gleichung 1. Ordnung? klassisch (Newton): $\dot{x} = \frac{p}{m}, \dot{p} = F(x) \Rightarrow \ddot{x} = \frac{F(x)}{m}$ Grund: $\Psi(\vec{r}, 0) \longleftrightarrow \hat{\Psi}(\vec{p}) \Rightarrow \Psi$ enthält bereits Informationen über Ort und Impuls!

5. Separationsansatz: $\Psi(\vec{r},t)=\psi(\vec{r})\chi(t)$ in 5.8 einsetzen liefert

$$i\hbar\partial_t \ln \chi(t) = -\frac{\hbar}{2m} \frac{\nabla^2 \varphi(\vec{r})}{\varphi(\vec{r})} =: E = \text{const}$$
(5.10)

$$\ln \chi(t) = -\frac{\mathrm{i}E}{\hbar}t + \mathrm{const} \Rightarrow \chi(t) = C_1 \mathrm{e}^{-\mathrm{i}Et/\hbar}$$
(5.11)

und

$$\boxed{-\frac{\hbar^2}{2m}\nabla^2\varphi(\vec{r}) = E\varphi(\vec{r})}$$
zeitunabhängige Schrödingergleichung für freie Teilchen (5.12)

mit $E = \frac{\hbar^2 k^2}{2m} \Rightarrow \varphi(\vec{r}) = C_2 e^{i\vec{k}\cdot\vec{r}}$

5.2. Einführung der Schrödingergleichung über die Hamilton-Jacobi-Theorie

 $(\rightarrow \text{Nolting } 5/1, \text{Kapitel } 2)$

- auch hier: induktives "Erraten", keine Herleitung!
- Erinnerung: analytische Machanik: kanonische Transformation

$$\{q_i\}, \{p_i\} \to \{q'_i\}, \{p'_i\} \quad i = 1, \dots, s$$

erzeugende Funktion: $S(\{q_i\}, \{p'_i\}, t)$ mit

$$p_j = \frac{\partial S}{\partial q_j} \tag{5.13}$$

$$q'_j = \frac{\partial S}{\partial p'_j} \tag{5.14}$$

$$H' = H + \frac{\partial S}{\partial t} \tag{5.15}$$

Wähle S so, dass $q'_j = \text{const}, p'_j = \text{const}$ für $j = 1, \dots, s$ Erfüllt, falls H' = 0, d. h. mit 5.15 und 5.13

$$H\left(q_1,\ldots,q_s,\frac{\partial S}{\partial q_1},\ldots,\frac{\partial S}{\partial q_s},t\right) + \frac{\partial S}{\partial t} = 0$$
(5.16)

hier: einzelnes Teilchen, konservatives Kraftfeld

$$H = T + V = E = \text{const} \tag{5.17}$$

kinetische Energie $T=\frac{p^2}{2m},$ Potential $V=V(\vec{r})$

Prof. Dr. Burkard / Prof. Dr. Scheer

Separationsansatz

$$S(\vec{r}, \vec{p}', t) = W(\vec{r}, \vec{p}') - Et$$
(5.18)

Hamilton-Jacobi-Gleichung

$$H(\vec{r}, \nabla W) = E \tag{5.19}$$

mit 5.17:

$$\frac{1}{2m} (\vec{\nabla}W)^2 = E - V(\vec{r})$$
(5.20)

 $\vec{p}'=\mathrm{const}, W=\mathrm{const}$ definiert Flächen im Raum, über die sich Wellenfronten $S=\mathrm{const}$ mit der Zeit hinwegschieben.

 $SS \ 10$

Abbildung 5.1: Wellenfronten bewegen sich über die Flächen mit $\vec{p}' = \text{const}$ und W = const hinweg

Geschwindigkeit der Wellenfronten

$$0 = \mathrm{d}S = \vec{\nabla}W \cdot \mathrm{d}\vec{r} - E\,\mathrm{d}t \tag{5.21}$$

$$\vec{u} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}, \ \vec{u} \cdot \underbrace{\vec{\nabla}W}_{=\vec{p}} = E$$
$$\vec{u} \parallel \vec{\nabla}W \quad \Rightarrow \quad u = \frac{E}{p} = \frac{E}{\sqrt{2m(E - V(\vec{r}))}}$$
(5.22)

ein 5.20 einsetzen:

$$(\vec{\nabla}W)^2 = \frac{E^2}{u^2}$$
(5.23)

zurück zuSmit 5.18

$$(\vec{\nabla}S)^2 = \frac{1}{u^2} \left(\frac{\partial S}{\partial t}\right)^2$$

Wellengleichung der klassischen Mechanik (
$$Wirkungswellen$$
) (5.24)

Analogie zur Optik

$$\nabla^2 \varphi - \frac{1}{u^2} \frac{\partial^2 \varphi}{\partial t^2} = 0 \quad \text{(Wellenoptik)} \tag{5.25}$$

hier: $u=\frac{c}{n},\,n:$ Brechungsindex, c: Vakuumlichtgeschwindigkeit

Alexander Kimmig, Uni Konstanz

klassische Mechanik
Wgeometrische Optik
$$\hbar \frac{k}{n}L$$
 E $\hbar \frac{k}{n}c$ $\vec{p} = \vec{\nabla}W$ $\hbar \frac{k}{n}\vec{\nabla}L$ $\Psi \sim e^{i(W-Et)\hbar}$ \leftarrow $\varphi \sim e^{i\frac{k}{n}(L-ct)}$ Teilchentrajektorie \leftrightarrow LichtstrahlWellenmechanik (?) \rightarrow

• Fall n = const

$$\varphi(\vec{r},t) = \varphi_0 \mathrm{e}^{\mathrm{i}(\vec{k}\cdot\vec{r}-\omega t)}$$

mit $\omega = uk = \frac{c}{n}k$

• Fall $n = n(\vec{r})$

$$\varphi(\vec{r},t) = \varphi_0(\vec{r}) e^{i \left[\frac{k}{n} \left(L(\vec{r}) - ct\right)\right]}$$

wobe
i φ_0 jetzt schwach ortsabhängig ist, und $L(\vec{r})$ den Lichtweg,
bzw. Eikonal bezeichnet. Für eine ebene Welle gilt: $\vec{L}(\vec{r}) = \hat{k} \cdot \vec{r}$

Durch Einsetzen in 5.25 und durch die Annahme, dass sich $n(\vec{r})$ auf der Längenskala von $\lambda = \frac{2\pi}{k}$ nur schwach ändert, erhält man

$$(\vec{\nabla}L)^2 = n^2 = \frac{c^2}{u^2} \quad Eikonalgleichung \tag{5.26}$$

Vergleiche geometrische Optik 5.26 und klassische Mechanik 5.23:

$$\nabla^{2} \underbrace{\varphi}_{\Psi} + \underbrace{\frac{1}{u^{2}}}_{\frac{2m(E-V)}{E^{2}}} \underbrace{\frac{\partial^{2}\varphi}{\partial t^{2}}}_{\frac{-\left(\frac{ck}{n}\right)^{2}\varphi}{\frac{E^{2}}{\hbar^{2}}\Psi}$$

mit $\frac{\partial}{\partial t} \to -i\frac{k}{n}c \to -\frac{iE}{\hbar}$. $\Rightarrow \nabla^2 \Psi + \frac{2m^2}{\hbar}(E-V)\Psi = 0$ $\boxed{-\frac{\hbar^2}{2m}\nabla^2 \Psi + V\Psi = E\Psi}$ zeitunabhängige Schrödingergleichung (5.27) 2010-05-12

$$\Psi(\vec{r},t) = \Psi(\vec{r})e^{-i\omega t} , \quad \omega = \frac{E}{\hbar} = \frac{\hbar k^2}{2m} , \quad E\Psi = i\hbar \frac{\partial E}{\partial t}$$
$$i\hbar \frac{\partial}{\partial t}\Psi = -\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi \qquad zeitabhängige \ Schrödingergleichung \tag{5.28}$$

Definition Hamilton-Operator:

$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})$$
(5.29)

damit:

$$i\hbar \frac{\partial}{\partial t}\Psi = \hat{H}\Psi$$
 zeitabhängige Schrödingergleichung (5.30)

$$\hat{H}\Psi = E\Psi$$
 zeitunabhängige Schrödingergleichung (5.31)

Diskussion

1. \hat{H} bildet Funktion Ψ auf neue Funktion $\hat{H}\Psi$ ab. \hat{H} ist ein linearer Operator auf dem Raum der Funktionen Ψ_n :

$$H(c_1\Psi_1 + c_2\Psi_2) = c_1H\Psi_1 + c_2H\Psi_2$$

später: \hat{H} ist hermitescher Operator auf dem Hilbertraum \mathcal{H}

- 2. 5.30 ist ein Anfangswertproblem, d. h. für gegebenes \hat{H} erhalte aus $\Psi(\vec{r}, t = 0)$ die Wellenfunktion $\Psi(\vec{r}, t)$ für alle t
- 3. 5.31
ist ein Eigenwertproblem, d. h. \hat{H} gegeben
, Ψ und Egesucht. Später: \hat{H} hermitesc
h \Rightarrow 5.31 lösbar mit $E\in\mathbb{R}$

Eigenvektoren und Eigenwerte $(\Psi_n, E_n), n = 1, 2, ...,$ Eigenvektoren Ψ_n bilden eine Basis von \mathcal{H}

- 4. frei
es Teilchen $(V=0) \Rightarrow \hat{H} = -\frac{\hbar^2}{2m} \nabla^2$
- 5. \hat{H} kann aus klassischer Hamilton
funktion $H(\vec{r},p) = \frac{p^2}{2m} + V(\vec{r})$ erhalten werden durch $\vec{p} \to -i\hbar \vec{\nabla}$
- 6. im allgemeinen kann 5.30 für $V(\vec{r}, t)$ mit

$$\hat{H}(t) = -\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}, t)$$
(5.32)

behandelt werden (\rightarrow Anfangswertproblem)

7. nur falls $\frac{\partial}{\partial t} = 0$, d. h. falls $V = V(\vec{r})$ gelangt man über den Separationsansatz

$$\Psi(\vec{r},t) = \Psi(\vec{r})\chi(t) \tag{5.33}$$

auf 5.31 mit $\chi(t)={\rm e}^{-\frac{{\rm i} Et}{\hbar}}$

8. in diesem Fall $(\frac{\partial \hat{H}}{\partial t} = 0)$ falls 5.31 vollständig gelöst, d. h. $\hat{H}\Psi_n = E\Psi_n$ mit allen (Ψ_n, E_n) , $n = 1, s, \ldots$ bekannt, dann ist auch 5.30 gelöst.

entwickle

$$\Psi(\vec{r},t) = \sum_{n} c_n(t)\Psi_n(\vec{r})$$
(5.34)

in 5.30:

$$i\hbar \sum_{n} \dot{c}_{n} \Psi_{n} = \sum_{n} c_{n}(t) \hat{H} \Psi_{n} = \sum_{n} c_{n}(t) E_{n} \Psi_{n}$$

 $\sum_{n} (i\hbar \dot{c}_n - c_n E_n) \Psi_n = 0$, weil Ψ_n linear unabhängig (Eigenvektoren von \hat{H}), folgt

$$\Rightarrow i\hbar\dot{c}_n - c_n E_n = 0 \quad , \quad n = 1, 2, \dots \qquad \Longleftrightarrow \qquad \dot{c}_n = -i\frac{E_n}{\hbar}c_n \tag{5.35}$$

Lösung:

$$c_n(t) = c_n(0) \mathrm{e}^{-\mathrm{i}\frac{E_n t}{\hbar}} \tag{5.36}$$

 $c_n(0)$ folgt aus Anfangsbedingung

$$\Psi(\vec{r},0) = \sum_{n} c_n(0)\Psi_n(0) \quad \to \quad c_n(0)$$
(5.37)

die allgemeine Lösung folgt aus 5.34:

$$\Psi(\vec{r},t) = \sum_{n} c_n(0) \mathrm{e}^{-\mathrm{i}\frac{E_n t}{\hbar}} \Psi_n(\vec{r})$$
(5.38)

9.
$$\frac{\partial H}{\partial t} = 0$$
: $\varphi_n(\vec{r})$ beschreiben stationäre Zustände.
aus 5.33 folgt: $\Psi(\vec{r}, t) = \Psi_n(\vec{r}) e^{i\frac{E_n t}{\hbar}}$

$$P(\vec{r},t) = |\Psi(\vec{r},t)|^{2} = |\Psi_{n}(\vec{r})|^{2} \underbrace{\left| e^{-i\frac{E_{nt}}{\hbar}} \right|^{2}}_{= 1} = |\Psi_{n}(\vec{r})|^{2}$$
(5.39)

5.3. Normierbarkeit, Erwartungswerte

Interpretation der Wellenfunktion: Wahrscheinlichkeitsamplitude

$$P(\vec{r},t) = |\Psi(\vec{r},t)|^2$$
 ist Wahrscheinlichkeitsverteilung (5.40)

deswegen:

$$\int d^2 r P(\vec{r}, t) = \int d^3 r |\Psi(\vec{r})|^2 = 1$$
(5.41)

allerdings reicht auch, wenn

$$\int \mathrm{d}^3 r \big| \Psi(\vec{r}) \big|^2 = A \tag{5.42}$$

existiert.

Sprechweise $\int d^3r |\Psi(\vec{r},t)|^2$ existient: $\Psi(\vec{r},t)$ quadratintegrabel, dann definiere allgemein:

$$P(\vec{r},t) = \frac{|\Psi(\vec{r},t)|^2}{A} = \frac{|\Psi(\vec{r},t)|^2}{\int d^3r |\Psi(\vec{r},t)|}$$
(5.43)

Bemerkung trotzdem sind damit z. B. ebene Wellen im unendlich ausgedehnten Raum (\mathbb{R}^3) nicht normierbar:

$$\int \mathrm{d}^3 r \underbrace{\left| \mathrm{e}^{\mathrm{i}(\vec{k} \cdot \vec{r} - \omega t)} \right|^2}_{= 1} \to \infty$$

Möglichkeit Box-Normierung

$$\Psi = \frac{1}{\sqrt{V}} e^{i(\vec{k} \cdot \vec{r} - \omega t)} \quad \iff \quad \int_{V} d^{3}r |\Psi|^{2} = 1$$

Vorteil von 5.42: Ψ bilden komplexen Vektorraum \rightarrow Superpositionsprinzip: Ψ_1 , Ψ_2 sind Lösungen der Schrödingergleichung $\Rightarrow \alpha_1 \Psi_1 + \alpha_2 \Psi_2$ eine Lösung \rightarrow Interferenz.

Faktor A hat keine physikalische Bedeutung \rightarrow Wellenfunktionen $\Psi(\vec{r}, t)$ und $B\Psi(\vec{r}, t)$ beschreiben denselben Zustand, wobei B = 0 und unabhängig von \vec{r}, t .

Identifiziere Ψ mit $B\Psi$ ($B \neq 0$) als "Strahl" im Vektorraum \mathcal{H} .

2010-05-14

Schrödingergleichungen:

$$i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi$$
 zeitabhängig, d. h. $\hat{H} = \hat{H}(t)$ (5.44)

$$\hat{H}\Psi = E\Psi$$
 zeitunabhängig, d. h. $\frac{\partial H}{\partial t} = 0$ (5.45)

 Ψ : Wellenfunktion, Zustand. Lösungen von 5.45:

 ψ_n : Eigenvektoren = Eigenzustände

 E_n : Eigenwerte von \hat{H} = Eigenenergien

Zeitunabhängigkeit der Normierung

$$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int \mathrm{d}^3 r \big| \Psi(\vec{r},t) \big|^2 = \frac{\mathrm{d}}{\mathrm{d}t} \int \mathrm{d}^3 r \Psi^* \Psi = \int \left(\frac{\partial \Psi^*}{\partial t} \Psi + \Psi^* \frac{\partial \Psi}{\partial t}\right) \mathrm{d}^3 r$$

zeitabhängige Schrödingergleichung:

$$\mathrm{i}\hbar\frac{\partial\Psi}{\partial t} - \frac{\hbar^2}{2m}\nabla^2\Psi + V(\vec{r},t)\Psi$$

komplex konjugiert:

$$\mathrm{i}\hbar\frac{\partial\Psi^*}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\Psi^* + V(\vec{r},t)\Psi^*$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\int|\Psi|^2 = \frac{1}{\mathrm{i}\hbar}\int\left[-\left(-\frac{\hbar^2}{2m}\nabla^2\Psi^* + V\Psi^*\right)\psi + \Psi^*\left(-\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi\right)\right]\mathrm{d}^3r\tag{5.46}$$

$${}^{V\Psi^*\Psi} \stackrel{=}{=} {}^{\Psi^*V\Psi} - \frac{\mathrm{i}\hbar}{2m} \int \mathrm{d}^3 r (\Psi \nabla^2 \Psi^* - \Psi^* \nabla^2 \Psi)$$
(5.47)

$$= \int d^3 r \vec{\nabla} \cdot \underbrace{\frac{i\hbar}{2m} (\Psi^* \vec{\nabla} \Psi - \Psi \vec{\nabla} \Psi^*)}_{=: \vec{j}(\vec{r})}$$
(5.48)

$$= \int d^3 r \vec{\nabla} \cdot \vec{j}(\vec{r}) \tag{5.49}$$

$$\stackrel{\text{Gauß}}{=} \int_{\text{Rand}} d\vec{S} \cdot \vec{j}(\vec{r}) = 0 \qquad (\text{unendlich ausgedehntes Volumen} \to \text{ohne Rand}) \quad (5.50)$$

Lokal

$$\frac{\partial}{\partial t} \big| \Psi(\vec{r},t) \big|^2 = \vec{\nabla} \cdot \vec{j}(\vec{r},t)$$

mit der Wahrscheinlichkeitsstromdichte $\vec{j}(\vec{r},t) = \frac{i\hbar}{2m} \left(\Psi^*(\vec{r},t) \vec{\nabla} \Psi(\vec{r},t) - \Psi(\vec{r},t) \vec{\nabla} \Psi^*(\vec{r},t) \right)$

$$\frac{\partial}{\partial t}P + \vec{\nabla}\vec{j} = 0 \qquad \text{Kontinuitätsgleichung}$$
(5.51)

Erwartungswerte Ort:

$$\langle \vec{r} \rangle(t) = \int d^3 r \vec{r} |\Psi(\vec{r},t)|^2$$
(5.52)

Beliebige Funktion des Ortes:

$$\left\langle f(\vec{r})\right\rangle(t) = \int d^3r f(\vec{r}) \left|\Psi(\vec{r},t)\right|^2 \tag{5.53}$$

Falls Ψ nicht auf 1 normiert, aber quadratintegrabel:

$$\left\langle f(\vec{r})\right\rangle(t) = \frac{\int \mathrm{d}^3 r f(\vec{r}) \left|\Psi(\vec{r},t)\right|^2}{\int \mathrm{d}^3 r \left|\Psi(\vec{r},t)\right|^2} \tag{5.54}$$

5.4. Die Wellenfunktion im Impulsraum

Wellenpaket: $\hat{\Psi}(\vec{p}) \underset{\text{FT}}{\overset{\text{FRT}}{\rightleftharpoons}} \Psi(\vec{r}, t = 0)$

Wir können $\Psi(\vec{r}, t)$ für beliebige (feste) Zeit t in eine ebene Welle entwickeln (FT)

$$\Psi(\vec{r},t) = \int \frac{\mathrm{d}^3 p}{(2\pi\hbar)^3} \hat{\Psi}(\vec{p},t) \mathrm{e}^{\mathrm{i}\frac{\vec{p}\cdot\vec{r}}{\hbar}}$$
(5.55)

$$\hat{\Psi}(\vec{p},t) = \int d^3 r \Psi(\vec{r},t) e^{-i\frac{\vec{p}\cdot\vec{r}}{\hbar}}$$
(5.56)

Daraus:

$$P(\vec{r},t) = |\Psi(\vec{r},t)|^2$$
, $W(\vec{p},t) = |\hat{\Psi}(\vec{p},t)|^2$

Parseval-Theorem der FT: $\Psi(\vec{r}, t)$ normiert $\iff \hat{\Psi}(\vec{p}, t)$ normiert Erwartungswerte von $f(\vec{r})$ und $g(\vec{p})$:

$$\left\langle f(\vec{r})\right\rangle(t) = \int d^3r \left|\Psi(\vec{r},t)\right|^2 f(\vec{r})$$
(5.57)

$$\left\langle g(\vec{p})\right\rangle(t) = \int \frac{\mathrm{d}^3 p}{(2\pi\hbar)^3} \left|\hat{\Psi}(\vec{p},t)\right|^2 g(\vec{p})$$
(5.58)

Wie berechnet man $\langle h \rangle$ für $h(\vec{r}, \vec{p})$ z. B. Energie, Drehimpuls? \rightarrow nächster Abschnitt.

5.5. Operatoren, der Kommutator, Unschärferelation

Versuche alle Erwartungswerte im Ortsraum (d. h. mit $\Psi(\vec{r}, t)$) zu berechnen. Wie erhält man $\langle \vec{p} \rangle$) (lasse t weg, t fest)

$$\begin{split} \langle \vec{p} \rangle &= \int \frac{\mathrm{d}^3 p}{(2\pi\hbar)^3} \underbrace{\left| \hat{\Psi}(\vec{p}) \right|^2}_{= \hat{\Psi}^* \hat{\Psi}} \vec{p} \\ &= \int \frac{\mathrm{d}^3 p}{(2\pi\hbar)^3} \vec{p} \int \mathrm{d}^3 \vec{r} \int \mathrm{d}^3 \vec{r}' \Psi^*(\vec{r}') \mathrm{e}^{\mathrm{i}\frac{\vec{p}\vec{r}'}{\hbar}} \Psi(\vec{r}') \mathrm{e}^{-\mathrm{i}\frac{\vec{p}\vec{r}}{\hbar}} \\ &= \int \frac{\mathrm{d}^3 p}{(2\pi\hbar)^3} \int \mathrm{d}^3 \vec{r} \int \mathrm{d}^3 \vec{r}' \Psi^*(\vec{r}') \Psi(\vec{r}') \mathrm{i}\hbar \vec{\nabla} \mathrm{e}^{-\mathrm{i}\frac{\vec{p}(\vec{r}-\vec{r}')}{\hbar}} \end{split}$$

partielle Integration (Gauß'scher Satz), Randterme=0

$$= -\int \frac{\mathrm{d}^{3}p}{(2\pi\hbar)^{3}} \int \mathrm{d}^{3}\vec{r} \int \mathrm{d}^{3}\vec{r}' \Psi^{*}(\vec{r}')\mathrm{i}\hbar\vec{\nabla}\Psi(\vec{r})\mathrm{e}^{-\mathrm{i}\frac{\vec{p}(\vec{r}-\vec{r}')}{\hbar}}$$

$$= -\int \mathrm{d}^{3}\vec{r} \int \mathrm{d}^{3}\vec{r}'\Psi^{*}(\vec{r}')\mathrm{i}\hbar\vec{\nabla}\Psi(\vec{r})\underbrace{\int \frac{\mathrm{d}^{3}p}{(2\pi\hbar)^{3}}\mathrm{e}^{-\mathrm{i}\frac{\vec{p}(\vec{r}-\vec{r}')}{\hbar}}}_{=\delta(\vec{r}-\vec{r}')}$$

$$= \int \mathrm{d}^{3}\vec{r}\Psi^{*}(\vec{r})(-\mathrm{i}\hbar\vec{\nabla})\Psi(\vec{r}) =: \langle -\mathrm{i}\hbar\vec{\nabla}\rangle$$

$$\Rightarrow \boxed{\langle \vec{p} \rangle = \int \mathrm{d}^{3}r\Psi^{*}(\vec{r})\underbrace{(-\mathrm{i}\hbar\vec{\nabla})}_{=\hat{\vec{p}}}\Psi(\vec{r})}_{=\hat{\vec{p}}} \qquad (5.59)$$

Impulsoperator:

$$\hat{\vec{p}} := i\hbar\vec{\nabla} \tag{5.60}$$

 $\hat{\vec{p}}$ ist ein Operator, der auf Wellenfunktionen im Ortsraum wirkt. Allgemein in der Quantenmechanik: Messgrößen (Observablen) \longleftrightarrow Operatoren.

Beispiel

$$\hat{H} = H(\vec{r}, -i\hbar\vec{\nabla}) = H(\hat{\vec{r}}, \hat{\vec{p}})$$

Bemerkungen

1.
$$\vec{p} = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix}$$
 Vektor $\Rightarrow \hat{\vec{p}} = \begin{pmatrix} \hat{p}_x \\ \hat{p}_y \\ \hat{p}_z \end{pmatrix}$ Vektor von Operatoren, die komponentenweise wirken.

2. Messgrößen (Observablen) entsprechen in der Quantenmechanik Operatoren, z. B:

 $\begin{array}{ll} \text{Energie} & \hat{H} \\ \text{Impuls} & \hat{\vec{p}} = -i\hbar\vec{\nabla} \\ \text{Ort} & \hat{\vec{r}} = \vec{r} \text{ gemeint: } \hat{\vec{r}}\Psi(\vec{r},t) = \vec{r}\Psi(\vec{r},t) = \tilde{\Psi}(\vec{r},t) \end{array}$

3. Eigenzustände Ψ eines Operators \hat{O} sind solche, indenen die jeweilige Messgröße scharf definiert ist.

$$O\Psi = \lambda \Psi$$

$$\Rightarrow \langle \hat{O}^2 \rangle = \int d^3 r \Psi^*(\vec{r}) \hat{O}^2 \Psi(\vec{r})$$

$$= \int d^3 r \Psi^*(\vec{r}) \lambda^2 \Psi(\vec{r})$$

$$= \lambda^2$$

und damit

$$\left\langle \Delta \hat{O}^2 \right\rangle = \left\langle \left(\hat{O} - \left\langle \hat{O} \right\rangle \right)^2 \right\rangle = \left\langle \hat{O}^2 \right\rangle - \left\langle \hat{O} \right\rangle = \lambda^2 - \lambda^2 = 0 \tag{5.61}$$

 \rightarrow keine Schwankung $\rightarrow \hat{O}$ scharf definiert.

Beispiele

Energie • $\hat{O} = \hat{H}, \ \hat{H}\Psi = E\Psi$

- Ψ : Lösungen der zeitunabhängigen Schrödingergleichung, stationäre Zustände
- Ψ hat feste Energie

Impuls

•
$$\hat{O} = \vec{p}, \ \hat{\vec{p}}\Psi = -i\hbar\frac{\partial}{\partial \vec{r_i}}\Psi = p_i\Psi \ (i = x, y, z)$$

• ebene Wellen, $\Psi = C e^{i \frac{p_i r_i}{\hbar}}$

Ort •
$$\hat{O} = \hat{\vec{r}}, \, \hat{\vec{r}} \Psi(\vec{r}) = \vec{r} \Psi(\vec{r}) = \vec{r}_0 \Psi(\vec{r}) \, (\vec{r}_0 = \text{const})$$

• $\Psi(\vec{r}) = C\delta(\vec{r} - \vec{r}_0)$

5.5.1. Der Kommutator

- klassische Mechanik (Physik) gleichzeitig können (im Prinzip) beliebige Observablen bestimmt werden, z. B. Ort und Impuls, Ort und Energie, *E* und *B*-Feld,...
- **Quantenmechanik** z. B. Ort und Impuls eines Wellenpakets \rightarrow Observablen können nicht immer gleichzeitig scharf bestimmt werden. Wann können \hat{A} und \hat{B} beide scharf bestimmt werden?

 \rightarrow Zustand, der gleichzeitig Eigenzustand von \hat{A} und \hat{B} ist (\rightarrow mittlere Schwankungsquadrate=0)

 \rightarrow allgemein: alle Eigenzustände von \hat{A} sollen auch Eigenzustände von \hat{B} sein:

$$\hat{A}\Psi_n = a_n\Psi_n \\ \hat{B}\Psi_n = b_n\Psi_n \\ \Big\} \langle \Delta A^2 \rangle = \langle \Delta B^2 \rangle = 0$$
(5.62)

wann ist dies möglich?

Wähle Ψ beliebig. Schreibe $\Psi = \sum_{n} c_n \Psi_n$, dann:

$$\hat{A}\Psi = \sum_{n} c_{n}\hat{A}\Psi_{n} = \sum_{n} c_{n}a_{n}\Psi_{n}$$
$$\hat{B}\Psi = \sum_{n} c_{n}\hat{B}\Psi_{n} = \sum_{n} c_{n}b_{n}\Psi_{n}$$
$$\hat{B}\hat{A}\Psi = \sum_{n} c_{n}a_{n}\hat{B}\Psi_{n} = \sum_{n} c_{n}a_{n}b_{n}\Psi_{n}$$
$$\hat{A}\hat{B}\Psi = \sum_{n} c_{n}b_{n}\hat{A}\Psi_{n} = \sum_{n} c_{n}b_{n}a_{n}\Psi_{n}$$

 $\Rightarrow \hat{A}\hat{B}\Psi = \hat{B}\hat{A}\Psi$ für beliebige $\Psi \Rightarrow \hat{A}\hat{B} = \hat{B}\hat{A}$

Definition Der Kommutator von \hat{A} und \hat{B} ist $[\hat{A}, \hat{B}] := \hat{A}\hat{B} - \hat{B}\hat{A}$. Notwendige Bedingung dafür, dass \hat{A} und \hat{B} gleichzeitig scharf bestimmbar sind ist:

$$[\hat{A}, \hat{B}] = 0 \tag{5.63}$$

Bedingung 5.63 ist auch hinreichend, denn: falls $[\hat{A}, \hat{B}] = 0$ und $\hat{A}\Psi_n = a_n\Psi_n$ (n = 1, 2, ...), dann folgt $\hat{B}\hat{A}\Psi_n = a_n\hat{B}\Psi_n$, $\hat{A}\hat{B}\Psi_n = a_n\hat{B}\Psi_n \Rightarrow \hat{B}\Psi_n$ ist eigenzustand von \hat{A} mit Eigenwert a_n .

 \rightarrow im einfachsten Fall: alle a_n verschieden (keine Entartung), dann ist $\hat{B}\Psi_n \propto \Psi_n$, schreibe $\hat{B}\Psi_n = b_n\Psi_n$: Ψ_n ist gleichzeitig Eigenzustand von \hat{A} und \hat{B} .

 \to falls mehrere a_n gleich, dann kann man immer Linearkombinationen der Ψ_n finden, sodass $\hat{A}\tilde{\Psi}_n=a_n\tilde{\Psi}_n,\,\hat{B}\tilde{\Psi}_n=b_n\tilde{\Psi}_n$

Satz \hat{A} , \hat{B} Observablen, \hat{A} und \hat{B} sind gleichzeitig messbar $\iff [\hat{A}, \hat{B}] = 0$ (" \hat{A} und \hat{B} sind *kompatibel*")

Beispiele

1. $\hat{\vec{r}}$ und $\hat{\vec{p}} = -i\hbar\vec{\nabla}$

$$\begin{split} \hat{p}_i \hat{r}_i \Psi(\vec{r}) &= -\mathrm{i}\hbar \frac{\partial}{\partial r_i} r_i \Psi(\vec{r}) \qquad \qquad i = x, y, z \\ &= -\mathrm{i}\hbar \Psi(\vec{r}) - \mathrm{i}\hbar r_i \frac{\partial \Psi(\vec{r})}{\partial r_i} \\ &= -\mathrm{i}\hbar \Psi(\vec{r}) + \hat{r}_i \hat{p}_i \Psi(\vec{r}) \\ [\hat{p}_i, \hat{r}_i] \Psi(\vec{r}) &= -\mathrm{i}\hbar \Psi(\vec{r}) \end{split}$$

$$\Psi$$
 ist beliebig $\Rightarrow [\hat{p}_i, \hat{r}_i] = -i\hbar$

$$\Rightarrow \boxed{[\hat{r}_i, \hat{p}_i] = i\hbar} \tag{5.64}$$

was ist mit \hat{r}_i und \hat{p}_j $(i \neq j)$? \Rightarrow $[\hat{r}_i, \hat{p}_j] = 0$ für $(i \neq j)$ Allgemein:

$$[\hat{r}_i, \hat{p}_j] = i\hbar\delta_{ij}$$
(5.65)

2.

$$[\hat{r}_i, \hat{r}_j] = 0 \tag{5.66}$$

Alexander Kimmig, Uni Konstanz

Seite 64

3.

$$[\hat{p}_i, \hat{p}_j] = 0 \tag{5.67}$$

4. $\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{\vec{r}})$ $[\hat{H}, \hat{r}_i] \neq 0$ (5.68)

es gibt keinen stationären Zuständ mit scharfem Ort \rightarrow Zerfließen des Wellenpakets

5. freie Teilchen: V = 0 (oder V = const)

$$\Rightarrow [\hat{H}, \hat{\vec{p}}] = 0 \tag{5.69}$$

6. \hat{O} beliebig:

$$[\hat{O}, \hat{O}] = 0 \tag{5.70}$$

Was passiert, falls $[\hat{A}, \hat{B}] \neq 0 = \rightarrow$ minimale Unschärfe. Zuerst noch:

5.5.2. Hermite'sche Operatoren

Definition Ein Operator \hat{O} heißt hermitesch, falls für beliebige $\Psi_1(\vec{r}), \Psi_2(\vec{r}) \in \mathcal{H}$

$$\int d^3 r \, \Psi_1^*(\vec{r}) \hat{O} \Psi_2(\vec{r}) = \int d^3 r \, \left(\hat{O} \Psi_1(\vec{r}) \right)^* \Psi_2(\vec{r}) \tag{5.71}$$

gilt.

Beispiele

- Ort: $\hat{O} = \hat{\vec{r}}, \, \vec{r^*} = \vec{r} \Rightarrow \hat{\vec{r}} \text{ ist hermitesch}$
- beliebige reelle Funktion von \vec{r} , z. B. $V(\vec{r})$
- Impuls $\hat{O} = \hat{\vec{p}} = -i\hbar\vec{\nabla}$, Beweis:

$$\int \Psi_1^*(-i\hbar\vec{\nabla})\Psi_2 \stackrel{\text{partielle}}{=}_{\text{Integration}} -(-i\hbar) \int (\vec{\nabla}\Psi_1^*)\Psi_2$$
$$= -(-i\hbar) \int (\vec{\nabla}\Psi_1)^*\Psi_2$$
$$= \int (-i\hbar\vec{\nabla}\Psi_1)^*\Psi_2$$

 \Rightarrow ist hermitesch

- $\lambda \hat{O}$ (wobei \hat{O} hermitesch, $\lambda \in \mathbb{R}$) ist ebenfalls hermitesch
- Potenzen von hermiteschen Operatoren: \hat{O}^n , falls \hat{O} hermitesch, z. B. p_x^2, x^2, \ldots
- Summen von hermiteschen Operatoren, z. B. $p^2 = p_x^2 + p_y^2 + p_z^2$, somit ist auch $\hat{H} = \frac{1}{2m}\hat{p}^2 + V(\vec{r})$ hermitesch
- $\hat{A}\hat{B} + \hat{B}\hat{A}$ (wobei \hat{A} und \hat{B} hermitesch) ist wieder hermitesch
- $i(\hat{A}\hat{B} \hat{B}\hat{A}) = i[\hat{A}, \hat{B}]$ ist hermitesch, falls \hat{A} und \hat{B} hermitesch
Physikalisch Observablen \longleftrightarrow hermitesche Operatoren, denn: Erwartungswerte von hermiteschen Operatoren sind reell:

$$\langle \hat{O} \rangle^* = \left(\int \Psi^* \hat{O} \Psi \right)^* = \int \Psi (\hat{O} \Psi)^* = \int (\hat{O} \Psi)^* \Psi = \int \Psi^* \hat{O} \Psi = \langle \hat{O} \rangle$$

damit: Eigenwerte von \hat{O} reell, in Eigenzustand Ψ_n ist $\langle \hat{O} \rangle = \lambda_n \in \mathbb{R}$

5.5.3. Minimale Unschärfe: Heisenberg'sche Unschärferelation

gegeben: Ψ beliebig mit $|\Psi|^2=1,\,\hat{A},\hat{B}$ hermitesche Operatoren.

definierte $\langle \hat{A} \rangle = \int \Psi^* A \Psi, \ \langle \hat{B} \rangle = \int \Psi^* B \Psi, \ \Delta \hat{A} := \hat{A} - \langle \hat{A} \rangle, \ \Delta \hat{B} := \hat{B} - \langle \hat{B} \rangle, \ \tilde{\Psi}_A := \Delta \hat{A} \Psi = (\hat{A} - \langle \hat{A} \rangle) \Psi, \ \tilde{\Psi}_B := \Delta \hat{B} \Psi = (\hat{B} - \langle \hat{B} \rangle) \Psi (\rightarrow \text{ nicht normiert})$

Norm:

$$\int |\tilde{\Psi}_A|^2 = \int \tilde{\Psi}_A^* \tilde{\Psi}_A = \int (\Delta \hat{A} \Psi)^* \Delta \hat{A} \Psi$$

$$\stackrel{\Delta \hat{A}}{=} \int \Psi^* (\Delta \hat{A})^2 \Psi$$

$$= \langle \Delta \hat{A}^2 \rangle$$

$$= \left\langle \left(\hat{A}^2 - \langle \hat{A} \rangle \right)^2 \right\rangle$$

$$= \langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2 =: \Delta A^2$$

ebenso für $B \colon \int |\tilde{\Psi}_B|^2 = \Delta B^2$ normiere $\tilde{\Psi}_{A,B} \colon$

$$\Psi_A := \frac{\tilde{\Psi}_A}{\sqrt{\int |\tilde{\Psi}_A|^2}} = \frac{\tilde{\Psi}_A}{\Delta A} \qquad , \qquad \Psi_B := \frac{\tilde{\Psi}_B}{\sqrt{\int |\tilde{\Psi}_B|^2}} = \frac{\tilde{\Psi}_B}{\Delta B}$$

definiere $\xi_{\pm} := \Psi_a \pm \Psi_B$

$$0 \leq \int |\xi_{\pm}|^{2} = \int |\Psi_{A}|^{2} + \int |\Psi_{B}|^{2} \pm i \int \Psi_{A}^{*} \Psi_{B} \mp i \int \Psi_{B}^{*} \Psi_{A}$$

$$1 \geq \mp \frac{i}{2} \int (\Psi_{A}^{*} \Psi_{B} - \Psi_{B}^{*} \Psi_{A}) \qquad | \cdot \Delta A \Delta B$$

$$\Delta A \Delta B \geq \mp \frac{i}{2} \int (\tilde{\Psi}_{A}^{*} \tilde{\Psi}_{B} - \tilde{\Psi}_{B}^{*} \tilde{\Psi}_{A})$$

$$\stackrel{\Delta \hat{A}, \Delta \hat{B}}{\equiv} \pm \frac{i}{2} \int \Psi^{*} (\Delta \hat{A} \Delta \hat{B} + \Delta \hat{B} \Delta \hat{A}) \Psi$$

$$= \mp \frac{i}{2} (\langle \hat{A} \hat{B} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle - \langle \hat{B} \hat{A} \rangle + \langle \hat{B} \rangle \langle \hat{A} \rangle)$$

$$\Rightarrow \Delta A \Delta B \geq \mp \frac{i}{2} (\langle \hat{A} \hat{B} \rangle - \langle \hat{B} \hat{A} \rangle) = \mp \frac{i}{2} \langle [\hat{A}, \hat{B}] \rangle \qquad (5.72)$$

$$\Rightarrow \left[\Delta A \Delta B \geq \frac{1}{2} |\langle [\hat{A}, \hat{B}] \rangle |] \qquad Haisenbargized by Unsch \ddot{u}rformlation \qquad (5.73)$$

 $\Rightarrow \boxed{\Delta A \Delta B \geq \frac{1}{2} \Big| \big\langle [\hat{A}, \hat{B}] \big\rangle \Big|}$

Heisenberg'sche Unschärferelation (5.73)

Beispiel $[\hat{x}, \hat{p}] = i\hbar \Rightarrow \Delta x \Delta p \ge \frac{\hbar}{2}$

2010-05-18

Kapitel 6. Teilchen in einer Dimension

Anwendung des Formalismus aus Kapitel 5

Motivation

- Lösen der Schrödingergleichung an konkreten Beispielen üben
- vergleichsweise geringer Rechenaufwand in einer Dimension
- allgemeine Eigenschaften der Quantenmechanik bereits in einer Dimension vorhanden
- einige "echte" Probleme sind eindimensional:
 - niedrig-dimensionale Systeme: Kohlenstoff-Nanoröhrchen, Halbleiter-Nanodrähte
 - Systeme mit Translationssymmetrie in zwei Raumrichtungen: $V(\vec{r}) = V(x)$; separiere $\Psi(\vec{r}) = \Psi(x) e^{ip_y y/\hbar} e^{ip_x x/\hbar}$

eindimensionale Schrödingergleichung

Nicht eindimensional lösbar

- zentralsymmetrische Probleme, z. B. H-Atom, aber
- Radialproblem bei H ist eindimensional!

Schrödingergleichung in einer Dimension zeitabhängig ($\Psi(x,t)$):

$$i\hbar\frac{\partial\Psi}{\partial t} = H\Psi = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V(x)\Psi$$
(6.1)

(Anmerkung: Operatoren ab jetzt ohne Dach!) zeitunabhängig $(\Psi(x))$:

$$H\Psi = E\Psi = -\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\Psi}{\mathrm{d}x^2} + V(x)\Psi$$
(6.2)

hier: zeitunabhängige Probleme, d. h. löse 6.2. Z. T. betrachten wir auch nicht-stationäre Lösungen (Streulösungen, Wellenpakete). Jetzt löse $H\Psi = E\Psi$ für eine Reihe von V(x)

6.1. Randbedingungen an Unstetigkeiten

betrachte: stückweise konstantes V(x)

Abbildung 6.1: stückweise konstantes V(x)

Lösung für V = 0

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\Psi}{\mathrm{d}x^2} = E\Psi \to \Psi = C\mathrm{e}^{\mathrm{i}kx} \qquad , \qquad \frac{\hbar^2k^2}{2m} = E \quad , \quad k = \frac{1}{\hbar}\sqrt{2mE}$$

- $E \ge 0 \rightarrow k$ reell, ebene Welle, Ψ normierbar für beliebiges V
- $E < 0 \rightarrow k$ imaginär, $e^{ikx} \sim e^{\kappa x}$ mit $\kappa \in \mathbb{R}$, nicht normierbar \rightarrow unphysikalische Lösungen
- $\rightarrow H$ hat kontinuierliches Spektrum von Eigenwerten (Energien) bei $E \geq 0$

Lösung für V = const nur unwesentlich verschieden:

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\Psi}{\mathrm{d}x^2} = (E-V)\Psi$$

 \Rightarrow ebene Wellen mit $k = \frac{1}{\hbar} \sqrt{2m(E-V)}$

Was passiert für E < V? $k = i\kappa, \kappa \in \mathbb{R} \rightarrow \text{gedämpfte Welle } e^{\mp \kappa x} \rightarrow \text{nur im endlichen (oder halbendlichen)}$ Raum normierbar:

Abbildung 6.2: Wellenfunktion an Potentialstufe

Wie geht das "zusammenkleben" von Lösungen an den Stufen von V(x)? Nehme an, V(x) habe eine endliche Stufe (Unstetigkeit) bei $x = x_0$. Behauptung: $\Psi(x)$ und $\Psi'(x)$ stetig bei $x = x_0$ Beweis: nehme an

1. Ψ sei unstetig bei $x = x_0 \Rightarrow \Psi'(x) \sim \delta(x - x_0)$

2.
$$\Psi'$$
 sei unstetig bei $x = x_0 \Rightarrow \Psi''(x) \sim \delta'(x - x_0)$

aber Schrödingergleichung

$$-\frac{\hbar^2}{2m}\Psi''(x) = \underbrace{\left(V(x) - E\right)\Psi(x)}_{\text{hat höchstens endliche Stufe}}$$

⇒ Widerspruch ⇒ $\Psi(x)$ und $\Psi'(x)$ müssen stetig sein falls $|V(x)| < \infty$ Warnung: gilt nicht für $V(x) \sim \delta(x - x_0) \rightarrow s$. später!

2010-05-19

IK IV

6.2. Potentialstufe

Abbildung 6.3: Potentialstufe

Wir nehmen folgendes Potential an:

$$V(x) = \begin{cases} 0 & ; \quad x < 0 \\ V & ; \quad x \ge 0 \end{cases}$$

mit V > 0. Lösungen existieren für E > 0, zwei Fälle: $E \ge V$ oder 0 < E < V

allgemein

- für x < 0 ist $p = \hbar k = \sqrt{2mE}$
- für $x \ge 0$ ist $\overline{p} = \hbar \overline{k} = \sqrt{2m(E-V)}$

Fall 1: $E \ge V$

- Lösung für $x \ge 0$ ist $e^{\pm i \overline{k}x}$ mit \overline{k} reell
- klassisch: Aufenthalt des Teilchens auf beiden Seiten der Stufe erlaubt, mit der de-Broglie-Beziehung $p=\hbar k$

Fall 2: E < 0

- $x \ge 0$: $e^{i\overline{k}x}$ mit imaginärem \overline{k}
- klassisch: Aufenthalt nicht erlaubt
- schreibe $\overline{k} = i\kappa$: $e^{-\kappa x}$, $\kappa = \sqrt{2m(V-E)}/\hbar$, κ reell, $\kappa > 0$
- $e^{+\kappa x}$ ist nicht normierbar!
- $e^{-\kappa x}$: exponentiell gedämpfte Welle

Behandle ersten Fall als Streuproblem, d. h.:

Abbildung 6.4: Ansatz zum Streuproblem

Ansatz:

$$\Psi(x) = A \begin{cases} e^{ikx} + re^{-ikx} & ; \quad x < 0\\ \overline{t}e^{i\overline{k}x} & ; \quad x \ge 0 \end{cases}$$
(6.3)

Stetigkeit bei $\boldsymbol{x}=\boldsymbol{0}$ bedeutet

für
$$\Psi(x)$$
: $A(1+r) = A\overline{t} \Rightarrow 1+r = \overline{t}$

für
$$\Psi'(x)$$
: $A(ik - ikr) = Ai\overline{kt} \Rightarrow k(1 - r) = \overline{kt}$

eliminiere \overline{t}

$$1 + r = \overline{t} = \frac{k}{\overline{k}}(1 - r) \quad \Rightarrow \quad \left| r = \frac{k/\overline{k} - 1}{k/\overline{k} + 1} = \frac{k - \overline{k}}{k + \overline{k}} \right|$$
(6.4)

einsetzen:

$$\overline{\overline{t}} = 1 + r = \frac{2k}{k + \overline{k}} \tag{6.5}$$

6.2.1. Teilchenstromdichte

$$j(x) = -\frac{i\hbar}{2m} \left(\Psi^*(x) \Psi'(x) - \Psi(x) \Psi'^*(x) \right) = \frac{\hbar}{m} \operatorname{Im} \left\{ \Psi^*(x) \Psi'(x) \right\}$$
(6.6)

 $x \leq 0$

$$j(x) = |A|^2 \frac{\hbar}{m} \operatorname{Im} \left\{ \left(e^{-ikx} + r^* e^{ikx} \right) \left(ike^{ikx} - ikre^{-ikx} \right) \right\}$$
$$= |A|^2 \frac{\hbar}{m} \operatorname{Im} \left\{ ik - ik|r|^2 \underbrace{-ikre^{-2ikx} + ikre^{+2ikx}}_{\text{reell (da } z + z^*)} \right\}$$
$$= |A|^2 \frac{\hbar k}{m} (1 - |r|^2) = j$$

x > 0

$$j(x) = |A|^2 \frac{\hbar}{m} \operatorname{Im} \left\{ |\overline{t}|^2 i \overline{k} \right\}$$
$$= |A|^2 \frac{\hbar \overline{k}}{m} |\overline{t}|^2$$
$$= |A|^2 \frac{\hbar k}{m} |t|^2$$

zusammen

$$j(x) = |A|^2 \frac{p}{m} \begin{cases} 1 - |r|^2 & ; \quad x \le 0\\ |t|^2 & ; \quad x > 0 \end{cases}$$
(6.7)

Abbildung 6.5: Zur Normierung der Teilchenstromdichte

Normierung einlaufende Welle \longleftrightarrow 1 Teilchen mit Geschwindigkeit $\frac{p}{m}$ Kontinuitätsgleichung:

$$j = \dot{P} \,\mathrm{d}x = \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{p}{m} = v$$

normiere die einlaufende Welle $|A|^2 {\rm e}^{{\rm i} kx}$ auf 1 Teilchen mit Geschwindigkeit $\frac{p}{m} \Rightarrow |A|^2 = 1,$ wähle A reell, A=1

gezeigt: eine Möglichkeit, ebene Wellen zu normieren.

$$|r|^{2} = r^{2} = \frac{(k - \overline{k})^{2}}{(k + \overline{k})^{2}} \qquad , \qquad |t|^{2} = t^{2} = \frac{\overline{k}}{\overline{k}} \overline{t}^{2} = \frac{\overline{k}}{\overline{k}} \frac{4k^{2}}{(k + \overline{k})^{2}} = \frac{2k\overline{k}}{(k + \overline{k})^{2}} \tag{6.8}$$

$$\Rightarrow |r|^2 + |t|^2 = \frac{(k+\overline{k})^2}{(k+\overline{k})^2} = 1$$
(6.9)

$$j = \frac{p}{m}(1 - |r|^2) = \frac{p}{m}|t|^2 = \text{const}$$
(6.10)

Bemerkungen zu Fall 1 (E > V)

1. Zeitabhängige Lösungen: Wellenpakete

$$\Psi(x,t) = \begin{cases} \int_0^\infty \tilde{\Psi}(p) \left(e^{ipk/\hbar} + \frac{p-\overline{p}}{p+\overline{p}} e^{-ipx/\hbar} \right) e^{-iE(p)t/\hbar} & ; \quad x \le 0\\ \int_0^\infty \frac{\mathrm{d}p}{2\pi\hbar} \tilde{\Psi}(p) \left(e^{ipx/\hbar} \right) e^{-iE(p)t/\hbar} & ; \quad x > 0 \end{cases}$$
(6.11)

Abbildung 6.6: Aufspaltung der Aufenthaltswahrscheinlichkeit

- 2. bei t > 0 wurde das Teilchen nicht aufgespaltet! $|\Psi(x, t > 0)|^2$: Wahrscheinlichkeitsverteilung, $|t|^2$: Wahrscheinlichkeit, dass man das Teilchen rechts der Stufe findet.
- 3. $\overline{p} \neq p$: Impuls nicht erhalten, für $\Psi(x)$ (statischer Zustand): Impuls nicht scharf definiert.
 - klassisch: $H = \frac{p^2}{2m} + V(x), \{H, p\} \neq 0$ (Bemerkung: $\{\cdot, \cdot\}$: Poisson-Klammer)
 - quantenmechanisch: $[p, H] \neq 0$, Heisenberg'sche Unschärferelation
- 4. Reflection für E > V:
 - Welle: klassisch erwartet, z. B. Impedanzunterschied bei Wellenleitern

- Teilchen: klassisch nicht möglich, dass Teilchen reflektiert wird!
- 5. klassischer Limes existiert für Potentialstufe nicht, da die Länge, auf der sich das Potential ändert hierfür größer als die Wellenlänge sein muss!

Behandlung Fall 2 (E < V) $\overline{k} = i\kappa, \kappa \in \mathbb{R}, \kappa > 0$

Abbildung 6.7: Wellenfunktion an Potentialstufe für E < V

$\Psi(x) = \langle$	$\int e^{ikx} + r e^{-ikx}$;	links von Potentialstufe
	$\overline{t}e^{-\kappa e}$;	rechts von Potentialstufe

hier: $\kappa = \sqrt{2m(V-E)} > 0$ Randbedingungen: $1 + r = \overline{t}$, $ik - ikr = -\overline{t}\kappa \Rightarrow \overline{t} = -i\frac{k}{\kappa}(1-r)$

$$\Rightarrow r = \frac{k - \mathrm{i}\kappa}{k + \mathrm{i}\kappa} \quad , \qquad |r|^2 = 1$$

Stromdichte:

$$j(x) = \begin{cases} \frac{\hbar k}{m} (1 - |r|^2) = 0 & ; \quad x < 0\\ \frac{\hbar}{m} |\bar{t}|^2 \operatorname{Im} \{-\kappa\} = 0 & ; \quad x > 0 \end{cases}$$

vollständige Reflektion an der Stufe, aber: Teilchen kann sich mit endlicher Wahrscheinlichkeit rechts der Barriere (x > 0) im klassisch verbotenen Berech aufhalten!

Wie kann es sein, dass das Teilchen bei x > 0 ist, wenn die Energie nicht ausreicht? \rightarrow Unschärferelation $[H, x] \neq 0$. Wenn Teilchen bei x > 0 ist, dann ist $\Delta x \sim \frac{1}{\kappa} \sim \frac{\hbar}{\sqrt{2m(V-E)}}$

$$\Delta E \Delta x \ge \frac{1}{2} \left| \left\langle \underbrace{[H, x]}_{\frac{hp}{m}} \right\rangle \right| \quad \to \quad \Delta E \ge \frac{\overline{p}^2}{2m} = E - V \tag{6.12}$$

2010-05-21

6.3. Der Tunneleffekt

Im vorherigen Abschnitt gesehen: Teilchen kann mit endlicher Wahrscheinlichkeit in ein klassisch verbotenes Gebiet, in welchem E < V gilt, eindringen. Als Konsequenz daraus folgt der Tunneleffekt.

Betrachte nun die Potentialbarriere

$$V(x) = \begin{cases} V & ; \quad 0 \le x \le a \\ 0 & ; \quad \text{sonst} \end{cases}$$
(6.13)

mit V > 0

Abbildung 6.8: Potentialbarriere der Breite \boldsymbol{a} und der HöheV

Ansatz für 0 < E < V

$$\Psi(x) = \begin{cases} e^{ikx} + re^{-ikx} & ; \quad x < 0\\ Ce^{-\kappa x} + De^{+\kappa x} & ; \quad 0 \le x \le a\\ te^{ik(x-a)} & ; \quad x > a \end{cases}$$
(6.14)

mit $k = \frac{p}{\hbar} = \sqrt{2mE}/\hbar$ und $\kappa = \sqrt{2m(V-E)}/\hbar$ Randbedingungen bei x = 0, a:

$$\begin{array}{c|c} \Psi & \Psi' \\ \hline x = 0 & 1 + r = C + D & \mathrm{i}k(1 - r) = \kappa(C - D) \\ \hline x = a & C\mathrm{e}^{-\kappa a} + D\mathrm{e}^{\kappa a} = t & \kappa(-C\mathrm{e}^{-\kappa a} + D\mathrm{e}^{\kappa a}) = \mathrm{i}kt \end{array}$$

eliminiere t:

$$Ce^{-\kappa a} + De^{\kappa a} = t = i\frac{\kappa}{k}(Ce^{-\kappa a} - De^{\kappa a})$$
(6.15)

eliminiere r:

$$C + D - 1 = r = -i\frac{\kappa}{k}(C - D)$$
 (6.16)

$$\begin{pmatrix} e^{-\kappa a} \left(1 - \frac{i\kappa}{k} \right) & e^{\kappa a} \left(1 + \frac{i\kappa}{k} \right) \\ 1 + \frac{i\kappa}{k} & 1 - \frac{i\kappa}{k} \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$
(6.17)

mit $1 + \frac{i\kappa}{k} =: z$ und $1 - \frac{i\kappa}{k} =: z^*$ ergibt sich:

$$D = -e^{-2\kappa a} \frac{z^*}{z} C = \frac{2}{z^*} - \frac{z}{z^*} C$$

$$C = \frac{2}{z^*} \frac{|z|^2}{z^2 - e^{-2\kappa a} (z^*)^2} = \frac{2}{z - e^{-2\kappa a} (z^*)^2 / z}$$

$$t = C \left(e^{-\kappa a} - e^{\kappa a} e^{2\kappa a} \frac{z^*}{z} \right) = C e^{-\kappa a} \left(1 - \frac{z^*}{z} \right) = C e^{-\kappa a} \frac{z - z^*}{z}$$

$$\Rightarrow t = \frac{4i \operatorname{Im} z}{z^2 e^{\kappa a} - e^{-\kappa a} (z^*)^2}$$

jetzt $e^{\pm \kappa a} = \cosh(\kappa a) \pm \sinh(\kappa a)$

$$\Rightarrow t = \frac{4i \operatorname{Im} z}{\left(z^2 - (z^*)^2\right) \cosh(\kappa a) + \left(z^2 + (z^*)^2\right) \sinh(\kappa a)}$$
(6.18)

mit $z = 1 + i\frac{\kappa}{a}$, $z^2 = 1 + 2i\frac{\kappa}{k} - \frac{\kappa^2}{k^2}$, $(z^*)^2 = 1 - 2i\frac{\kappa}{k} - \frac{\kappa^2}{k^2}$ ergibt sich $z^2 + (z^*)^2 = 2\left(1 - \frac{\kappa^2}{k^2}\right)$ und $z^2 - (z^*)^2 = 4i\frac{\kappa}{k}$. Durch Einsetzen erhält man schließlich:

$$t = \frac{4i\kappa/k}{4i\frac{\kappa}{k}\cosh(\kappa a) + 2\left(1 - \frac{\kappa^2}{k^2}\right)\sinh(\kappa a)}$$
(6.19)

mit $\epsilon = \frac{\kappa^2 - k^2}{\kappa k}$ ergibt sich noch

$$S(E) = \frac{1}{\cosh(\kappa a) + \frac{i\epsilon}{2}\sinh(\kappa a)}$$
(6.21)

Transmissionskoeffizient:

$$|S(E)|^{2} = \frac{1}{\underbrace{\cosh^{2}(\kappa a)}_{1+\sinh^{2}(\kappa a)} + \frac{\epsilon^{2}}{4}\sinh^{2}(\kappa a)}$$
$$= \frac{1}{1 + \left(\frac{\epsilon^{2}}{4} + 1\right)\sinh^{2}(\kappa a)}$$

mit $\epsilon = \frac{\kappa^2 - k^2}{\kappa k} = \frac{V - 2E}{\sqrt{(V - E)E}}, \ \epsilon^2 = \frac{(V - 2E)^2}{(V - E)E}$ ergibt sich

$$\epsilon^{2} + 4 = \frac{(V - 2E)^{2} + 4(V - E)E}{(V - E)E} = \frac{V^{2}}{E(V - E)}$$

Eingesetzt ergibt sich

$$\left|S(E)\right|^{2} = \frac{1}{1 + \frac{V^{2}}{4E(V-E)}\sinh^{2}\left(\sqrt{2m(V-E)}a/\hbar\right)}$$
(6.22)

Klassischer Grenzfall: " $\hbar \to 0$ ": $|S(E)|^2 \to 0$ Grenzfall: hohe und breite Barriere: $\kappa a \gg 1$

$$\sinh(\kappa a) \approx \frac{1}{2} e^{\kappa a} \gg 1 \quad \Rightarrow \quad \left| S(E) \right|^2 \approx \frac{16E(V-E)}{V^2} e^{-2\kappa a}$$

Der Vorfaktor der Exponentialfunktion kann als logarithmische Korrektur des Exponenten betrachtet werden. Für $0.1 \lesssim E/V \lesssim 0.9$ kann diese vernachlässigt werden:

$$\Rightarrow ||S(E)||^2 \approx e^{-2\kappa a} = e^{-2\sqrt{2m(V-E)}a/\hbar}$$
(6.23)

Abbildung 6.9: Tunnelung durch eine Potentialbarriere

IK IV

Abbildung 6.10: Potentialverlauf beim α -Zerfall

Abbildung 6.11: Messung des Tunnelstroms durch einen Isolator

Anwendungen

- 1. α -Zerfall
 - Lebenszeit von Atomkernen (Wahrscheinlichkeit pro Zeit) (\rightarrow Übungsaufgabe)
- 2. Festkörperphysik
 - Tunnelstrom I(V)
 - ersetze Metall durch Supraleiter (Josephson-Effekt)
- 3. kalte Emission von e^-

Abbildung 6.12: Potentialverlauf bei kalter Emission von e^-

6.4. Gebundene Zustände: Potentialtopf

bisher

- nur ausgedehnte Zustände, weil $V \to 0$ für $|x| \to \infty$ und $V \ge 0$
- kontinuier
liches Spektrum $E \geq$ (alle $E \geq 0$ sind Eigenwerte von
 H)

jetzt

- gebundene Zustände (endlicher Raumbereich)
- bilden sich in Raumbereichen, wo $V < V_\infty,$ vobe
i $V(x) \to V_\infty$ für $|x| \to \infty$

Abbildung 6.13: Potentialtopf mit $V < V_{\infty}$

- auch hier gibt es (zusätzlich) ausgedehnte Zustände für $E \geq V_\infty$ (Kontinuum)
- entspricht Situation bei Atomen

6.4.1. Potentialtopf mit unendlich hohen Wänden

Abbildung 6.14: Potentialtopf mit unendlich hohen Wänden

$$V(x) = \begin{cases} 0 & ; \quad |x| \le \frac{a}{2} \\ \infty & ; \quad |x| > a \end{cases}$$

$$\kappa = \sqrt{2m(V - E)} \to \infty \quad \Rightarrow \quad e^{-\kappa a} \to 0, \ \Psi\Big(|x| > \frac{a}{2}\Big) = 0$$

2010-05-25

Randbedingungen $\Psi(\pm \frac{a}{2}) = 0$ Ansatz (für $|x| \le \frac{a}{2}$):

$$\Psi(x) = A e^{ikx} + B e^{-ikx} \qquad , \qquad k = \sqrt{2mE}$$
(6.24)

in Randbedingungen:

$$\Psi\left(\pm\frac{a}{2}\right) = A\mathrm{e}^{\pm\mathrm{i}ka/2} + B\mathrm{e}^{\pm\mathrm{i}ka/2} = 0 \tag{6.25}$$

$$\underbrace{\begin{pmatrix} e^{ika/2} & e^{-ika/2} \\ e^{-ika/2} & e^{ika/2} \end{pmatrix}}_{=:M} \begin{pmatrix} A \\ B \end{pmatrix} = 0$$
(6.26)

Lösungen außer A = B = 0 ($\Psi \equiv 0$, nicht normierbar) gibt es nur, falls:

$$\det M = e^{ika} - e^{-ika} = 2i\sin(ka) = 0$$
(6.27)

Alexander Kimmig, Uni Konstanz

also für

$$k = k_n = \frac{\pi}{a}n$$
 , $n = 1, 2, ...$ (6.28)

Lösung für n = 0 ergibt $\Psi = 0$, also nicht normierbar \rightarrow keine Lösung. Lösungen für negative Werte für n vertauschen lediglich A und $B \rightarrow$ keine neuen Lösungen.

$$E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2 \pi^2}{2ma^2} n^2 \qquad n = 1, 2, 3, \dots$$
(6.29)

einsetzen:

$$e^{\pm ika/a} = e^{\pm i\frac{\pi}{2}n} = \left(e^{\pm i\frac{\pi}{2}}\right)^n = (\pm i)^n = (\pm 1)^n i^n$$

in M einsetzen:

 $A + (-1)^n B = 0$ (+ Normierung)

1. $n = 1, 3, 5, \ldots$ ungerade $\Rightarrow A = B$:

$$\Psi_n(x) = \sqrt{\frac{2}{a}} \cos\left(n\frac{\pi}{a}x\right)$$
(6.30)

2. $n = 2, 4, 6, \dots$ gerade $\Rightarrow A = -B$:

$$\Psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(n\frac{\pi}{a}x\right) \tag{6.31}$$

Abbildung 6.15: Lösungen der Wellengleichung im Potentialtopf

Bemerkung

- 1. $E_1 > 0$ wegen Unschärferelation ($\rightarrow \ddot{U}$ bung)
- 2. Anzahl der Knoten von Ψ in $|x| < \frac{a}{2}$ ist n-1
- 3. Ψ' unstetig bei $x \pm \frac{a}{2}$ wegen $V = \infty$

6.4.2. Parität

Definition Paritätsoperator (Parität):

$$P\Psi(x) = \Psi(-x) \tag{6.32}$$

Stand: 13. Juli 2010, 20:05

Eigenschaften

- 1. P ist hermitescher Operator
- 2. $P^2 = 1$ (wobei $1\Psi(x) = \Psi(x)$)
- 3. Eigenwerte sind ±1 (folgt aus $P^2\Psi = \lambda^2\Psi \Rightarrow \lambda^2 = 1 \Rightarrow \lambda = \pm 1$) Betrachte $H = \frac{p^2}{2m} + V(x)$ mit V(-x) = V(x), für alle Ψ gilt dann

$$PH\Psi(x) = P\left(\frac{p^2}{2m} + V(x)\right)\Psi(x)$$
$$= \left(\frac{p^2}{2m} + \underbrace{V(-x)}_{=V(x)}\right)\Psi(-x)$$
$$= H\Psi(-x) = HP\Psi(x)$$
$$\Rightarrow PH = HP \quad \Rightarrow \quad [P,H] = 0 \tag{6.33}$$

 \Rightarrow stationäre Zustände (Lösungen der zeitunabhängigen Schrödingergleichung) $\widehat{=}$ Eigenzustände von Hkönnen Eigenzustände von Psein

Eigenzustände von P

- $\lambda = +1$: $P\Psi(x) = \Psi(x)$, d. h. $\Psi(-x) = \Psi(x) \rightarrow$ symmetrisches $\Psi(x) \rightarrow \cos$
- $\lambda = -1$: $P\Psi(x) = -\Psi(x)$, d. h. $\Psi(-x) = -\Psi(x) \rightarrow$ antisymmetrisches $\Psi(x) \rightarrow \sin$

2010-05-26

6.4.3. Potentialtopf mit endlich hohen Wänden

Abbildung 6.16: Potentialtopf mit endlich hohen Wänden

$$V(x) = \begin{cases} -V & ; \quad |x| \le a/2 \\ 0 & ; \quad |x| > a/2 \end{cases} , \qquad (V \ge 0)$$

1. gebundene Zustände $(-V \le E \le 0)$, allgemeiner Ansatz:

$$\Psi(x) = \begin{cases} \frac{A}{2} e^{ikx} + \frac{B}{2} e^{-ikx} & ; & |x| < a/2\\ C e^{\kappa x} & ; & x < -a/2\\ D e^{-\kappa x} & ; & x > a/2 \end{cases}$$
(6.34)

mit $k = \sqrt{2m(V+E)}/\hbar$ und $\kappa = \sqrt{-2mE}/\hbar$ Symmetrieüberlegung: $V(x) = V(-x) \xrightarrow{6.4.2} \Psi(-x) = \pm \Psi(x) \Rightarrow B = \pm A, D = \pm C$ neuer Ansatz:

symmetrisch (gerade)

$$\Psi(x) = \begin{cases} A\cos(kx) & ; \quad |x| \le a/2\\ Ce^{-\kappa|x|} & ; \quad |x| > a/2 \end{cases}$$
(6.35)

antisymmetrisch (ungerade)

$$\Psi(x) = \begin{cases} A\sin(kx) & ; \quad |x| \le a/2\\ Ce^{-\kappa|x|}\operatorname{sgn}(x) & ; \quad |x| > a/2 \end{cases}$$
(6.36)

Die möglichen Lösungen werden durch die Randbedingungen bei $x = \pm a/2$ bestimmt: gerade Lösungen:

$$A\cos\left(\frac{ka}{2}\right) = Ce^{-\kappa a/2} \qquad (\text{Stetigkeit von }\Psi)$$
$$-Ak\sin\left(\frac{ka}{2}\right) = -C\kappa e^{-\kappa a/2} \qquad (\text{Stetigkeit von }\Psi')$$

dividiere untere durch obere Gleichung:

$$k \tan\left(\frac{ka}{2}\right) = \kappa \tag{6.37}$$

ungerade Lösungen:

$$-k\cot\left(\frac{ka}{2}\right) = \kappa \tag{6.38}$$

mit $\kappa = \sqrt{-2mE}/\hbar$ und $k = \sqrt{2m(E+V)}/\hbar$ sind 6.37 und 6.38 die Bestimmungsgleichungen für *E*. Diese können nicht analytisch, sondern nur numerisch oder graphisch gelöst werden. Mit $\kappa^2 = -2mE/\hbar^2 = -k^2 + 2mV/\hbar$, $z := \frac{ka}{2} = \frac{a}{2}\sqrt{2m(E+V)}/\hbar$ und $\zeta := \frac{a}{2}\sqrt{2mV}/\hbar \rightarrow \frac{\kappa}{a} = \frac{\kappa a/2}{ka/2} = \frac{\sqrt{\zeta^2 - z^2}}{2}$ ergibt sich:

$$\tan(z) = \frac{\sqrt{\zeta^2 - z^2}}{z} \tag{6.39}$$

$$\cot(z) = -\frac{\sqrt{\zeta^2 - z^2}}{z} \tag{6.40}$$

$$z = \frac{ka}{2} = \frac{a}{2\hbar}\sqrt{2m(E+V)} \ge 0$$

$$\Rightarrow \boxed{E = \frac{4z^2\hbar^2}{2ma^2} - V}$$

$$\zeta = \frac{a}{2\hbar}\sqrt{2mV} \ge 0$$
(6.41)

Stand: 13. Juli 2010, 20:05

Abbildung 6.17: Grafische Lösungen der Gleichungen 6.39 und 6.40

Bemerkungen

- a) $V \to 0 \Rightarrow \zeta \to 0 \Rightarrow z \to n\frac{\pi}{2}, \tilde{E} := E + V = \frac{\pi^2 \hbar^2}{2ma^2} n^2$
- b) für beliebig kleine V > 0 gibt es immer eine symmetrische Lösung, aber sobald $\zeta < \frac{\pi}{2}$ ist, gibt es keine antisymmetrische Lösung mehr.
- c) V klein, $\zeta \ll 1$: weil $z \leq \zeta \ll 1 \Rightarrow z \ll 1$. $\tan(z) \approx z$ und $6.39 \rightarrow z^2 \approx \sqrt{\zeta^2 z^2}$

$$z^{4} + z^{2} - \zeta^{2} = 0 \Rightarrow z^{2} = \frac{1}{2} \left(-1 \pm \underbrace{\sqrt{1+4\zeta^{2}}}_{\text{Taylor-Entwicklung: } 1+2\zeta^{2}} \right) \cong \begin{cases} -1-\zeta^{2} & \text{nicht möglich, da } z > 0 \\ \zeta^{2} - \zeta^{4} \\ -2\zeta^{4} \end{cases}$$

in 6.41 einsetzen:

$$E = -\frac{a^2 m V^2}{2\hbar^2}$$

2. E > 0: ausgedehnte Zustände: Resonanzen (\rightarrow Übung)

$$\Psi(x) = \begin{cases} \frac{A}{2} \left(e^{ikx} \pm e^{-ikx} \right) & ; \quad |x| \le a/2 \\ e^{iqx} + r e^{-iqx} & ; \quad x < -a/2 \\ S(E) e^{iqx} & ; \quad x > a/2 \end{cases}$$
(6.42)

mit $k = \sqrt{2m(E+V)}/\hbar$ und $q = \sqrt{2mE}/\hbar$ Ergebnis:

$$S(E) = \left(\cos(ka) - \frac{i}{2}\frac{k^2 + q^2}{kq}\sin(ka)\right)^{-1}$$
(6.43)

$$\Rightarrow |S(E)|^{2} = \left(1 + \frac{V^{2}}{4E(V+E)}\sin^{2}\left(\sqrt{2m(E+V)a}/\hbar\right)\right)^{-1}$$
(6.44)

a) Vergleiche Transmissionskoeffizient 6.44 mit $|S(E)|^2$ für Tunnelbarriere (6.22):

Übergang $V \to -V$ und $\sin(\mathrm{i} x) \to \mathrm{i} \sinh(x)$ in 6.44 führt auf Gleichung 6.22

b) $|S(E)|^2 = 1$, wenn sin = 0, d. h. für

$$\sqrt{2m(E+V)}a/\hbar=n\pi\quad,\quad n=1,2,\ldots$$
d. h. falls $E_n=\frac{\hbar^2\pi^2}{2ma^2}n^2-V\geq 0,$ wobe
i $n=1,2,\ldots,$ so dass $E_n\geq 0$

Abbildung 6.18: Resonanzen

- c) Vergleiche 6.43 mit Lösungen für E < 0: setze S(E) analytisch fort für E < 0: S(E) hat Pol, falls $\begin{cases} k \tan(ka/2) = \kappa \\ k \cot(ka/2) = -\kappa \end{cases}$ mit $\kappa = \sqrt{-2mE} = iq$ $S(E) \to \infty$:
 - auslaufende Welle ohne einlaufende Welle
 - auslaufende Welle ist gedämpft
 - \Rightarrow Pole von S(E) entsprechen gebundenen Zuständen!

2010-05-28

6.5. Delta-Potential

Potentialtopf mit endlichen Wänden:

$$V \to 0 \Rightarrow E \approx -\frac{ma^2V^2}{2\hbar^2} \to 0$$

 $a \to 0 \Rightarrow E \to 0$

jetzt: $aV = \text{const} = \lambda, a \to 0, V \to \infty$

Abbildung 6.19: Delta-Potential: aV = const

Behauptung Im Grenzfall $a \to 0, V \to \infty$ mit $aV = \lambda = \text{const}$ existiert ein gebundener Zustand $(\lambda < 0)$

Grenzfall: $V(x) = \lambda \delta(x)$ Lösung (E < 0):

$$\Psi(x) = C \begin{cases} e^{\kappa x} & ; \quad x < 0 \\ e^{-\kappa x} & ; \quad x > 0 \end{cases} = C e^{-\kappa |x|} \quad , \quad \kappa = \frac{\sqrt{-2mE}}{\hbar}$$
(6.45)

- erfüllt bereits: $\Psi(x)$ stetig bei x = 0
- $\Psi'(x)$ ist nicht stetig bei x = 0

Bedingung bei x = 0: Schrödingergleichung

$$-\frac{\hbar^2}{2m}\Psi''(x) = \left(E - \lambda\delta(x)\right)\Psi(x)$$

Integriere von $-\epsilon$ bis ϵ (und anschließend $\epsilon \to 0$):

$$\int_{-\epsilon}^{\epsilon} -\frac{\hbar^2}{2m} \Psi''(x) \, dx = \int_{-\epsilon}^{\epsilon} (E - \lambda \delta(x)) \Psi(x) \, dx$$
$$-\frac{\hbar^2}{2m} (\Psi'(\epsilon) - \Psi'(-\epsilon)) = E \underbrace{\int_{-\epsilon}^{\epsilon} \Psi(x) \, dx}_{\rightarrow 0} - \lambda \Psi(0)$$
$$\epsilon \rightarrow 0: \qquad \Psi'(0^+) - \Psi'(0^-) = \frac{2m\lambda}{\hbar^2} \Psi(0) \qquad (6.46)$$
$$\Psi'(x) = C\kappa \begin{cases} e^{\kappa x} & ; x < 0\\ -e^{-\kappa x} & ; x > 0 \end{cases}$$
$$\Psi'(0^+) - \Psi'(0^-) = C\kappa(-1-1) = -2C\kappa = \frac{2m}{\hbar^2} \lambda C$$
$$\Rightarrow \kappa = \frac{\sqrt{-2mE}}{\hbar} = -\frac{m}{\hbar^2} \lambda \Rightarrow \boxed{E = -\frac{m}{2} \frac{\lambda^2}{\hbar^2}} \qquad (6.47)$$

Normierung

$$1 \stackrel{!}{=} \int_{-\infty}^{\infty} |\Psi(x)|^2 dx$$
$$= |C|^2 \int_{-\infty}^{\infty} e^{-2\kappa |x|} dx$$
$$= 2|C|^2 \int_{0}^{\infty} e^{-2\kappa x} dx$$
$$= 2|C|^2 \frac{1}{-2\kappa} e^{-2\kappa x} \Big|_{0}^{\infty} = \frac{|C|^2}{\kappa}$$
$$\Rightarrow |C|^2 = \kappa$$
wähle $C = \sqrt{\kappa} = \frac{\sqrt{m\lambda}}{\hbar}$

6.6. Periodische Potentiale

- Eindimensionale Kristallgitter
- Anwendung: Festkörperphysik (meistens in 3D)

mit

Abbildung 6.20: Gebundener Zustand am Delta-Potential

 $H = \frac{p^2}{2m} + V(x)$ $V(x+a) = V(x) \quad \forall x \tag{6.48}$

$$T_a\Psi(x) := \Psi(x+a) \tag{6.49}$$

Es gilt $[T_a, H] = 0$. Eigenzustände von T_a : $T_a\Psi(x) = \Psi(x+a) = \lambda\Psi(x)$. Damit $\lambda\Psi(x) = \Psi(x+a)$ wieder normiert ist, muss $|\lambda|^2 = 1$ sein.

$$|\lambda|^2 = 1 \quad \Rightarrow \quad \lambda = e^{i\varphi} \quad , \qquad \varphi \in \mathbb{R}$$

definiere jetzt $k := \frac{\varphi}{x}$ und erhalte damit $\lambda = e^{ikx}$.

$$\Rightarrow T_a \Psi(x) = \Psi(x+a) = e^{ika} \Psi(x)$$

Definiere: $u_k(x) := e^{-ikx}\Psi(x)$, dann gilt $u_k(x+a) = u_k(x)$

Bloch-Theorem Die Eigenzustände eines *periodischen Problems* mit $[H, T_a] = 0$ haben die Form $\Psi(x) = e^{ikx}u_k(x)$, wobei $u_k(x)$ periodisch ist: $u_k(x+a) = u_k(x)$.

Bemerkungen

- 1. V = 0: ebene Wellen ($u_k = \text{const}$); $V \neq 0$ und periodisch: ebene Wellen, moduliert mit periodischer Funktion u_k
- 2. Wertebereich von k: Eigenwerte: $\lambda = e^{ika} = e^{ik'a}$ falls $k = k' + \frac{2\pi}{a}n$. Somit kann k im Bereich $-\frac{\pi}{a} \le k < \frac{\pi}{a}$ gewählt werden.

Setze $\Psi(x) = e^{ikx}u_k(x)$ in Schrödingergleichung $\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)\right)\Psi(x) = E\Psi(x)$ ein und benutze

$$\Psi'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{e}^{\mathrm{i}kx} u_k(x) = \mathrm{i}k \mathrm{e}^{\mathrm{i}kx} u_k(x) + \mathrm{e}^{\mathrm{i}kx} \frac{\mathrm{d}u_k}{\mathrm{d}x}$$
$$\Psi''(x) = -k^2 \mathrm{e}^{-\mathrm{i}kx} u_k(x) + 2\mathrm{i}k \mathrm{e}^{\mathrm{i}kx} \frac{\mathrm{d}u_k}{\mathrm{d}x} + \mathrm{e}^{\mathrm{i}kx} \frac{\mathrm{d}^2 u_k}{\mathrm{d}x^2} = \mathrm{e}^{\mathrm{i}kx} \left(\frac{\mathrm{d}}{\mathrm{d}x} \mathrm{i}k\right)^2 u_k(x)$$

Dividiere durch e^{ikx}

$$\Rightarrow \left[-\frac{\hbar^2}{2m} \left(\frac{\mathrm{d}}{\mathrm{d}x} + \mathrm{i}k \right)^2 + V(x) \right] u_k(x) = E_k u_k(x) \tag{6.50}$$

 $V(x), u_k(x)$ periodisch \rightarrow Fourier-Reihe

$$V(x) = \sum_{q} V(q) e^{iqx} , \qquad q = \frac{2\pi}{a}n \qquad , \qquad n \in \mathbb{Z}$$
$$V(q) = \frac{1}{a} \int_{-a/2}^{a/2} dx V(x) e^{-iqx}$$
$$v(x) = \sum_{q} u_k(q) e^{iqx}$$

einsetzen in 6.50: $\frac{\mathrm{d}}{\mathrm{d}x} \to \mathrm{i} q$

$$\sum_{q} \left[\frac{\hbar^2}{2m} (q+k)^2 - E_k \right] u_k(q) e^{iqx} + \sum_{q'q''} V(q'') u_k(q') e^{i(q'+q'')x} = 0$$
$$\sum_{q} \left\{ \left[\frac{\hbar^2}{2m} (q+k)^2 - E_k \right] u_k(q) e^{iqx} + \sum_{q'} V(q-q') u_k(q') \right\} e^{iqx} = 0$$

Fourier-Reihe von $0 \Rightarrow$ alle Koeffizienten = 0, d. h.

$$\left[\frac{\hbar^2}{2m}(q+k)^2 - E_k\right]u_k(q)e^{iqx} + \sum_{q'}V(q-q')u_k(q') = 0$$
(6.51)

1. Für jedes feste $k \in [-\pi/a, \pi/a]$ ist dies ein lineares Gleichungssystem für $u_k(q), q = \frac{2\pi}{a}n, n \in \mathbb{Z}$

- 2. E_k unbekannt \rightarrow $Eigenwert
problem für <math display="inline">u_k(q)$ und E_k
- 3. Im Allgemeinen unendlich viele Gleichungen und unendlich viele Unbekannte
- 4. Lösungen (für festes k):

$$\begin{pmatrix} \uparrow & \ddots & \\ \infty & & \ddots & \\ \downarrow & & & \ddots \end{pmatrix} \begin{pmatrix} \vdots \\ u_k(q) \\ \vdots \end{pmatrix} = E_k \begin{pmatrix} \vdots \\ u_k(q) \\ \vdots \end{pmatrix}$$

5. freie Elektronen V = 0, Eigenwerte $E_k = \frac{\hbar^2}{2m}(k+q)^2 = \frac{\hbar^2}{2m}\left(k+\frac{2\pi}{a}n\right)^2$ reduziertes Zonenschema

Abbildung 6.21: freie Elektronen in einem periodischen Potential: reduziertes Zonenschema

- 6. $V(x) = \lambda \sum_{n=-\infty}^{\infty} \delta(x na)$ Kronig-Penney-Modell (\rightarrow Übung)
- 7. fast freie Eletronen: V klein \rightarrow Energielücke $u_k(0), u_k\left(\frac{2\pi}{a}\right)$

2010-06-01

1. freie Elektronen V = 0, Eigenwerte $E_k = \frac{\hbar^2}{2m}(k+q)^2 = \frac{\hbar^2}{2m}\left(k+\frac{2\pi}{a}n\right)^2$ reduziertes Zonenschema

Abbildung 6.22: freie Elektronen in einem periodischen Potential: reduziertes Zonenschema

- 2. $V(x) = \lambda \sum_{n=-\infty}^{\infty} \delta(x na)$ Kronig-Penney-Modell (\rightarrow Übung)
- 3. fast freie Eletronen: V klein \rightarrow Energielücke $u_k(0), u_k\left(\frac{2\pi}{a}\right)$ Zustände: näherungsweise ebene Wellen e^{ikx} $(u_k(0) \approx 1)$

$$u_{k}(q) \approx \frac{V(q)}{\frac{\hbar^{2}}{2m}(k+q)^{2} - \underbrace{E_{k}}_{=\frac{\hbar^{2}k^{2}}{2m}} \underbrace{u_{k}(0)}_{\approx 1}$$
(6.52)

Nenner = 0, falls $(k+q)^2 = k^2$ (Bragg-Bedingung)

$$q = \frac{2\pi}{a}n$$
 , $n \in \mathbb{Z}$; $n = 1 \Rightarrow q = \frac{2\pi}{a}$

Näherung: berücksichtige nur 2 Fourier-Koeffizienten von $u_k(x)$: $u_k(0)$ und $u_k(q)$, $q = \frac{2\pi}{a}$ bei $k = \pm \frac{\pi}{a} \rightarrow 2 \times 2$ -Gleichungssystem aus Gleichung 6.51:

$$\begin{pmatrix} \frac{\hbar^2 k^2}{2m} & V(-\tilde{q}) \\ V(\tilde{q}) & \frac{\hbar^2 k^2}{2m} \end{pmatrix} \begin{pmatrix} u_k(0) \\ u_k(\tilde{q}) \end{pmatrix} = E_k \begin{pmatrix} u_k(0) \\ u_k(\tilde{q}) \end{pmatrix} , \quad V(-\tilde{q}) = V(q)^*$$
(6.53)

$$E_k = \frac{\hbar^2 k^2}{2m} \pm \left| V(\tilde{q}) \right|^2 \quad , \quad k = \pm \frac{\pi}{a} \tag{6.54}$$

2010-06-02 (gehalten von S. Gerlach)

6.7. Der harmonische Oszillator

$$H(x,p) = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2}$$
$$F = -kx = -m\omega^2 x = -\partial_x V(x) \quad , \qquad \omega = \sqrt{\frac{k}{m}}$$
$$V = \frac{k}{2}x^2 = \frac{m\omega^2}{2}x^2$$

Quantenmechanik

$$\left(\frac{\hat{p}^2}{2m} + V(\hat{x})\right)\Psi = E\Psi$$
$$\langle p^2 \rangle = \int \Psi^* p^2 \Psi \, \mathrm{d}x = \int \Psi^* p^* p \Psi \, \mathrm{d}x = \|p\Psi\|^2 \ge 0 \implies E \ge V_{\min} = 0$$

- diskretes Spektrum
- keine Entartung (später: 3D \rightarrow Rotationssymmetrie: Drehimpuls-Entartung)
- Parität: $[H, P] = 0 \Rightarrow \Psi(-x) = \pm \Psi(x)$
- $-\frac{\hbar^2}{2m}\Psi'' + V(x)\Psi = E\Psi \rightarrow$ je größer die Krümmung, desto höher muss die Energie sein!
- Unschärferelation: $\Delta x \Delta p \ge \frac{\hbar}{2} \Rightarrow E_0 = \frac{\hbar \omega}{2}$

Anwendungen

• Molekülphysik

Abbildung 6.23: Morse-Potential \rightarrow Näherung als harmonischer Oszillator

$$V(r) \approx V(r_0) + \frac{V''(r)}{2} \bigg|_{r_0} (r - r_0)^2 = C + \frac{m\omega^2}{2} x^2$$

- Festkörperphysik: Gitterschwingungen (Einstein-Modell)
- Atomphysik (Atomfallen)
- Quantenoptik (Quantenelektrodynamik)
- Vielteilchentheorie (Quantenfeldtheorie)

im Ortsraum gilt

$$\begin{split} \hat{H} &= \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2} \hat{x}^2 & \stackrel{\text{Ortsraum}}{\Rightarrow} & \hat{x} \to x \quad , \quad \hat{p} \to -\mathrm{i}\hbar\partial_x \\ &\Rightarrow \hat{H} = -\frac{\hbar^2}{2m}\partial_x^2 + \frac{m\omega^2}{2}x^2 \end{split}$$

mit $\hbar,\,m,\,\omega$ als Parametern:

•
$$\left[\sqrt{\frac{\hbar}{m\omega}}\right] = m = [x]$$

• $\left[\sqrt{\hbar m\omega}\right] = \frac{\log m}{s} = [p]$
• $x \to \xi \sqrt{\frac{\hbar}{m\omega}}, \ \partial_x \to \frac{\partial_{\xi}}{\sqrt{\frac{\hbar}{m\omega}}}$
• $H = \frac{\hbar \omega}{2} (-\partial_{\xi}^2 + \xi^2)$
 $\Rightarrow \left[(-\partial_{\xi}^2 + \xi^2)\Psi(\xi) = \frac{2E}{\hbar \omega}\Psi(\xi) =: \epsilon \Psi(\xi)\right]$

im Impulsraum gilt

$$\begin{split} \hat{H} &= \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2} \hat{x}^2 \quad \stackrel{\text{Impulsraum}}{\Rightarrow} \quad \hat{x} \to i\hbar\partial_p \quad , \quad \hat{p} \to p \\ &\Rightarrow \hat{H} = -\frac{p^2}{2m} + \frac{m\omega^2}{2}\partial_p^2 \end{split}$$

mit $\hbar,\,m,\,\omega$ als Parametern:

• $\left[\sqrt{\frac{\hbar}{m\omega}}\right] = m = [x]$ • $\left[\sqrt{\hbar m\omega}\right] = \frac{\text{kg m}}{\text{s}} = [p]$

•
$$p \to \chi \sqrt{\hbar m \omega}, \ \partial_p \to \frac{\partial_{\chi}}{\sqrt{\hbar m \omega}}$$

$$\Rightarrow \boxed{(-\partial_{\chi}^2 + \chi^2)\Psi(\xi) = \frac{2E}{\hbar\omega}\Psi(\xi) =: \epsilon\Psi(\xi)}$$

 \Rightarrow Lösungen im Orts- und Impulsraum identisch!

Lösung von

$$(-\partial_{\xi}^2 + \xi^2)\Psi(\xi) = \epsilon\Psi(\xi) \tag{6.55}$$

• algebraische Methode (DIRAC, 1926: Quantum Mechanics)

$$H = \frac{1}{2}(\xi^2 + \chi^2) = \frac{1}{2}(\xi - i\chi)(\xi + i\chi) = a^*a$$
(6.56)

s. Kapitel 7

• Polynommethode (SOMMERFELD)

$$\lim_{x \to \pm \infty} \Psi(x) = 0 \quad \stackrel{\xi^2 \gg \epsilon}{\Rightarrow} \quad \partial_{\xi}^2 \Psi(\xi) = \xi^2 \Psi(\xi)$$

$$- \Psi(\xi) \sim e^{\pm \xi^2/2}$$

$$- \partial_{\xi} \Psi(\xi) = \pm \xi e^{\pm \xi^2/2}$$

$$- \partial_{\xi}^2 \Psi(\xi) = \pm e^{\pm \xi^2/2} + \xi^2 e^{\pm \xi^2/2} = (\xi^2 \pm 1) e^{\pm \xi^2/2} \approx \xi^2 e^{\pm \xi^2/2} = \xi^2 \Psi(\xi)$$

$$- \Psi(\xi) = H(\xi) e^{-\xi^2/2}$$

$$- \partial_{\xi} \Psi(\xi) = H'(\xi) e^{-\xi^2/2} - H(\xi) \xi e^{-\xi^2/2} = e^{-\xi^2/2} (H'(\xi) - \xi H(\xi))$$

$$- \partial_{\xi}^2 \Psi(\xi) = -\xi e^{-\xi^2/2} (H'(\xi) - \xi H(\xi)) + e^{-\xi^2/2} (H''(\xi) - H(\xi) - \xi H'(\xi)) = e^{-\xi^2/2} (H''(\xi) - \xi H'(\xi))$$

einsetzen in 6.55:

$$e^{-\xi^2/2} \left(H'' - 2\xi H' + (\xi^2 - 1)H - \xi^2 H + \epsilon H \right) = 0$$

$$\left[\left[\partial_{\xi}^2 - 2\xi \partial_{\xi} + (\epsilon - 1) \right] H(\xi) = 0 \right] \quad Hermite \ Differential gleichung \tag{6.57}$$

$$\begin{array}{ll} H(\xi)=1 & \epsilon-1=0 & \epsilon=1 & E=\frac{\hbar\omega}{2} \\ H(\xi)=\xi & -2\xi+(\epsilon-1)\xi=0 & \epsilon=3 & E=\frac{3}{2}\hbar\omega \\ H(\xi)=2\xi^2-1 & \epsilon=5 & E=\frac{5}{2}\hbar\omega \end{array}$$

$$- H(\xi) = \sum_{n=0}^{\infty} a_n \xi^n
- \partial_{\xi} H = \sum_{n=1}^{\infty} n a_n \xi^{n-1}
- \partial_{\xi}^2 H = \sum_{n=2}^{\infty} (n-1) n a_n \xi^{n-2} = \sum_{n=0}^{\infty} (n+1)(n+2) a_{n+2} \xi^n
\Rightarrow \sum_{n=0}^{\infty} \underbrace{\left[(n+1)(n+2)a_{n+2} - 2na_n + (\epsilon-1)a_n \right]}_{= 0 \forall n} \xi^n = 0
\Rightarrow \boxed{a_{n+2} = \frac{-\epsilon + 1 + 2n}{(n+1)(n+2)} a_n} \quad Rekursions formel$$
(6.58)

- für $n \gg 1$: $a_{n+1} \sim \frac{2}{n}a_n \Rightarrow a_{2n} \sim \frac{1}{n!}$

$$\Rightarrow H(\xi) = \sum_{n=0}^{\infty} a_{2n} \xi^{2n} = \sum_{n=0}^{\infty} \frac{1}{n!} \xi^{2n} = e^{\xi^2}$$

$$\Rightarrow \text{Potenzreihe muss abbrechen, sonst ist } \Psi \text{ nicht normierbar! D. h. es gibt ein } \epsilon_n = 2n + 1$$
$$\Rightarrow \boxed{E_n = \hbar \omega \left(n + \frac{1}{2}\right)}$$
$$\Psi_n(\xi) = C_n H_n(\xi) e^{-\xi^2/2} \tag{6.59}$$

- Hermite-Polynome: $H_0(\xi) = 1, H_1(\xi) = 2\xi, H_2(\xi) = 4\xi^2 - 2,...$

Abbildung 6.24: Ψ -Funktion mit Hermite-Polynomen

 $\epsilon = 2n + 1: \ (\partial_{\xi}^2 - 2\xi\partial_{\xi} + 2n)H_n(\xi) = 0$ Orthonormiert:

.

$$\underbrace{\int_{-\infty}^{\infty} e^{-\xi^2} d\xi}_{=\sqrt{\pi}} H_n(\xi) H_m(\xi) = 2^n n! \sqrt{\pi} \delta_{nm}$$

$$\begin{aligned} \int |\Psi(x)|^2 \, \mathrm{d}x &= \int \Psi^*(x)\Psi(x) \, \mathrm{d}x = 1 \\ \Psi_n(\xi) &= \frac{1}{\sqrt{2^n n!}\sqrt{\pi}} H_n(\xi) \mathrm{e}^{-\xi^2/2} \\ \Psi_n(x) &= \left(\frac{m\omega}{\hbar\pi}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2^n n!}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) \mathrm{e}^{-\frac{m\omega^2}{2\hbar}x^2} \\ \tilde{\Psi}_n(p) &\sim H_n\left(\frac{p}{\sqrt{m\omega\hbar}}\right) \mathrm{e}^{-\frac{p^2}{2\hbar m\omega}} \\ H_n(\xi) &= \mathrm{e}^{+\xi^2} (-\partial_\xi)^n \mathrm{e}^{-\xi^2} = \mathrm{e}^{\xi^2/2} (\xi - \partial_\xi)^n \mathrm{e}^{-\xi^2/2} \end{aligned}$$

Erzeugende Funktion

$$e^{\xi^2 - (t - \xi^2)} = e^{2t\xi - t^2} = \sum_{n=0}^{\infty} \frac{H_n(\xi)}{n!} t^n$$
(6.60)

Rekursionsformel

$$\partial_{\xi} H_n(\xi) - 2nH_{n-1}(\xi) \Rightarrow H_{n+1} - 2\xi H_n(\xi) + 2nH_{n-1}(\xi) = 0$$
 (6.61)

2010-06-04

_{Kapitel} 7. Mathematischer Formalismus der Quantenmechanik

bisher: induktiver Aufbau der Gesetze der Quantenmechanik aus den Beobachtungen

jetzt: Formulierung der Gesetze in fundamentalen Prinzipien (Axiome der Quantenmechanik). Daraus folgen deduktiv die Aussagen, die mit den Beobachtungen vergliechen werden können

Literatur: Noltin 5/1, Kapitel 5

7.1. Zustände und Observablen

vgl. Analytische Mechanik

7.1.1. Zustand

Minimaler Satz an Informationen, der alle mechanische Eigenschaften des Systems vollständig bestimmt.

klassische Mechanik Zustand \leftrightarrow generalisierte Koordinaten und Impulse $(q_1, \ldots, q_S, p_1, \ldots, p_S)$, einzelnes Teilchen (ohne Zwangsbedingungen): (\vec{r}, \vec{p})

Quantenmechanik

- 1. Unschärferelation: \vec{r} und \vec{p} können nicht gleichzeitig scharf bestimmt werden
- 2. gesamte Information über Ort und Impuls ist in der Wellenfunktion $\Psi(\vec{r})$ enthalten \rightarrow Zustand in der Quantenmechanik: $\Psi(\vec{r})$
- 3. Wellenfunktion im Impulsraum $\hat{\Psi}(\vec{p})$ enthält exakt dieselbe Information wir $\Psi(\vec{r})$. Deshalb ist $\hat{\Psi}(\vec{p})$ ebenfalls eine Beschreibung des Zustandes. Weitere Darstellungen sind möglich (später). \rightarrow Möchte weder \vec{r} - noch \vec{p} -Darstellung (noch irgendeine andere) hervorheben \rightarrow führe abstrakten Begriff des Zustandes ein:
 - (Dirac-) Zustand $|\Psi\rangle$
 - später: kann $\Psi(\vec{r})$ und $\hat{\Psi}(\vec{p})$ aus $|\Psi\rangle$ berechnen
- 4. Allgemein: Zustand: Wahrscheinlichkeitsamplitude in Abhängigkeit einer oder mehrerer Ob-Observable Operator Eigenwerte Zustand

servablen Ort $\hat{\vec{r}}$ $\vec{r} \in \mathbb{R}^3$ $\Psi(\vec{r})$ Impuls $\hat{\vec{p}}$ $\vec{p} \in \mathbb{R}^3$ $\Psi(\vec{p})$

Bedingung:

a) genügend viele Observablen verwenden, damit der Zustand eindeutig ist

- b) bei mehreren Observablen A, B, C, \ldots müssen diese kompatibel (verträglich) sein, d. h. gleichzeitig scharf gemessen werden können: $[\hat{A}, \hat{B}] = [\hat{A}, \hat{C}] = [\hat{B}, \hat{C}] = \cdots = 0$
- 5. Präparation: Messung eines verträglichen, vollständigen Satzes von Observablen.
- 6. Gegensatz zur klassischen Mechanik: Obwohl der Zustand $|\Psi\rangle$ bekannt ist, sind nur Wahrscheinlichkeitsaussagen möglich, z. B. $P(\vec{r}) = |\Psi(\vec{r})|^2$
 - $\rightarrow\,$ Einschränkung durch Unschärfere
lation
 - \rightarrow größtmögliche Menge an Informaltion: (reiner) Zustand
 $|\Psi\rangle$
 - \rightarrow weniger Informationen als mögloch: gemischter Zustand (statistische Mechanik)

7.1.2. Observablen

klassisch $f(q_1, \ldots, q_S, p_1, \ldots, p_S), f(\vec{r}, \vec{p})$

quantenmechanisch Operator \hat{O} , wirkt auf $|\Psi\rangle$

7.2. Der Hilbertraum

Quantensystem \longleftrightarrow Hilbertraum \mathcal{H} reiner Zustand \longleftrightarrow Vektor $|\Psi\rangle$ Observablen \longleftrightarrow Operatoren \hat{O} auf \mathcal{H} ein Hilbertraum \mathcal{H} ist eine Menge (hier: Menge der Zustände), welche folgende Eigenschaften hat:

- 1. \mathcal{H} ist ein komplexer Vektorraum
- 2. Auf \mathcal{H} ist ein Skalarprodukt definiert
- 3. \mathcal{H} ist separabel
- 4. ${\mathcal H}$ ist vollständig

Bemerkung

- zu 1: Zustände sind Vektoren (Zustandsvektoren), physikalisch: Superpositionsprinzip
- zu 3: kann in der Quantenmechanik gelockert werden
- später: $\Psi(\vec{r})$ bilden tatsächlich einen Hilbertraum

Erklärungen

H ist ein komplexer Vektorraum, d. h. es gibt zwei Abbildungen:
 Addition ∀ |α⟩, |β⟩ ∈ *H*: |α⟩ + |β⟩ ∈ *H* skalare Multiplikation ∀ |α⟩ ∈ *H*, c ∈ C: c |α⟩ ∈ *H*

Eigenschaften

a) Kommutativgesetz:

 $|\alpha\rangle + |\beta\rangle = |\beta\rangle + |\alpha\rangle , \quad \forall |\alpha\rangle, |\beta\rangle \in \mathcal{H}$ (7.1)

b) Assioziativgesetz:

$$|\alpha\rangle + (|\beta\rangle + |\gamma\rangle) = (|\alpha\rangle + |\beta\rangle) + |\gamma\rangle$$
(7.2)

$$(c_1c_2) |\alpha\rangle = c_1(c_2 |\alpha\rangle) \tag{7.3}$$

c) Existenz eines Nullvektors: $\mathbf{0} \in \mathcal{H}$:

$$|\alpha\rangle + \mathbf{0} = |\alpha\rangle \qquad , \qquad \forall \, |\alpha\rangle \in \mathcal{H}$$

$$(7.4)$$

es gilt außerdem:

$$0 |\alpha\rangle = \mathbf{0} \quad , \quad \forall |\alpha\rangle \in \mathcal{H}$$
 (7.5)

$$c\mathbf{0} = \mathbf{0} \tag{7.6}$$

d) Existenz des Inversen: $\forall |\alpha\rangle \in \mathcal{H}$ gibt es ein $-|\alpha\rangle \in \mathcal{H}$ mit

$$|\alpha\rangle + (-|\alpha\rangle) = \mathbf{0} \tag{7.7}$$

definiere Subtraktion:

$$|\alpha\rangle - |\beta\rangle := |\alpha\rangle + (-|\beta\rangle) \tag{7.8}$$

e) Distributivgesetz:

$$c(|\alpha\rangle + |\beta\rangle) = c |\alpha\rangle + c |\beta\rangle \tag{7.9}$$

$$(c_1 + c_2) |\alpha\rangle = c_1 |\alpha\rangle + c_2 |\alpha\rangle \tag{7.10}$$

weitere Begriffe

a) $|\varphi_1\rangle, \ldots, |\varphi_n\rangle$ sind genau dann *linear unabhängig*, wenn

$$\sum_{i=1}^{n} c_i |\varphi_i\rangle = \mathbf{0} \quad \Rightarrow \quad c_1 = c_2 = \dots = c_n = 0$$

- b) Basis von \mathcal{H} : maximaler Satz linear unabhängiger Vektoren
- c) Dimension von \mathcal{H} : maximale Anzahl linear unabhängiger Vektoren.

Bemerkung: Dimension kann unendlich sein: $\{|\varphi_i\rangle\}$ linear unabhängig, falls jede endliche Untermenge linear unabhängig ist

2. Skalarprodukt: jedem Paar $|\alpha\rangle, |\beta\rangle \in \mathcal{H}$ wird eine Zahl $\langle \alpha | \beta \rangle \in \mathbb{C}$ zugeordnet mit folgenden Eigenschaften:

a)

$$\langle \beta | \alpha \rangle = \langle \alpha | \beta \rangle^* \tag{7.11}$$

b)

$$|\beta\rangle := |\beta_1\rangle + |\beta_2\rangle \quad \Rightarrow \quad \langle \alpha |\beta\rangle = \langle \alpha |\beta_1\rangle + \langle \alpha |\beta_2\rangle \tag{7.12}$$

c)

$$|\gamma\rangle := c |\beta\rangle, c \in \mathbb{C} \quad \Rightarrow \quad \langle \alpha | \gamma \rangle = c \langle \alpha | \beta \rangle \tag{7.13}$$

aus 7.11 und 7.13 folgt:

$$|\delta\rangle := c |\alpha\rangle \quad \Rightarrow \quad \langle \delta |\beta\rangle = c^* \langle \alpha |\beta\rangle \tag{7.14}$$

d)

$$\langle \alpha | \alpha \rangle \ge 0 \quad \forall \, | \alpha \rangle \in \mathcal{H} \tag{7.15}$$

und

$$\langle \alpha | \alpha \rangle = 0 \iff | \alpha \rangle = \mathbf{0} \tag{7.16}$$

Bemerkungen

- Notation: $\langle \alpha | \beta \rangle$ (DIRAC), mathematisch aber $(|\alpha\rangle, |\beta\rangle)$
- Vorwegnahme von Tatsachen (\rightarrow später)
- Bequemlichkeit der Notation

abgeleitete Begriffe

a) $|\alpha\rangle, |\beta\rangle \in \mathcal{H}$ heißen orthogonal, falls $\langle \alpha | \beta \rangle = 0$

Bemerkung: orthogonale Vektoren sind linear unabhängig (nicht immer umgekehrt)

b) Norm (Länge) eines Vektors: $|\alpha\rangle \in \mathcal{H}$:

$$\|\alpha\| \equiv \left\| |\alpha\rangle \right\| := \sqrt{\langle \alpha |\alpha\rangle} \in \mathbb{R}$$
(7.17)

c) Abstand (Metrik):

$$d(|\alpha\rangle, |\beta\rangle) := \||\alpha\rangle - |\beta\rangle\|$$
(7.18)

d) Konvergenz: Folge $|\alpha_n\rangle$ (n = 1, 2, ...) konvergiert (stark) gegen $|\alpha\rangle$, falls

$$\lim_{n \to \infty} \left\| \left| \alpha_n \right\rangle - \left| \alpha \right\rangle \right\| = 0 \tag{7.19}$$

e) Cauchy-Folge: $\forall \epsilon > 0$ existient ein $N(\epsilon) \in \mathbb{N}$

$$\left\| |\alpha_n\rangle - |\alpha_m\rangle \right\| < \epsilon \quad \forall n, m > N(\epsilon)$$
(7.20)

es gilt immer: (stark) konvergierende Folgeist auch Cauchy-Folge (umgekehrt aber nicht immer)

2010-06-07

Eigenschaften (Beweis \rightarrow Übungsaufgabe)

- a) $|\langle \alpha | \beta \rangle| \leq ||\alpha|| ||\beta||$ (Schwarz'sche Ungleichung)
- b) $\left| \|\alpha\| \|\beta\| \right| \le \left\| |\alpha\rangle + |\beta\rangle \right\| \le \|\alpha\| + \|\beta\|$ (Dreieck sungleichung)

Bisher Hilbertraum \mathcal{H} ist ein komplexer Vektorraum mit Skalarprodukt. Für endlichdimensionalen \mathcal{H} reichen diese Axiome aus. Weshalb?

Entwicklung von $|\Psi\rangle\in\mathcal{H}$ in einer Basis

- a) Seien $|\varphi_1\rangle, |\varphi_2\rangle, ..., |\varphi_n\rangle \in \mathcal{H}$ linear unabhängige Vektoren. $n \in \mathbb{N}$ sei die Dimension von $\mathcal{H}, d. h. \{|\varphi_i\rangle\}_{i=1,...,n}$ ist Basis von \mathcal{H}
- b) Wähle beliebiges $|\Psi\rangle \in \mathcal{H}$. Die Menge $\{|\Psi\rangle, |\varphi_1\rangle, \dots, |\varphi_n\rangle\}$ ist linear abhängig. Dann gibt es $c_1, c_2, \dots, c_{n+1} \in \mathbb{C}$ (nicht alle = 0) mit

$$\sum_{i=1}^{n} c_i |\varphi_i\rangle + c_{n+1} |\Psi\rangle = \mathbf{0}$$
(7.21)

 $c_{n+1} \neq 0$, weil sonst wegen der linearen Unabhängigkeit der $|\varphi_i\rangle$ auch $c_i = 0$ gelten müsste, dann wären alle $c_i = 0 \Rightarrow$ Widerspruch zur Annahme.

Dividiere durch $c_{n+1} \neq 0$, definiere $d_i := -\frac{c_i}{c_{n+1}}$ (i = 1, ..., n)

$$|\Psi\rangle = \sum_{i=1}^{n} d_i \,|\varphi_i\rangle \tag{7.22}$$

So kann man jeden beliebigen Vektor $|\Psi\rangle \in \mathcal{H}$ in einer beliebigen Basis $\{|\varphi_i\rangle\}$ entwickeln

c) Weiter: kann $\{|\varphi_i\rangle\}$ orthogonalisieren, z. B. mit Gram-Schmidt-Verfahren; erhalte dann $|\alpha_1\rangle, \ldots, |\alpha_n\rangle$ linear unabhängig und orthogonal, d. h.

$$\langle \alpha_i | \alpha_j \rangle = 0 \qquad , \qquad i \neq j \tag{7.23}$$

d) $\|\alpha_i\| \neq 0$ (linear unabhängig) $\rightarrow \text{kann } |\alpha_i\rangle$ normieren, d. h.

$$\|\alpha_i\| \equiv \left\| |\alpha_i\rangle \right\| = \sqrt{\langle \alpha_i |\alpha_i\rangle} = 1 \tag{7.24}$$

Damit ist $\{|\alpha_i\rangle\}_{i=1,\dots,n}$ eine Basis mit

$$\langle \alpha_i | \alpha_j \rangle = \delta_{ij} \tag{7.25}$$

eine Orthonormalbasis oder vollständiges Orthonormalsystem

UNKORRIGIERT!

e) Entwicklung von $|\Psi\rangle \in \mathcal{H}$ durch $\{|\alpha_i\rangle\}_{i=1,\dots,n}$

$$|\Pi\rangle = \sum_{i=1}^{n} e_i |\alpha_i\rangle$$
(7.26)

Skalarprodukt mit $|\alpha\rangle_i$:

$$\langle \alpha_j | \Psi \rangle = \sum i = 1^n e_i \langle \alpha_j | \alpha_i \rangle = e_j$$
(7.27)

Berechnung der e_i :

Seite 94

$$e_i = \langle \alpha_i | \Psi \rangle \tag{7.28}$$

Alexander Kimmig, Uni Konstanz

- $\rightarrow\,$ gilt zunächst für endlich-dimensionale Vektorräume
- \rightarrow die meisten physikalischen Problem
e \rightarrow unendlich-dimensionale Hilberträume
- $\rightarrow\,$ unendlich-dimensionaler Fall: mathematisch komplexer
- \rightarrow für unendlich-dimensionale Hilberträume benötigen wir die Axiome 3 und 4
- 3. \mathcal{H} ist separabel:

Es gibt in \mathcal{H} (mindestens) eine *überall dichte* Folge $|\alpha_n\rangle$ (n = 1, 2, 3, ...)

Überall dicht heißt, dass die Folge jedem $|\Psi\rangle \in \mathcal{H}$ beliebig nahe kommt. Also

$$\forall \epsilon > 0 \; \exists m \in \mathbb{N} : \; \left\| \left| a_m \right\rangle - \left| \Psi \right\rangle \right\| < \epsilon$$

Diese Forderung erlaubt uns auch in unendlich-dimensionalen Hilberträumen eine Orthonormalbasis zu finden (ohne Beweis). Wegen 3 enthält eine Orthonormalbasis *abzählbar unendlich* viele Elemente: $\{ |\alpha_i \rangle \mid i \in \mathbb{N} \}$. Wähle $|\Psi \rangle \in \mathcal{H}$ beliebig und entwickle:

$$|\Psi\rangle = \sum_{i=1}^{\infty} e_i |\alpha_i\rangle \qquad , \qquad e_i = \langle \alpha_i |\Psi\rangle$$
 (7.29)

Unendliche Reiche \rightarrow Konvergenz?

$$\|\Psi\|^2 = \langle \Psi|\Psi\rangle = \sum_{i,j=1}^{\infty} e_i e_j \underbrace{\langle \alpha_j | \alpha_i \rangle}_{=\delta_{ij}} = \sum_{i=1}^{\infty} |e_i|^2 < \infty$$
(7.30)

d. h. die Reihe $\sum_{i=1}^{\infty} |e_i|^2$ muss konvergent sein, bzw. die Folge $\{e_i\}_{i=1,\dots}$ muss im ℓ_2 sein (\rightarrow Übung). Notwendige, aber nicht hinrechende Bedingung für Konvergenz von 7.29

Definition $|\beta_k\rangle := \sum_{i=1}^k e_i |\alpha_i\rangle$, damit: $|\Psi\rangle = \lim_{k\to\infty} |\beta_k\rangle \to \text{existient dieser Grenzwert?}$ Betrachte:

$$\left\| |\beta_k\rangle - |\beta_l\rangle \right\|^2 = \left\| \sum_{i=k+1}^l e_i |\alpha_i\rangle \right\|^2 = \sum_{i=k+1}^l |e_i|^2 =: |s_l - s_k|$$
(7.31)

weil $\sum_{i=1}^\infty |e_i|^2$ konvergent, bilden die s_k eine Cauchy-Folge, somit auch die $|\beta_k\rangle$

Theorem (aus der Analysis) In vollständigen Räumen \mathcal{H} gilt: Cauchy-Folgen sind konvergent \rightarrow deshalb die Forderung 4: \mathcal{H} ist vollständig.

Zusammenfassung Hilbertraumaxiome 1-4 garantieren, dass jeder Zustand $|\Psi\rangle \in \mathcal{H}$ in einer Orthonormalbasis $\{|\alpha_i\rangle\}_{i=1,\dots}$ entwickelt werden kann:

$$|\Psi\rangle = \sum_{i} c_i |\alpha_i\rangle$$
 (Entwiscklungssatz) (7.32)

Die Entwicklungskoeffizienten

$$c_i = \langle \alpha_i | \Psi \rangle \quad \Rightarrow \quad \Psi = \sum_i |\alpha_i\rangle \langle \alpha_i | \Psi \rangle$$
(7.33)

sind eindeutig! Somit ist $\{c_i\}_{i=1,\dots}$ eine äquivalente Darstellung von $|\Psi\rangle$

Skalarprodukt

$$|\Psi\rangle = \sum_{i} c_{i} |\alpha_{i}\rangle \quad , \quad |\varphi\rangle = \sum_{i} d_{i} |\alpha_{i}\rangle \quad \Rightarrow \quad \langle\varphi|\Psi\rangle = \sum_{i} d_{i}^{*}c_{i} \tag{7.34}$$

Beispiel Hilbertraum der Quadratintegrablem Funktionen $\mathcal{H} = L^2$, vgl. Kapitel 5: Zustand eines einzelnen Teilchens \leftrightarrow quadratintegrable Funktion $\Psi(\vec{r})$

Definition

$$L^{2} := \left\{ \Psi : \mathbb{R}^{3} \to \mathbb{C} \mid \int \mathrm{d}^{3}r \left| \Psi(\vec{r}) \right|^{2} < \infty \right\}$$

$$(7.35)$$

Behauptung L^2 ist ein Hilbertraum

1. mit $c \in \mathbb{C}$ definiere:

$$c\Psi \colon \vec{r} \mapsto c\Psi(\vec{r}) \tag{7.36}$$

und $\Psi_1, \Psi_2 \in L^2$:

$$\Psi_1 + \Psi_2 \colon \vec{r} \mapsto \Psi_1(\vec{r}) + \Psi_2(\vec{r}) \tag{7.37}$$

Null: $\Psi_0(\vec{r}) = 0$

2. Definiere:

$$\langle \varphi | \Psi \rangle := \int d^3 r \, \varphi^*(\vec{r}) \Psi(\vec{r}) \in \mathbb{C}$$
(7.38)

Norm: $\|\Psi\| = \sqrt{\langle \Psi | \Psi \rangle} = \sqrt{\int d^3 r |\Psi(\vec{r})|}$ bekannte Norm aus Kapitel 3 normierter Zustand: $\tilde{\Psi}(\vec{r}) := \frac{\Psi(\vec{r})}{\|\Psi\|}, \|\tilde{\Psi}\| = 1$

3. und 4. beweisen wir hier nicht; mathematische Tatsache: L^2 ist separabel und vollständig

2010-06-08

uneigentliche (Dirac-) Vektoren In manchenFällen reicht ein abzählbar-unendlichdimensionaler Hilbertraum nicht aus

Beispiele

1. Ortsmessung $\hat{\vec{r}}$ hat Eigenwerte in gan
z $\mathbb{R}^3,$ d.h. überabzählbare Menge und überabzählbar viele Eigenvektoren

 $\Psi_{\vec{r}}(\vec{r'}) \longleftrightarrow |\Psi_{\vec{r}}\rangle \quad , \quad \vec{r} \in \mathbb{R}^3$ (7.39)

 $\sim \Psi(\vec{r}-\vec{r}') \notin L^2,$ alle linear unabhängig

2. ebene Wellen (Eigenzustände von $\hat{\vec{p}}$)

$$\Psi(\vec{r}) = C e^{i\vec{k}\cdot\vec{r}} \quad , \quad \Psi \notin L^2 \tag{7.40}$$

 $\vec{k} \in \mathbb{R}^3,$ überabzählbar viele, linear unabhängige Vektoren.

Idee Beginne mit diskreter (abzählbarer) Basis, z. B.

- 1. Wellenpakete mit $\Delta r \to 0$
- 2. endliche Box mit kantenlänge $L, k_i = \frac{2\pi}{L}n_i$: diskrete Basis (abzählbar), abzählbare Basis im Hilbertraum (im strikten Sinn), dann bilde den Kontinuumslimes $(L \to \infty)$

Entwicklungssatz:

$$|\Psi\rangle = \sum_{p} \underbrace{\langle \alpha_{p} | \Psi \rangle}_{= a_{\mu}^{\mu} iskrete \text{ ONB}} \langle \alpha_{p} \rangle$$
(7.41)

$$\stackrel{\Delta p \to 0}{=} \int_{p} \mathrm{d}p \, \langle \tilde{\alpha}_{p} | \Psi \rangle \underbrace{| \tilde{\alpha}_{p} \rangle}_{\text{kontinuierliche ONB}} \tag{7.43}$$

Skalarprodukt mit $|\tilde{\alpha}_{p'}\rangle$:

$$\left\langle \tilde{\alpha}_{p'} | \Psi \right\rangle = \int_{p} \mathrm{d}p \,\left\langle \tilde{\alpha}_{p} | \Psi \right\rangle \left\langle \tilde{\alpha}_{p'} | \tilde{\alpha}_{p} \right\rangle \tag{7.44}$$

nur möglich, falls $\left\langle \tilde{\alpha}_{p'} | \tilde{\alpha}_p \right\rangle = \delta(p - p')$ gilt $\Rightarrow , |\tilde{\alpha}_p \rangle$ ist (überabzählbare) Orthonormalbasis"

 \rightarrow uneigentliche (Dirac-) Vektoren sind auf δ -Funktionen normiert!

7.3. Dualraum, Dirac-Notation

Lineare Algebra: Dualraum \mathcal{H}^* zu \mathcal{H} ist die Menge aller linearen Abbildungen $\mathcal{H} \to \mathbb{C}$ (lineare Functionale) $f \colon |\Psi\rangle \mapsto f(|\Psi\rangle)$

• \mathcal{H}^* ist auch ein komplexer Vektorraum

$$cf: |\Psi\rangle \mapsto cf(|\Psi\rangle) f_1 + f_2: |\Psi\rangle \mapsto f_1(|\Psi\rangle) + f_2(|\Psi\rangle)$$

• verwende Skalarprodukt um Abbildungen $\mathcal{H} \to \mathbb{C}$ (lineare Funktionale) zu konstruieren. Wähle $|\varphi\rangle \in \mathcal{H}$ und definiere

$$f_{\varphi} \colon \mathcal{H} \to \mathbb{C} \qquad , \qquad |\Psi\rangle \mapsto \langle \varphi |\Psi \rangle$$

d. h. jedem $|\varphi\rangle \in \mathcal{H}$ ist ein $f_{\varphi} \in \mathcal{H}^*$ zugeordnet

Behauptung zu jedem $h \in \mathcal{H}^*$ existiert (genau) ein $|\varphi\rangle \in \mathcal{H}$ mit $h = f_{\varphi}$ (Riez'scher Darstellungssatz)

Beweis wähle $h \in \mathcal{H}^*$ beliebig, $h: \mathcal{H} \to \mathbb{C}$, such $|\varphi\rangle \in \mathcal{H}$ mit

$$hig(|\Psi
angleig) = ig\langle arphi |\Psi
angle \quad orall \, |\Psi
angle \in \mathcal{H}$$

Orthonormalbasis $\{ |\alpha_i \rangle \}$: $|\varphi \rangle = \sum_i c_i |\alpha_i \rangle$ mit $c_i = \langle \alpha_i | \varphi \rangle$, wähle $|\Psi \rangle = |\alpha_i \rangle$:

$$\begin{split} h\big(|\alpha_i\rangle\big) &= \langle \varphi |\alpha_i\rangle = \langle \alpha_i |\varphi\rangle^* = c_i \\ \Rightarrow |\varphi\rangle &= \sum_i h\big(|\alpha_i\rangle\big)^* |\alpha_i\rangle \end{split}$$

Überprüfung: $\langle \varphi | \Psi \rangle = \underbrace{\cdots}_{h \text{ linear}} = h (|\Psi\rangle)$

Notation (DIRAC)

$$f_{\varphi} =: \langle \varphi | \tag{7.45}$$

D.h. das Spalarprodukt ist "Produkt" eines Vektors $|\Psi\rangle \in \mathcal{H}$ (ket-Vektor) mit einem Vektor $\langle \varphi | \in \mathcal{H}$ (bra-Vektor)

2010-06-09

7.4. Lineare Operatoren

 $Observablen \longleftrightarrow lineare Operatoren auf \mathcal{H}$

Operator A: Abbildung, die jedem $|\alpha\rangle \in D_A \subseteq \mathcal{H}$ einen Wert $A |\alpha\rangle \in R_A \subseteq \mathcal{H}$ zuordnet.

Linearer Operator: • $A(|\Psi_1\rangle + |\Psi_2\rangle) = A |\Psi_1\rangle + A |\Psi_2\rangle$ • $A(c|\Psi\rangle) = c A |\Psi\rangle$

Gleichheit von zwei Operatoren:

$$A = B : \iff D_A = D_B =: D \quad \text{und} \quad A |\alpha\rangle = B |\alpha\rangle \quad , \quad \forall |\alpha\rangle \in D$$

Summe und Produkt von Operatoren: • $(A_1+A_2) |\alpha\rangle = A_1 |\alpha\rangle + A_2 |\alpha\rangle$, $|\alpha\rangle \in D_{A_1}D_{A_2} =$

 $D_{A_1+A_2}$

- $(cA) |\alpha\rangle = cA |\alpha\rangle$, $|\alpha\rangle \in D_A = D_{cA}$, $c \in \mathbb{C}$
- $(A_1A_2) |\alpha\rangle = A_1(A_2 |\alpha\rangle)$, $|\alpha\rangle \in D_{A_2}$, $A_2 |\alpha\rangle \in D_{A_2}$

Nulloperator:

$$0 |\alpha\rangle = \mathbf{0} \qquad \forall |\alpha\rangle \in \mathcal{H}$$

Identitätsoperator:

$$1 |\alpha\rangle \equiv 1 |\alpha\rangle := |\alpha\rangle \qquad \forall |\alpha\rangle \in \mathcal{H}$$

$$|\alpha\rangle \mapsto \langle\beta|A|\alpha\rangle$$
 linear

 \Rightarrow diese Abbildung ist ein lineares Funktional, d. h. es existiert ein

$$\left|\tilde{\beta}\right\rangle \quad \text{mit} \quad \left\langle\beta\right|A\left|\alpha\right\rangle = \left\langle\tilde{\beta}\right|\alpha\right\rangle$$
(7.46)

Wie hängt $\left|\tilde{\beta}\right\rangle$ von $\left|\beta\right\rangle$ ab?

- lineare Abhängigkeit
- Abhängigkeit von A

Definition

$$\left|\tilde{\beta}\right\rangle =: A^{\dagger} \left|\beta\right\rangle \tag{7.47}$$

 A^{\dagger} heißt zu A adjungierter Operator

Bemerkungen

- 1. falls $D_A \neq \mathcal{H}$ muss $\left| \tilde{\beta} \right\rangle$ nicht für jede Wahl von $\left| \beta \right\rangle$ existieren, d. h. der Definitionsbereich von A^{\dagger} enthält dann alle $\left| \beta \right\rangle$, für die $\left| \tilde{\beta} \right\rangle$ mit 7.46 existiert.
- 2. $D_A = \mathcal{H} \Rightarrow D_{A^{\dagger}} = \mathcal{H}$ (Riesz'scher Darstellungssatz)
- 3. $|\alpha\rangle \in D_A, |\beta\rangle \in D_{A^{\dagger}},$ dann gilt mit 7.46

$$\langle \beta | A | \alpha \rangle? \left\langle \tilde{\beta} | \alpha \right\rangle = \left\langle \alpha | \tilde{\beta} \right\rangle^* = \langle \alpha | A^{\dagger} | \beta \rangle^*$$
(7.48)

4. $|\tilde{\alpha}\rangle = A |\alpha\rangle$

$$\langle \tilde{\alpha} | \Psi \rangle = \langle \Psi | \tilde{\alpha} \rangle^* = \langle \Psi | A | \alpha \rangle^* = \langle \alpha | A^{\dagger} | \Psi \rangle \qquad \forall | \Psi \rangle \in \mathcal{H}$$

$$\Rightarrow \langle \tilde{\alpha} | = \langle \alpha | A^{\dagger}, \text{ d. h. } A^{\dagger} \text{ wirkt in } \mathcal{H}^* \text{ wie } A \text{ in } \mathcal{H}$$
(7.49)

- 5. Rechenregeln (ohne Angabe der Definitionsbereiche)
 - $(A^{\dagger})^{\dagger} = A$
 - $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$
 - $(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$
 - $(cA)^{\dagger} = c^*A^{\dagger}$, $c \in \mathbb{C}$
- 6. Im L^2 : adjungierter Operator zu A:

$$\begin{aligned} \langle \Psi_B | A | \Psi_A \rangle &= \int \Psi_B^*(\vec{r}) A \Psi_A(\vec{r}) \, \mathrm{d}^3 r \\ &= \int (A^{\dagger} \Psi_B(\vec{r}))^* \Psi_A(\vec{r}) \, \mathrm{d}^3 r \\ &= \langle \Psi_A | A^{\dagger} | \Psi_B \rangle \end{aligned}$$

UNKORRIGIERT!

Definition: hermitescher Operator A

- 1. $D_A = D_{A^{\dagger}} = \mathcal{H}$
- 2. $A^{\dagger} = A$

physikalische Bedeutung: Observablen

Nachstrag vom 2010-06-11

In der Physik wird hermitesch so definiert, z. T. ohne 1., mathematisch ist dies aber etwas ungenau. Genauer: brauche Unterscheidung zwischen beschränkten und unbeschränkten Operatoren.

Definition Der Operator A heißt beschränkt, falls es ein $A \in \mathbb{R}$ gibt mit $||A|\alpha\rangle|| \le a||\alpha||$ $\forall |\alpha\rangle \in$ \mathcal{H}

Definition Sei A beschränkt und $D_A = D_{A^{\dagger}}$ und $A = A^{\dagger}$, dann heißt A selbst-adjungiert oder hermitesch.

Insbesondere: Alle linearen Operatoren auf endlich-dimensionalen hilberträumen sind beschränkt. "Leider" sind in der Quantenmechanik die Hilberträume oft unendlich-dimensional und die relevanten Operatoren, z. B. $\hat{\vec{p}} = -i\hbar\vec{\nabla}$, sind unbeschränkt!

Definition Der Operator A heißt dicht-definiertin \mathcal{H} , fakks $\overline{D_A} = \mathcal{H}$

Definition Ein dicht-definierter Operator A in \mathcal{H} , für den $\forall |\alpha\rangle, |\beta\rangle \in D_A$ mit $A |\alpha\rangle = |\tilde{\alpha}\rangle, A |\beta\rangle =$
$$\begin{split} \left| \tilde{\beta} \right\rangle \text{ gilt, dass } \langle \tilde{\alpha} | \beta \rangle &= \left\langle \alpha | \tilde{\beta} \right\rangle \text{, heißt symmetrisch.} \\ A \text{ symmetrisch} &\to A \subset A^{\dagger} \text{, d. h. } D_A \subset A_{A^{\dagger}} \text{ und } A = A^{\dagger} \big|_{D_A} \end{split}$$

Definition Ein dicht-definierter Operator A in \mathcal{H} heißt selbst-adjungiert, falls $A^{\dagger} = A$

- A selbstadjungiert \rightarrow symmetrisch).
- die Umkehrung gilt nicht immer!
- Physik: Unterscheidung zwischen symmetrisch und selbst-adjungiert wird oft nicht gemacht. Für beide Fälle wird der Begriff hermitesch verwendet.

2010-06-09

Beispiele von Operatoren

1. Dyadisches Produkt, gegeben $|\alpha\rangle, |\beta\rangle \in \mathcal{H}$

$$D_{\alpha\beta} = \left| \alpha \right\rangle \left\langle \beta \right|$$

ist definiert als

$$D_{\alpha\beta} \left| \Psi \right\rangle = \left| \alpha \right\rangle \underbrace{\left\langle \beta \right| \Psi \right\rangle}_{\in \mathbb{C}} = \left\langle \beta \right| \Psi \right\rangle \left| \alpha \right\rangle$$

Gegeben: Orthonormalbasis $\{|\alpha_i\rangle\}$. Behauptung: jeder beliebige, lineare Operator A kann in dyadischen Produkten der $|\alpha_i\rangle$ entwisckelt werden:

$$A = \sum_{i,j} a_{ij} \left| \alpha_i \right\rangle \left\langle \alpha_j \right|$$

Beweis:

$$\begin{split} |\Psi\rangle &= \sum_{i} q_{i} |\alpha_{i}\rangle \\ A |\Psi\rangle &= \sum_{i} q_{i} A |\alpha_{i}\rangle \\ &= \sum_{i} r_{i} |\alpha_{i}\rangle \end{split}$$

Skalarprodukt mit $|\alpha_j\rangle$:

$$\langle \alpha_j | A | \Psi \rangle = \sum_i q_i \langle \alpha_j | A | \alpha \rangle_i = \sum_i r_i \underbrace{\langle \alpha_j | \alpha_i \rangle}_{= \delta_{ij}} = r_j$$

einsetzen:

$$A |\Psi\rangle = \sum_{j} r_{j} |\alpha_{j}\rangle = \sum_{i,j} q_{i} \langle \alpha_{j} | A |\alpha_{i}\rangle |\alpha_{j}\rangle = \sum_{i,j} |\alpha_{j}\rangle \langle \alpha_{j} | A |\alpha_{i}\rangle \langle \alpha_{i} |\Psi\rangle$$
$$\Rightarrow \boxed{A = \sum_{i,j} |\alpha_{j}\rangle \langle \alpha_{j} | A |\alpha_{i}\rangle \langle \alpha_{i} | =} \sum_{i,j} \langle \alpha_{j} | A |\alpha_{i}\rangle |\alpha_{j}\rangle \langle \alpha_{i} |}$$
(7.50)

Spezialfall: $A = \mathbb{1}$: $\langle \alpha_j | A | \alpha_j \rangle = \langle \alpha_j | \mathbb{1} | \alpha_i \rangle = \langle \alpha_j | \alpha_i \rangle = \delta_{ij}$

$$\mathscr{V} = \sum_{i} |\alpha_{i}\rangle \langle \alpha_{i}| \tag{7.51}$$

• Vollständigkeit der Basis $\{ |\alpha_i \rangle \}$:

$$\left|\Psi\right\rangle = \mathbb{1}\left|\Psi\right\rangle = \sum_{i} \left|\alpha_{i}\right\rangle \left\langle\alpha_{i}|\Psi\right\rangle$$

• praktisch: "Auflösung der 1", Ausdruck in Operatorform z. B. $AB \to {\rm Matrixelemente},$ Zahlen

$$AB = \mathbb{1}A\mathbb{1}B\mathbb{1} \qquad \qquad = \sum_{i,j,k} |\alpha_i\rangle \underbrace{\langle \alpha_i | A | \alpha_j \rangle \langle \alpha_j | B | \alpha_k \rangle}_{\text{Matrixmultiplikation}} \langle \alpha_k |$$

2. Projektoren, Projektionsoperatoren gegeben: $|\alpha\rangle \in \mathcal{H}$ mit $||\alpha|| = 1$

$$P_{|\alpha\rangle} := |\alpha\rangle \langle \alpha|$$

$$P_{|\alpha\rangle}^{2} = |\alpha\rangle \underbrace{\langle \alpha | \alpha\rangle}_{\|\alpha\|^{2} = 1} \langle \alpha| = |\alpha\rangle \langle \alpha| = P_{|\alpha\rangle}$$

 \rightarrow Projektions operator

Stand: 13. Juli 2010, 20:05

UNKORRIGIERT!
- $\langle \alpha | \beta \rangle = 0 \Rightarrow P_{|\alpha\rangle} P_{|\beta\rangle} = 0$
- $P_{|\alpha\rangle}$ hermitesch, d. h. $P_{|\alpha\rangle}^{\dagger} = P_{|\alpha\rangle}$
- $|\alpha_1\rangle, |\alpha_2\rangle, \dots, |\alpha_k\rangle, \langle \alpha_i | \alpha_j \rangle = \delta_{ij}, k \leq \text{Dimension von } \mathcal{H}$
- $P = \sum_{i} |\alpha_i\rangle \langle \alpha_i |$ auch Projektionsoperator

3. inverser Operator von A:

falls $D_A = R_A$ und BA = AB = 1, dann ist $B =: A^{-1}$ der zu A inverse Operator (existiert nicht immer!)

2010-06-11

4. unitäre Operatoren

Operatoren, die das Skalarprodukt (und damit die Norm) invarian lassen:

$$\begin{split} |\varphi\rangle\,, |\Psi\rangle \in \mathcal{H} \quad , \quad |\tilde{\varphi}\rangle = U\,|\varphi\rangle \quad , \quad \left|\tilde{\Psi}\right\rangle = U\,|\Psi\rangle \\ \left\langle \tilde{\varphi}|\tilde{\Psi}\right\rangle = \left\langle \varphi|\,U^{\dagger}U\,|\Psi\rangle \stackrel{!}{=} \left\langle \varphi|\Psi\right\rangle \qquad \forall \left|\varphi\right\rangle, \left|\Psi\right\rangle \in \mathcal{H} \end{split}$$

Die Forderung ist erfüllt, falls $U^{\dagger}U = \mathbb{1}$

$$\Rightarrow U^{\dagger} \left| \tilde{\varphi} \right\rangle = U^{\dagger} U \left| \varphi \right\rangle = \mathbb{1} \left| \varphi \right\rangle = \left| \varphi \right\rangle \quad \text{und} \quad U^{\dagger} \left| \tilde{\Psi} \right\rangle = \left| \Psi \right\rangle$$

und

$$\left\langle \varphi | \Psi \right\rangle = \left\langle \tilde{\varphi} | U U^{\dagger} \left| \tilde{\Psi} \right\rangle \stackrel{!}{=} \left\langle \tilde{\varphi} | \tilde{\Psi} \right\rangle$$

erfüllt, falls $UU^{\dagger} = 1$

Definition U heißt *unitär*, falls gilt

$$U^{\dagger}U = UU^{\dagger} = \mathscr{V} \iff U^{\dagger} = U^{-1} \tag{7.52}$$

Erwartungswerte

$$\langle O \rangle = \langle \Psi | \, O \, | \Psi \rangle = \langle \Psi | \, U \, O \, U^{\dagger} \, | \Psi \rangle$$

 \rightarrow Erwartungswerte sind unter unitären Transformationen ebenfalls erhalten, falls Operatoren mittransformiert werden:

$$\tilde{O} = UOU^{\dagger} \tag{7.53}$$

Anwendung in der Quantenmechanik: Basiswechsel gegeben: zwei verschiedene Orthonormalbasen: $\{|\alpha_i\rangle\}_i$ und $\{|\beta_i\rangle\}_i$, $|\Psi\rangle \in \mathcal{H}$

$$|\Psi\rangle = \sum_{i} a_{i} |\alpha_{i}\rangle = \sum_{i} b_{i} |\beta_{i}\rangle$$

Normierung:

$$|\Psi||^2 = \langle \Psi|\Psi\rangle = 1 \quad \Rightarrow \quad \sum_i |a_i|^2 = \sum_i |b_i|^2 = 1$$

- sowohl $\{a_i\}$ als auch $\{b_i\}$ enthalten die gesamte Information über $|\Psi\rangle$
- wie hängen $\{a_i\}$ und $\{b_i\}$ zusammen?

$$b_{i} = \langle \beta_{i} | \Psi \rangle = \sum_{j} a_{j} \underbrace{\langle \beta_{i} | \alpha_{j} \rangle}_{=: U_{ij}}$$
$$a_{i} = \langle \alpha_{i} | \Psi \rangle = \sum_{j} b_{j} \langle \alpha_{i} | \alpha_{j} \rangle = \sum_{j} b_{j} \underbrace{\langle \beta_{j} | \alpha_{i} \rangle}_{=: U_{ji}} = \sum_{j} b_{j} U_{ji}^{*}$$

definiere Matrix $U_{ij} = \langle \beta_i | \alpha_j \rangle, \ (U^{\dagger})_{ij}?U_{ji}^*,$ definiere Vektoren $\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix}, \ \underline{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}$

$$\Rightarrow \underline{b} = U\underline{a} \quad \text{und} \quad \underline{a} = U^{\dagger}\underline{b}$$

$$U^{\dagger}\underline{b} = U^{\dagger}U\underline{a} = \underline{a} \quad \Rightarrow \quad U^{\dagger}U = \mathbb{1}$$

$$(7.54)$$

und analog dazu: $UU^{\dagger} = 1$

 $\Rightarrow U$ ist eine unitäre Matrix

Matrixdarstellung von Operatoren Die Dimension von \mathcal{H} sein endlich (= n)

$$\begin{split} |\varphi\rangle &= A \left|\Psi\right\rangle = \sum_{j=1}^{n} A \left|\alpha_{j}\right\rangle c_{j} = \sum_{j=1}^{n} A \left|\alpha_{j}\right\rangle \left\langle\alpha_{j}|\Psi\right\rangle \\ \underbrace{\left\langle\alpha_{i}|\varphi\right\rangle}_{=:d_{i}} &= \left\langle\alpha_{i}\right| A \left|\Psi\right\rangle = \sum_{j=1}^{n} \underbrace{\left\langle\alpha_{i}\right| A \left|\alpha_{j}\right\rangle}_{A_{ij}} \underbrace{\left\langle\alpha_{j}\right|\Psi\right\rangle}_{=c_{j}} \end{split}$$

 d_i : Entwicklungskoeffizienten von $|\varphi\rangle$, *n*-Vektor

$$(A)_{ij}$$
: $n \times n$ -Matrix

 c_j : Entwicklungskoeffizienten von $|\Psi\rangle$, *n*-Vektor

1. Operator $A \longleftrightarrow n \times n$ -Matrix

- 2. A_{ij} hängen von der Wahl der Basis ab
- 3. $(AB)_{ij} ? \sum_{k=1}^{n} A_{ik} B_{kj} \to \text{Matrixmultiplikation}$

4.
$$(A^{\dagger})_{ij} = A_{ji}^{*}, \langle \alpha_i | A^{\dagger} | \alpha_j \rangle = \langle \alpha_j | A | \alpha_i \rangle^{*} = A_{ji}^{*}$$

5. $A = A^{\dagger} \implies A_{ij} = A_{ji}^{*}$ (insbesondere $A_{ii} \in \mathbb{R}$)

Basiswechsel für Operatoren

$$A_{ij} = \langle \alpha_i | O | \alpha_j \rangle$$

$$B_{ij} = \langle \beta_i | O | \beta_j \rangle$$

$$|\beta_j \rangle = \sum_{k} |\alpha_k \rangle \langle \alpha_k | | \beta_j \rangle$$

$$B_{ij} = \sum_{k,l} \underbrace{\langle \beta_i | \alpha_k \rangle}_{= U_{ik}} \underbrace{\langle \alpha_k | O | \alpha_l \rangle}_{= A_{kl}} = \underbrace{\langle \alpha_l | \beta_j \rangle}_{= U_{jl}^* = (U^{\dagger})_{lj}}$$

Matrixmultiplikation

 $U = UAU^{\dagger} \tag{7.55}$

 \rightarrow unitäre Matrizen (Operatoren) beschreiben Basiswechsel (zwischen zwei Orthonormalbasen)

7.5. Das Eigenwertproblem

Typische Problemstellung in der Quantenmechanik: gegebener Operator A, finde $|\Psi\rangle \neq 0$ und Skalar λ mit

$$A \left| \Psi \right\rangle = \lambda \left| \Psi \right\rangle \tag{7.56}$$

Beispiele

- 1. Zustände $|\Psi\rangle$ mit scharfem Wert λ einer Observablen A
- 2. A = H: zeitunabhängige Schrödingergleichung, $\lambda = E$: Energie, $|\Psi\rangle$: stationäre Zustände

Begriffe

- 1. λ heißt Eigenwert von A
- 2. $|\Psi\rangle$ heißt Eigenvektor (Eigenzustand) von A zu λ
- 3. Falls es zum selben eigenwert λ mehrere (linear unabhängige) Eigenvektoren gibt, so nennt man λ entartet
- 4. $|\Psi_1\rangle, |\Psi_2\rangle$ Eigenvektoren zum selben Eigenwert λ , dann auch $a_1 |\Psi_1\rangle + a_2 |\Psi_2\rangle$: Die Menge aller Eigenvektoren zu λ : $E_{\lambda} \subseteq \mathcal{H}$ ist ein Unterraum von \mathcal{H} , genannt *Eigenraum* zu λ . dim $(E_{\lambda}) =$ Anzahl (linear unabhängiger) Eigenvektoren zu $\lambda =$ Entartungsgrad. Orthonormalbasis des Eigenraumes \rightarrow normierte Eigenvektoren
- 5. Menge aller Eigenwerte $S_A \subseteq \mathbb{C}$ von A bezeichnet man als *Spektrum* von A. Mögliche Arten eines Spektrums: diskret, kontinuierlich oder gemischt

Beispiel

A = H : $H\Psi = E\Psi$ (zeitunabhängige Schrödingergleichung)

Spektrum von H: erlaubte Energien der stationären Zustände

unendlich tiefer Potentialtopf: diskret $(E_n = \frac{c}{n^2}, S_H = \{\frac{c}{n^2}; n = 1, 2, \dots\})$

freie Teilchen: ebene Wellen: kontinuierlich $(E_k = \frac{\hbar^2 k^2}{2m}, S_H = \left\{\frac{\hbar^2 k^2}{2m}; k \in \mathbb{R}\right\} = \mathbb{R}_+)$ endlich hoher Potentialtopf: gemischt

2010-06-14

Existenz von Lösungen von 7.56 Spektralsatz der linearen Algebra: Falls A normal ist, d. h. $[A, A^{\dagger}] = 0$, danngibt es eine Orthonormalbasis $\{|\alpha_i\rangle\}$ von Eigenzuständen mit

$$A \left| \alpha_i \right\rangle = \lambda_i \left| \alpha_i \right\rangle$$

und

$$\langle \alpha_i | \alpha_j \rangle = \delta_{ij}$$

Spezialfälle

- Hermitesche Operatoren $A = A^{\dagger} \Rightarrow [A, A^{\dagger}] = 0$ (meistens in der Quantenmechanik)
- Unitäre Operatoren $UU^{\dagger} = U^{\dagger}U = 1$

Man sagt: A ist diagonalisierbar, denn

$$A_{ij} = \langle \alpha_i | A | \alpha_j \rangle = \lambda_j \langle \alpha_i | \alpha_j \rangle = \lambda_i \delta_{ij}$$

d. h. (A_{ij}) isteine Diagonalmatrix

$$A_{ij} = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \ddots \end{pmatrix}$$

Eigentschaften von hermiteschen Operatoren

1. Erwartungswerte sind reell: $|\Psi\rangle \in \mathcal{H}$: $\langle A \rangle := \langle \Psi | A | \Psi \rangle$ Beweis:

$$\langle A^{\dagger} \rangle = \langle \Psi | A^{\dagger} | \Psi \rangle = \langle \Psi | A | \Psi \rangle^{*} = \langle A \rangle^{*}$$

$$A^{\dagger} = A \Rightarrow \langle A \rangle = \langle A \rangle^{*} \Rightarrow \langle A \rangle \in \mathbb{R}$$

2. Eigenwerte sind reell, $S_A \subseteq \mathbb{R}$

$$\lambda \in S_A \ : \ A \left| \Psi \right\rangle = \lambda \left| \Psi \right\rangle \ \Rightarrow \ \left\langle A \right\rangle = \left\langle \Psi \right| A \left| \Psi \right\rangle = \lambda \underbrace{\left\langle \Psi \right| \Psi \right\rangle}_{= 1} = \lambda$$

3. Eigenzustände sind orthogonal (folgt aus Spektralsatz)

a) $|\Psi_1\rangle, |\Psi_2\rangle$ Eigenzustände zu verschiedenen Eigenwerten $\lambda_1 \neq \lambda_2$

$$A |\Psi_{1}\rangle = \lambda_{1} |\Psi_{1}\rangle$$

$$A |\Psi_{2}\rangle = \lambda_{2} |\Psi_{2}\rangle$$

$$\Rightarrow \langle \Psi_{2} | A | \Psi_{1}\rangle = \lambda_{1} |\Psi_{2}\rangle \Psi_{1}$$

$$\Rightarrow \langle \Psi_{1} | \underbrace{A^{\dagger}}_{=A} | \Psi_{2}\rangle^{*} = \langle \Psi_{1} | A | \Psi_{2}\rangle = \lambda_{2}^{*} \langle \Psi_{1} | \Psi_{2}\rangle^{*} = \lambda_{2} \langle \Psi_{2} | \Psi_{1}\rangle$$

$$\Rightarrow \langle \Psi_{2} | \Psi_{1}\rangle \underbrace{(\lambda_{1} - \lambda_{2})}_{\neq 0} = 0 \Rightarrow \boxed{\langle \Psi_{2} | \Psi_{1}\rangle = 0}$$

- b) $|\Psi_1\rangle, |\Psi_2\rangle$ Eigenzustände zum selben Eigenwert $\lambda \to$ wähle Orthonormalbasis im Eigenraum E_{λ}
- 4. Eigenzustände bilden eine Orthonormalbasis (s. oben) \Rightarrow beliebiger $|\Psi\rangle \in \mathcal{H}$ kann in dieser Orthonormalbasis entwickelt werden:

$$|\Psi\rangle = \sum_{i} c_{i} |\alpha_{i}\rangle = \sum_{i} |\alpha_{i}\rangle \langle \alpha_{i} |\Psi\rangle$$

Wirkung von A auf $|\Psi\rangle$

$$A |\Psi\rangle = \sum_{i} \underbrace{A |\alpha_{i}\rangle}_{=\lambda_{i} |\alpha_{i}\rangle} = \sum_{i} \lambda_{i} |\alpha_{i}\rangle \langle \alpha_{i} |\Psi\rangle \qquad \forall |\Psi\rangle \in \mathcal{H}$$

5. Spektraldarstellung

$$A = \sum_{i} \lambda_{i} \left| \alpha_{i} \right\rangle \left\langle \alpha_{i} \right| \tag{7.57}$$

6. $A = \mathbb{1} \Rightarrow$ Vollständigkeits
relationfür Orthonormalbasis $\{ |\alpha_i \rangle \}$

$$\mathbb{1} = \sum_{i} \left| \alpha_{i} \right\rangle \left\langle \alpha_{i} \right|$$

- 7. Funktionen von Operatoren
 - a) Potenzen:

$$A^n = AA^{n-1} = A^{n-1}A$$
 , $A^0 := 1$

b) Polynome

$$p_n(A) := c_0 \mathbb{1} + c_1 A + c_2 A^2 + \dots + c_n A^n$$

c) Potenzreihen, z. B. Exponentialfunktion:

$$e^A = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$$

d) analytische Funktion f(A), Taylorreihe:

$$f(A) := \sum_{n=0}^{\infty} c_n A^n$$

e) allgemein: Spektralsatz:

$$A^{n} = \sum_{i} \lambda_{i}^{n} |\alpha_{i}\rangle \langle \alpha_{i}|$$
$$f(A) := \sum_{i} f(\lambda_{i}) |\alpha_{i}\rangle \langle \alpha_{i}|$$

8. Ableitung nach einem Operator: gegeben: f(A)

$$\frac{\mathrm{d}}{\mathrm{d}A}f(A) := \lim_{\epsilon \to 0} \frac{f(A + \epsilon \mathbb{1}) - f(A)}{\epsilon}$$

mit denselben Rechenregeln wie auch für Zahlen

Seite 106

7.6. Messprozess in der Quantenmechanik

Beobachter \leftarrow Messapparatur \Rightarrow System

klassisch: kann (im Prinzip) Einfluss der Messung auf das System beliebig klein machen

quantenmechanisch: minimale Störung des Systems durch Messung (\rightarrow Heisenberg'sche Unschärferelation)

physikalische Observable \longleftrightarrow hermitescher Operator $O=O^{\dagger}$

Waspassiert bei einer Messung? Eigenwertproblem für $O: O |\lambda\rangle = \lambda |\lambda\rangle$

Notation: $|\lambda\rangle$ ist Eigenzustand von O mit Eigenwert λ . Bei Entartung $|\lambda_1\rangle, |\lambda_2\rangle, \ldots$

- $\{|\lambda\rangle\}$ bilden eine Orthonormalbasis: $\langle\lambda|\lambda'\rangle = \delta_{\lambda\lambda'}$
- $O^{\dagger} = O \Rightarrow \lambda \in \mathbb{R}$

Messung in der Quantenmechanik: physikalische Tatsachen (ohne Entartung)

- 1. mögliche Messergebnisse: Eigenwerte λ
- 2. Wahrscheinlichkeit, dass λ gemessen wird:

$$P(\lambda) = \left| \langle \lambda | \Psi \rangle \right|^2 \tag{7.58}$$

- 3. Zustand des Systems nach der Messung mit Ergebnis λ : Eigenzustand $|\lambda\rangle$ (Kollaps der Wellenfunktion)
 - \rightarrow durch Messung von Olassen sich dessen Eigenzustände präparieren
 - \rightarrow Bei nochmaliger Messung: gleiches Ergebnis λ mit Sicherheit $P(\lambda) = 1$

Beispiel Ortsoperator $\hat{\vec{r}}$ (drei verträgliche Operatoren \hat{x} , \hat{y} , \hat{z}) mit Eigenwerten $\vec{r} \in \mathbb{R}^3$, Eigenzustände $|\vec{r}\rangle$ (uneigenliche Dirac-Vektoren)

Wahrscheinlichkeit \vec{r} zu messen:

$$P(\vec{r}) = \left| \langle \vec{r} | \Psi \rangle \right|^2 \stackrel{\text{Kap. 3}}{=} \left| \Psi(\vec{r}) \right|^2 \quad \Rightarrow \quad \Psi(\vec{r}) = \langle \vec{r} | \Psi \rangle$$
(7.59)

entwickle $\{|\vec{r}\rangle\}$ in Orthonormalbasis:

$$|\Psi\rangle = \int d^3r |\vec{r}\rangle \langle \vec{r}|\Psi\rangle = \int d^3r \Psi(\vec{r}) |\vec{r}\rangle$$
(7.60)

Darstellung von Messungen durch Projektionsoperatoren Spektraldarstellung:

$$O = \sum_{\lambda} \lambda \underbrace{|\lambda\rangle \langle \lambda|}_{=: P_{\lambda}}$$

 $P_{\lambda} = |\lambda\rangle \langle \lambda|$: Projektor auf Eigenvektor $|\lambda\rangle$, mit Entartung:

$$A = \sum_{\lambda} \lambda \underbrace{\sum_{i} |\lambda_{i}\rangle \langle \lambda_{i}|}_{=: P_{\lambda}}$$

Stand: 13. Juli 2010, 20:05

$$P_{\lambda} = \sum_{i=1}^{d_{\lambda}} |\lambda_i\rangle \langle\lambda_i| \qquad \text{Projector auf Eigenraum } E_{\lambda} \text{ zum Eigenwert } \lambda \tag{7.61}$$

Messprozess in der Quantenmechanik (allgemein)

- 1. mögliche Messergebnisse: λ
- 2. Wahrscheinlichkeit, dass λ auftritt:

$$P(\lambda) = \sum_{i=1}^{d_{\lambda}} |\langle \lambda_i | \Psi \rangle|^2 = \langle \Psi | P_{\lambda} | \Psi \rangle$$

Summe:

$$\sum_{\lambda} P(\lambda) = \sum_{\lambda,i} \left| \langle \lambda_i | \Psi \rangle \right|^2 = \left\langle \Psi \right| \underbrace{\sum_{\lambda,i} |\lambda_i\rangle \langle \lambda_i|}_{= \mathbb{1}} \left| \Psi \right\rangle = \langle \Psi | \Psi \rangle = 1$$

3. Zustand nach Messung von λ :

$$\left|\Psi'\right\rangle = \frac{P_{\lambda}\left|\Psi\right\rangle}{\left\|P_{\lambda}\left|\Psi\right\rangle\right\|} = \frac{P_{\lambda}\left|\Psi\right\rangle}{\sqrt{\left\langle\Psi\right|\underbrace{P_{\lambda}^{\dagger}P_{\lambda}\left|\Psi\right\rangle}{=P_{\lambda}}}} = \frac{P_{\lambda}\left|\Psi\right\rangle}{\sqrt{\left\langle\Psi\right|P_{\lambda}\left|\Psi\right\rangle}} = \frac{P_{\lambda}\left|\Psi\right\rangle}{\sqrt{P(\lambda)}}$$
(7.62)

nicht-entarteter Fall: $|\Psi'\rangle = |\lambda\rangle$

2010-06-15

7.7. Postulate der Quantenmechanik

1. Zustände des Systems entsprechen Vektoren $|\Psi\rangle$ im Hilbertraum $\mathcal{H}.$ Ortsdarstellung:

$$\Psi(\vec{r}) = \langle \vec{r} | \Psi \rangle$$

 $(\vec{r}$ Eigenzustände von $\hat{\vec{r}})$

Wahrscheinlichkeitsdichte für Aufenthalt des Teilchens bei $\vec{r}:$

$$P(\vec{r}) = \left|\Psi(\vec{r})\right|^2 = \left|\langle \vec{r} |\Psi \rangle\right|^2$$

2. Messung einer physikalischen Größe (Observable) entspricht einem linearen, hermiteschen Operator

$$A = \sum_{\lambda} \lambda P_{\lambda}$$

 P_{λ} : Projektor auf Eigenraum E_{λ} , λ : Eigenwert

a) mögliche Messergebnisse: Eigenwerte λ von A

UNKORRIGIERT!

Alexander Kimmig, Uni Konstanz

- b) Wahrscheinlichkeit, dass λ gemessen wird: $P(\lambda) = \left< \Psi \right| P_{\lambda} \left| \Psi \right>$
- c) Zustand nach der Messung $|\Psi'\rangle = \frac{P_{\lambda}|\Psi\rangle}{\sqrt{\langle\Psi|P_{\lambda}|\Psi\rangle}} \Rightarrow \text{Erwartungswert } \langle A \rangle = \langle \Psi | A | \Psi \rangle$
- 3. Zeitentwicklung von $|\Psi\rangle:$ zeitabhängige Schrödingergleichung

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\left|\Psi\right\rangle = H\left|\Psi\right\rangle$$

wobe
i $H = H(\hat{\vec{r}}, \hat{\vec{p}})$ der Hamilton
operator ist. Ortsdarstellung: $\langle \vec{r} |$ und
 $\mathbbm{1} = \int \, \mathrm{d}^3 r' \, |r'\rangle \, \langle r'|$

$$\Rightarrow \mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(\vec{r}) = H\Psi(\vec{r})$$

mit $H = H(\vec{r}, -i\hbar\vec{\nabla})$

Erweiterung: gemischte Zustände bisher:

- (reine) Zustände
- Ergebnis vollständiger Präparation
- wir "kennen" den Zustand
- trotzdem können nicht alle Observablen gleichzeitig scharf gemessen werden \rightarrow Heisenberg'sche Unschärferelation

jetzt:

- gemischte Zustände
- unvollständige Präparation
- wir "kennen" den Zustand nur zum Teil

Beispiele

- statistische Mechanik, viele Teilchen
- Teilchensystem, welches mit der Umgebung wechselwirkt

formale Beschreibung Vektor $|\Psi\rangle \in \mathcal{H} \longrightarrow$ Dichtematrix ρ (statistischer Operator)

Annahme System befinde sich mit Wahrscheinlichkeit p_m im Zustand $|\Psi_m\rangle$, wobei $\{|\Psi_m\rangle\}$ eine Orthonormalbasis ist.

Es gilt: $0 \le p_m \le 1$, $\sum_m p_m = 1$

Erwartungswert einer Observablen:

$$\langle A \rangle = \sum_{m} p_m \left\langle \Psi_m \right| A \left| \Psi_m \right\rangle$$

wähle beliebige Orthonormal
basis $\left\{ |\varphi_i\rangle \right\}$:

$$\langle A \rangle = \sum_{m} \sum_{i,j} p_m \langle \Psi_m | \varphi_i \rangle \langle \varphi_i | A | \varphi_j \rangle \langle \varphi_j | \Psi_m \rangle$$

$$= \sum_{i,j} \underbrace{\langle \varphi_i | A | \varphi_j \rangle}_{=:A_{ij}} \underbrace{\sum_{m} p_m \langle \varphi_j | \Psi_m \rangle \langle \Phi_m | \varphi_i \rangle}_{=:\rho_{ij}}$$

$$= \sum_{i,j} A_{ij} \rho_{ij} = \sum_{i} (A\rho)_{ii}$$

Definition: Dichtematrix

$$\rho := \sum_{m} p_m \left| \Psi_m \right\rangle \left\langle \Psi_m \right| \tag{7.63}$$

Definition: Spur einer Matrix (eines Operators) O Sei $\{|\varphi_i\rangle\}$ eine Orthonormalbasis:

$$\operatorname{Sp}(O) \equiv \operatorname{Tr}(O) := \sum_{i} O_{i}i = \sum_{i} \langle \varphi_{i} | O | \varphi_{i} \rangle$$
(7.64)

Behauptung: Sp(O) hängt nicht von der Wahl der Basis ab (Beweis \rightarrow Übung)

Erwartungswert einer Observablen A im gemischten Zustand ρ

$$\langle A \rangle = \operatorname{Sp}(A\rho) \tag{7.65}$$

reine Zustände: $\langle A \rangle = \langle \Psi | A | \Psi \rangle$

weitere Eigenschaften

- 1. $\rho^{\dagger} = \rho$
- 2. $\rho \geq 0 \ (\iff \left< \Psi \right| \rho \left| \Psi \right> \geq 0)$ positiv semidefinit
- 3. $\operatorname{Sp}(\rho)=1$
- 4. reiner Zustand: $|\Psi\rangle$: $\rho = |\Psi\rangle\langle\Psi| = P_{\Psi}$

5.
$$\operatorname{Sp}(\rho^2) \begin{cases} = 1 & \text{reiner Zustand} \\ < 1 & \text{gemischter Zustand} \end{cases}$$

6. Schrödingergleichung

$$\Rightarrow \quad \dot{\rho} = \mathbf{i}[H,\rho] \tag{7.66}$$

2010-06-16

7.8. Anwendung: Harmonischer Oszillator II

Methode nach DIRAC, ohne spezifische Basis (z. B. Ort)

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$
(7.67)

dimensionslose Größen:

$$x_0 = \sqrt{\frac{\hbar}{m\omega}}$$
 (Länge) , $p_0 = \frac{\hbar}{x_0} = \sqrt{m\omega\hbar}$ (Impuls)

definiere

$$X := \frac{x}{x_0} \quad , \quad P := \frac{p}{p_0} \quad \Rightarrow \quad X^{\dagger} = X \quad , \quad P^{\dagger} = P$$
$$x = \sqrt{\frac{\hbar}{m\omega}} X \quad , \qquad p = \sqrt{m\omega t} P \tag{7.68}$$

einetzen:

$$H = \frac{1}{2}\hbar\omega P^2 + \frac{1}{2}\hbar\omega X^2 \quad \Rightarrow \quad H = \frac{1}{2}\hbar\omega (P^2 + X^2) \tag{7.69}$$

Kommutator:

$$[x,p] = i\hbar \quad \Rightarrow \quad [X,P] = \frac{i\hbar}{\underbrace{x_0p_0}_{=\hbar}} = i\hbar$$

Definiere

$$a := \frac{1}{\sqrt{2}} (X + iP) \quad \Rightarrow \quad a^{\dagger} = \frac{1}{\sqrt{2}} (X - iP)$$
(7.70)

$$\begin{aligned} a^{\dagger}a &= \frac{1}{2}(X - iP)(X + iP) = \frac{1}{2}(X^{2} + P^{2} + iXP - iPX) \\ aa^{\dagger} &= \frac{1}{2}(X + iP)(X - iP) = \frac{1}{2}(X^{2} + P^{2} - iXP + iPX) \\ a^{\dagger}a + aa^{\dagger} &= X^{2} + P^{2} \\ \Rightarrow \quad H &= \frac{1}{2}\hbar\omega(a^{\dagger}a + aa^{\dagger}) \end{aligned}$$

Kommutator:

$$[a, a^{\dagger}] = \frac{1}{2}[X + iP, X - iP] = \frac{1}{2}\left(-i\underbrace{[X, P]}_{=i} + i\underbrace{[P, X]}_{=-i}\right) = 1$$
$$\Rightarrow \boxed{[a, a^{\dagger}] = 1} \Rightarrow aa^{\dagger} = a^{\dagger}a + 1$$
(7.71)

$$H = \hbar\omega \left(a^{\dagger}a + \frac{1}{2} \right) \tag{7.72}$$

Eigenwertproblem für $H \to$ Eigenwertproblem für

$$a^{\dagger}a =: \hat{n} \tag{7.73}$$

 \rightarrow Eigenwerten, Zustände $|n\rangle$

$$\Rightarrow \quad E_n = \hbar \omega \left(n + \frac{1}{2} \right) \quad ; \quad |n\rangle$$

Stand: 13. Juli 2010, 20:05

Bemerkungen

1. \hat{n} hermitesch:

$$\hat{n}^{\dagger} = (a^{\dagger}a)^{\dagger} = a^{\dagger}a = \hat{n} \quad \Rightarrow \quad n \in \mathbb{R}$$

2.

$$[\hat{n}, a] = [a^{\dagger}a, a] = a^{\dagger} \underbrace{[a, a]}_{= 0} + \underbrace{[a^{\dagger}, a]}_{= -1} a = -a$$
$$[\hat{n}, a^{\dagger}] = [a^{\dagger}a, a^{\dagger}] = a^{\dagger} \underbrace{[a, a^{\dagger}]}_{= a} + \underbrace{[a^{\dagger}, a^{\dagger}]}_{= 0} a = a^{\dagger}$$

3. Eigenwerte von \hat{n} sind nicht negativ: $n \ge 0$ $(n = 0: a |0\rangle = 0)$ Beweis: $\hat{n} |n\rangle = n |n\rangle$, $\langle n| \hat{n} |n\rangle = n \underbrace{\langle n|n\rangle}_{=1} = n \Rightarrow n = \langle n| \hat{n} |n\rangle = \langle n| a^{\dagger} a |n\rangle = ||a| n\rangle ||^{2} \ge 0$

4. $|n\rangle$ Eigenzustand von \hat{n} zum Eigenwertn, dann sind auch

$$|n-1\rangle \propto a |n\rangle$$

 $|n+1\rangle \propto a^{\dagger} |n\rangle$

Eigenvektoren von \hat{n} mit eigenvektoren n-1 bzw. n+1 falls die so erhaltenen Zustände $|n+1\rangle \neq 0$

Beweis:

$$\hat{n}a \left| n \right\rangle = a\hat{n} \left| n \right\rangle + \left[\hat{n}, a \right] \left| n \right\rangle = an \left| n \right\rangle - a \left| n \right\rangle = (n-1)a \left| n \right\rangle$$

 $\Rightarrow a | n \rangle$ ist Eigenzustand von \hat{n} mit Eigenwert n-1

$$\hat{n}a^{\dagger}\left|n\right\rangle = a^{\dagger}\hat{n}\left|n\right\rangle + \left[\hat{n},a^{\dagger}\right]\left|n\right\rangle = na^{\dagger}\left|n\right\rangle + a^{\dagger}\left|n\right\rangle = (n+1)a^{\dagger}\left|n\right\rangle$$

 $\Rightarrow a^{\dagger} |n\rangle \text{ ist Eigenzustand von } \hat{n} \text{ mit Eigenwert } n+1$ Normierung: $||a|n\rangle||^2 = \langle n|\underbrace{a^{\dagger}a}_{=\hat{n}}|n\rangle = n \langle n|n\rangle = n$

$$a |n\rangle = \sqrt{n} |n-1\rangle \neq 0 \quad (n \neq 0)$$
(7.74)

 $\left\|a^{\dagger}\left|n\right\rangle\right\|^{2} = \left\langle n\right|aa^{\dagger}\left|n\right\rangle = \left\langle n\right|a^{\dagger}a + 1\left|n\right\rangle = n + 1$

$$a^{\dagger} \left| n \right\rangle = \sqrt{n+1} \left| n+1 \right\rangle \neq 0 \tag{7.75}$$

5. nganzzahlig, kleinster Eigenwert:n=0

Beweis durch Widerspruch:

a) nehme an, $|\gamma\rangle$ zum Eigenwert $\gamma \notin \mathbb{Z}$

$$a^n |\gamma\rangle = \underbrace{a \ a \ \cdots \ a}_n |\gamma\rangle = \sqrt{\gamma(\gamma - 1) \cdots (\gamma - n)} |\gamma - n\rangle$$

Eigenzustand zu $\gamma-n:$ wähle $n>\gamma \Rightarrow \gamma-n<0 \Rightarrow$ Widerspruch

- b) n > 0 sei kleinster Eigenwert, aber $a |n\rangle = \sqrt{n} |n-1\rangle \neq 0$ ist
Eigenzustand zum Eigenwert $n-1 < n \Rightarrow$ Widerspruch
- 6. das Spektrum ist nach oben unbeschränkt

Beweis: nehme an, n_{\max} sei größter Eigenwert, dann ist

$$a^{\dagger} \left| n_{\max} \right\rangle = \sqrt{n_{\max} + 1} \left| n_{\max} + 1 \right\rangle$$

Eigenzustand zum Eigenwert $n_{\max} + 1 > n_{\max} \Rightarrow$ Widerspruch

7. Eigenwerte sind nicht entartet (aufgrund X, P)

Beweis: nehme an, zum Eigenwert n gäbe es zwei Eigenzustände $|n, 1\rangle$, $|n, 2\rangle$ mit $\langle n, 1|n, 2\rangle = 0$ \rightarrow Observable: z. B. $O = |n, 1\rangle \langle n, 1|$, welche diese Zustände unterscheidet:

$$\langle n, i | O | n, j \rangle = \delta_{ij}$$

 $\rightarrow O$ müsste Funktion von X, P sein, bzw. von $a, a^{\dagger}, d. h.$

$$O = \sum_{n,m} c_{nm} (a^{\dagger})^n a^m$$

 $|n,1\rangle, |n,2\rangle$ entartet $\Rightarrow [O,\hat{n}] = 0 \Rightarrow c_{nm} = 0$ für $n \neq m$

$$\Rightarrow O = \sum_{n} c_{nn} \hat{n}^{n}$$

 $\Rightarrow O \operatorname{kann} |n,1\rangle, |n,2\rangle$ nicht unterscheiden \Rightarrow Widerspruch

Zusammenfassung

- $S_{\hat{n}} = \{0, 1, 2, 3, \dots\} = \mathbb{N}_0, \, \hat{n}$: Anzahloperator, n: Anzahl Quanten
- $\hat{n} \left| n \right\rangle = n \left| n \right\rangle$
- $a \dagger |n\rangle = \sqrt{n+1} |n+1\rangle$
- $a |n\rangle = \sqrt{n} |n-1\rangle$
- $a |0\rangle = 0 (|0\rangle$: Grundzustand: Vakuum)
- Erzeugen von beliebigen Eigenzuständen aus $|0\rangle$:

$$|n\rangle = \frac{1}{\sqrt{n!}} (a^{\dagger})^n |0\rangle \tag{7.76}$$

• Mit $H = \hbar \omega \left(n + \frac{1}{2} \right)$ sind $|n\rangle$ auch Eigenzustände von H mit Energien

$$E_n = \hbar \omega \left(n + \frac{1}{2} \right)$$
 , $n = 0, 1, 2, ...$ (7.77)

→ Quantisierung des elektromagnetischen Feldes (→ PLANCK), $E_0 = \frac{\hbar\omega}{2} \neq 0$ (Nullpunktsfluktiation → Heisenberg'sche Unschärferelation)

Übergang in die Ortsdarstellung

$$\Psi_n(x) = \langle x | n \rangle$$

$$\tilde{\Psi}_n(X) = \langle X | n \rangle = \tilde{\Psi}_n\left(\frac{x}{x_0}\right)$$

Grundzustand: $\tilde{\Psi}_0(X) = \langle X | 0 \rangle$

$$a |0\rangle = \frac{1}{\sqrt{2}} (X + iP) |0\rangle \qquad | \text{ von links: } \langle X'|$$
$$= \frac{1}{\sqrt{2}} \int dX \langle X'| X + iP |X\rangle \underbrace{\langle X|0\rangle}_{= \tilde{\Psi}_0(X)} = 0$$
$$\langle X'| X |X\rangle = X\delta(X - X')$$
$$\langle X'| P |X\rangle = -i\frac{d}{dX}\delta(X - X')$$
$$\Rightarrow \left(X + \frac{d}{dX}\right) \tilde{\Psi}_0(X) = 0$$
$$\Rightarrow \tilde{\Psi}_0(X) \propto e^{-X^2/2}$$
$$\Psi_n(X) = \langle X|n\rangle \propto \langle X| (a^{\dagger})^n |0\rangle$$
$$\propto e^{-X^2/2} e^{X^2/2} \left(X - \frac{d}{dX}\right)^n \underbrace{\tilde{\Psi}_0(X)}_{\propto e^{-X^2/2}}$$
$$= H_n(X): \text{ Hermite-Polynome}$$

UNKORRIGIERT! Alexander Kimmig, Uni Konstanz

Kapitel 8. Bewegung im Zentralfeld, H-Atom

8.1. Drehimpuls

bisher: 1-dimensional (\rightarrow Kapitel 6) jetzt: 3-dimensional, Ziel: H-Atom

$$H = \frac{p^2}{2m} + V(\vec{r})$$
$$H\Psi = E\Psi$$

für $\Psi(\vec{r}), \, \vec{r} = (x, y, z), \, E$: Eigenenergien

Rechnungen komplexer als im 1-dimensionalen Fall \rightarrow Symmetrien ausnutzen! Atome:

$$V(\vec{r}) = \frac{e^2}{4\pi\epsilon_0 r} = V(r) \qquad , \qquad r := |\vec{r}|$$
(8.1)

- \rightarrow Invarianz unter Drehungen um den Kern (Ursprung 0)
- \rightarrow Symmetrie gruppe: SO(3)
- \rightarrow Darstellung von SO(3) auf \mathcal{H} :

$$R \in \mathrm{SO}(3): \quad \tilde{\Psi}(\vec{r}) := U_R \Psi(\vec{r}) := \Psi(R\vec{r})$$
(8.2)

man kann zeigen:

$$\left\langle \tilde{\Psi} | \tilde{\varphi} \right\rangle = \left\langle \Psi | \varphi \right\rangle \Rightarrow U_R^{\dagger} U_R = U_R U_R^{\dagger} = \mathbb{1}$$

Infinitesimale Drehungen

 $R\colon \ \vec{r}\mapsto\vec{r}+\vec{\omega}\times\vec{r}\equiv R\vec{r}$

$$U_{R}\Psi(\vec{r}) = \Psi(\vec{r} + \omega \times \vec{r})$$

$$= \Psi(\vec{r}) + (\vec{\omega} \times \vec{r}) \cdot \vec{\nabla}\Psi(\vec{r})$$

$$= \Psi(\vec{r}) + \vec{\omega} \cdot (\vec{r} \times \vec{\nabla})\Psi(\vec{r})$$

$$= \Psi(\vec{r}) + \frac{i}{\hbar}\vec{\omega} \cdot \underbrace{(\vec{r} \times \vec{p})}_{=:\vec{L}}\Psi(\vec{r})$$

$$\Rightarrow U_{R} = \mathbb{1} + \frac{i}{\hbar}\vec{\omega} \cdot \vec{L}$$
(8.3)

mit dem Drehimpulsoperator

$$\vec{L} := \vec{r} \times \vec{p} \tag{8.4}$$

Komponenten: $\vec{L} = \begin{pmatrix} L_x \\ L_y \\ L_z \end{pmatrix}$, hermitesch:

$$L_{x}^{\dagger} = (yp_{z} - zp_{y})^{\dagger} = p_{z}^{\dagger}y^{\dagger} - p_{y}^{\dagger}z^{\dagger} = p_{z}y - p_{y}z = yp_{z} - zp_{y} = L_{x}$$

Wegen $V(\vec{r}) = V(r)$ Zentralproblem:

$$[U_R, H] = 0 \quad \forall R \in \mathrm{SO}(3)$$
$$\boxed{[\vec{L}, H] = 0} \iff [L_x, H] = [L_y, H] = [L_z, H] = 0 \tag{8.5}$$

 \rightarrow Eigenzustände zu $H |\Psi\rangle = E |\Psi\rangle$ können gleichzeitig als Eigenzustände einer Komponente von \vec{L} gewählt werden. Allerdings: Drehimpulskomponenten sind untereinander nicht verträglich!

$$L_i, L_j \neq 0$$
 für $i \neq j$

$$[L_x, L_y] = [yp_z - z, p_y, zp_x - xp_z]$$

= $[yp_z, zp_x] + [zp_y, xp_z]$
= $y[p_z, z]p_x + x[z, p_z]p_y$
= $i\hbar(xp_y - yp_x) = i\hbar L_z$

allgemein:

$$[L_i, L_j] = i\hbar \sum_k \epsilon_{ijk} L_k$$
(8.6)

Drehimpulsoperator kurze Schreibweise:

$$\vec{L} \times \vec{L} = i\hbar \vec{L}$$
(8.7)

 \rightarrow man kann nur eine Komponente von \vec{L} gleichzeitig scharf bestimmen. aber: $L^2:=L^2+L^2+L^2$

$$[L^{2}, L_{z}] = [L_{x}^{2}, L_{z}] + [L_{y}^{2}, L_{z}] + \underbrace{[L_{z}^{2}, L_{z}]}_{= 0} = L_{x}\underbrace{[L_{x}, L_{z}]}_{= -i\hbar L_{y}} + \underbrace{[L_{x}, L_{z}]}_{= -i\hbar L_{y}}L_{x} + L_{y}\underbrace{[L_{y}, L_{z}]}_{= i\hbar L_{x}} + \underbrace{[L_{y}, L_{z}]}_{= i\hbar L_{x}}L_{y} = 0$$

allgemein:

$$[L^2, L_i] = 0 \qquad (i = x, y, z)$$
(8.8)

 \rightarrow konstruiere gemeinsame Eigenzustände zu $L^2,\,L_z:$

1. L^2 ist hermitesch und positiv (semi-) definit, d. h.

$$\langle \Psi | L^2 | \Psi \rangle \ge 0 \quad \forall | \Psi \rangle \in \mathcal{H}$$

 \Rightarrow Eigenwerte sind reell, nicht-negativ

$$L^2 \ket{\Psi} = \hbar \lambda \ket{\Psi} \qquad , \qquad \lambda \in \mathbb{R}, \lambda \geq 0$$

2. definiere:

$$L_{\pm} := L_x \pm iL_y \qquad (Leiteroperatoren) \tag{8.9}$$

Eigenschaften: (vgl a, a^{\dagger} bei harmonischerm Oszillator)

- a) $(L_{+})^{\dagger} = L_{\mp}$ b) $[L_z, L_+] = \pm \hbar L_+$ c) $[L_+, L_-] = 2\hbar L_z$ d) $[L^2, L_{\pm}] = 0$ e) $L_{+}L_{-} = L_{x}^{2} + L_{y}^{2} + \hbar L_{z}^{2}$ f) $L^2 = L_-L_+ + \hbar L_z + L_z^2$ 3. • $L_z |\Psi\rangle = \underbrace{\hbar m}_{\text{Eigenwertvon } L_z} |\Psi\rangle, m \in \mathbb{R}$ Behauptung: $L_{\pm} |\Psi\rangle$ wieder Eigenzustände von L_z mit Eigenwerten $\hbar(m \pm 1)$ Beweis: $L_z L_{\pm} |\Psi\rangle = L_{\pm} L_z |\Psi\rangle \pm \hbar L_{\pm} |\Psi\rangle = \hbar (m \pm 1) L_{\pm} |\Psi\rangle$
 - $L^2 |\Psi\rangle = \hbar^2 \lambda |\Psi\rangle \Rightarrow L_{\pm} |\Psi\rangle$ wieder Eigenzustände von L_z, L^2

$$\begin{split} \left\| L_{\pm} \left| \Psi \right\rangle \right\|^2 &= \left\langle \Psi \right| L_{\pm}^{\dagger} L_{\pm} \left| \Psi \right\rangle \\ &= \left\langle \Psi \right| L_{\mp} L_{\pm} \left| \Psi \right\rangle \\ &= \left\langle \Psi \right| L^2 - L_z \mp \hbar L_z \left| \Psi \right\rangle \\ &= \hbar^2 (\lambda - m^2 \mp m) \ge 0 \end{split}$$

$$\Rightarrow \begin{cases} m \ge 0 & : \quad \lambda \ge m^2 + m = m(m+1) = |m| (|m|+1) \\ m < 0 & : \quad \lambda^2 \ge m^2 - m = m(m-1) = |m| (|m|+1) \end{cases}$$

 $\Rightarrow |m|(|m|+1) \le \lambda =: l(l+1)$ mit $l \ge 0$ der maximale Wert von |m|

Eigenzustände: $|\Psi_{lm}\rangle$

2010-06-21

Zahlenwerte für l, m? Wähle l fest, sei m der maximale durch $|m| \leq l$ zugelassene Wert, d. h. $l-1 < m \leq l$ (falls $m \leq l-1$, erhöhe m im 1 mit L_+ , dann muss $L_+ |\Psi_{lm}\rangle = 0$, sonst gäbe es $|\Psi_{lm+1}\rangle$ mit $m+1 \ge l \Rightarrow m=l$)

analog: kleinstes m ist m = -l

 $\Rightarrow m$ kann Werte $m = -l, -l + 1, \dots, l - 1, l$ annehmen, Dies sind 2l + 1 mögliche Werte. Dies ist nur möglich, falls $2l \ge 0$

Zusammenfassend:

$$l = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3, \dots$$

$$m = -l, -l+1, \dots, l-1, l$$
(8.10)

(wird aus Drehimpulsalgebra bestimmt)

8.2. Ortsdarstellung, Kugelflächenfunktionen

Drehimpuls: $\vec{L} = \vec{r} \times \vec{p} \rightarrow \vec{r} \times (-i\hbar \vec{\nabla})$, z. B.

$$L_z = xp_y - yp_x \rightarrow i\hbar \left(y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} \right)$$

Kugelkoordinaten

$$x = r \sin \vartheta \cos \varphi$$
$$y = r \sin \vartheta \sin \varphi$$
$$z = r \cos \vartheta$$

$$\vec{L}^{2} = -\hbar \left[\frac{1}{\sin\vartheta} \frac{\partial}{\partial\vartheta} \left(\sin\vartheta \frac{\partial}{\partial\vartheta} \right) + \frac{1}{\sin^{2}\vartheta} \frac{\partial^{2}}{\partial\varphi^{2}} \right]$$

$$L_{z} = -\hbar \frac{\partial}{\partial\varphi}$$
(8.11)

gemeinsame Eigenfunction $Y(\vartheta, \varphi)$ (manchmal auch $F(\vartheta, \varphi)$)

$$L_z Y_{lm}(\vartheta, \varphi) = \hbar m Y_{lm}(\vartheta, \varphi)$$
 (Kugelflächenfunktionen)

 $L^2 Y_{lm}(\vartheta,\varphi) = \hbar^2 l(l+1) Y_{lm}(\vartheta,\varphi)$ (stetig, eindeutig auf Oberfläche der Einheitskugel)

 ${\it Separations ansatz}$

$$Y_{lm}(\vartheta,\varphi) = \Phi(\varphi)P(\vartheta)$$

in Eigenwertgleichung für L_z

$$-\mathrm{i}\hbar\frac{\partial}{\partial\varphi}\Phi(\varphi)P(\vartheta) = \hbar m\Phi(\varphi)P(\vartheta)$$
$$\Rightarrow -\mathrm{i}\frac{\partial}{\partial\varphi}\Phi(\varphi) = m\Phi(\varphi)$$

Lösung

$$\Phi_m(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi}$$
(8.12)

 Φ muss 2π -Periodisch sein $\rightarrow m$ ganzzahlig!

Ohne Beweis: $\Phi_m(\varphi)$ bilden Orthonormal
system im Intervall $0<\varphi<2\pi$ Eigenwertgleichung von
 L^2

$$-\left[\frac{1}{\sin\vartheta}\frac{\partial}{\partial\vartheta}\left(\sin\vartheta\frac{\partial}{\partial\vartheta}\right) - \frac{m^2}{\sin\vartheta}\right]e^{im\varphi}P(\vartheta) = l(l+1)e^{im\varphi}P(\vartheta)$$
(8.13)

setze $\xi = \cos \vartheta, \ 0 \le \vartheta \le \pi \to -1 \le \xi \le 1$ (Nebenrechnung: $\frac{d}{d\xi}(\dots) = \frac{1}{\sin \vartheta} \frac{d}{d\vartheta}(\dots)$)

$$\frac{\mathrm{d}}{\mathrm{d}\xi} \Big[(1-\xi^2) \frac{\mathrm{d}P}{\mathrm{d}\xi} \Big] + \Big(l(l+1) - \frac{m^2}{1-\xi^2} \Big) P = 0$$

$$(1-\xi^2) \frac{\mathrm{d}^2 P}{\mathrm{d}\xi^2} - 2\xi \frac{\mathrm{d}P}{\mathrm{d}\xi} + l(l+1)P - \frac{m^2}{1-\xi^2}P = 0$$
(8.14)

1. Schritt Zeigen, dass für l ganzzahlig eine normierbare Lösung im Bereich $\xi \in [-1, 1]$ existiert. Zunächst: m = 0

$$(1-\xi^2)\frac{\mathrm{d}^2}{\mathrm{d}\xi^2}P - 2\xi\frac{\mathrm{d}}{\mathrm{d}\xi}P + l(l+1)P = 0 \qquad Legendre-Differential gleichung \tag{8.15}$$

Potenzreihenansatz:

$$P(\xi) = \sum_{\nu=0}^{\infty} a_{\nu} \xi^{\nu}$$

Koeffizientenvergleich von ξ^{ν} :

$$(\nu+2)(\nu+1)a_{\nu+2} - \nu(\nu-1)a_{\nu} - 2\nu a_{\nu} + l(l+1)a_{\nu} = 0$$

$$\Rightarrow \boxed{a_{\nu+2} = \frac{\nu(\nu+1) - l(l+1)}{(\nu+2)(\nu+1)}a_{\nu}}$$
(8.16)

 \rightarrow 2 unabhängige Lösungen:

$$a_0 \neq 0$$
, $a_1 = 0 \Rightarrow P$ gerade
 $a_0 = 0$, $a_1 \neq 0 \Rightarrow P$ ungerade

Asymptotisches Verhalten für $\nu \to \infty$ und $\xi \to \pm 1$:

$$\frac{a_{\nu+2}}{a_{\nu}} \stackrel{\nu \to \infty}{\to} 1 \; \Rightarrow \; \sum \xi^{\nu} \text{ divergiert für } \xi \to \pm 1$$

Endliche Lösung bei $\xi = \pm 1$ verlangt Abbruch der Potenzreihe $\rightarrow l$ muss ganzzahlig und größer als 0 sein, d. h. $a_{l+2} = 0 \rightarrow P = P_l(\xi)$ ist Polynom *l*-ten Grades mit

$$P_l(\xi) = (-1)^l P_l(-\xi) \qquad Legendre-Polynome \tag{8.17}$$

Explizite Form:

$$P_l(\xi) = \frac{1}{2^l l!} \frac{\mathrm{d}^l}{\mathrm{d}\xi^l} (\xi^2 - 1)^l$$
(8.18)

 $\rightarrow P_l(\cos \vartheta)$ sind Eigenfunktionen für m = 0 (d. h. $L_z = 0$) von L^2

Beispiele

$$P_0 = 1$$

$$P_1 = \xi$$

$$P_2 = \frac{1}{2}(3\xi^2 - 1)$$

$$P_3 = \frac{1}{2}(5\xi^3 - 3\xi)$$

 $(\rightarrow \ddot{U}$ bungsaufgabe)

2. Schritt m > 0

(ohne Beweis) Ansat
z $P_l^m(\xi)=(1-\xi^2)^{m/2}v_l^m(\xi),$ aus asymptotischem Verhalten, so dass sich Term
e $\propto(1-\xi^2)^{-1}$ aufheben

 $\rightarrow\,$ einsetzen in 8.14, rechnen,...: Abbruchbedingung $v_l^{m+1}=(v_l^m)'\rightarrow m\leq l$

 \rightarrow explicit Form:

$$P_l^m(\xi) = (1 - \xi^2)^{m/2} \frac{\mathrm{d}^m}{\mathrm{d}\xi^m} P_l(\xi) \quad (m = 0, 1, \dots, l) \quad (zuge ordnete \ Legendre-Polynome) \quad (8.19)$$

analog fürm<0

Endergebnis Eigenfunktionen von L^2 und L_z mit Eigenwerten $\hbar^2 l(l+1)$

$$Y_{lm}(\vartheta,\varphi) = \left(\frac{(2l+1)(l-m)!}{4\pi(l+m)!}\right)^{1/2} P_l^m(\cos\vartheta) e^{im\varphi} \quad , \quad m \ge 0$$
(8.20)

$$Y_{l,-m}(\vartheta,\varphi) = (-1)^m Y_{lm}^*(\vartheta,\varphi)$$
(8.21)

mit l = 0, 1, 2, ... und $|m| \le l \ (2l + 1 \text{ Werte})$

Bemerkungen

• Y_{lm} : Kugelflächenfunktionen, bilden vollständiges Orthonormalsystem auf der Kugeloberfläche

$$\int_{0}^{2\pi} d\varphi \int_{0}^{2\pi} \sin \vartheta \, d\vartheta \, Y_{l'm'}^{*}(\vartheta,\varphi) Y_{lm}(\vartheta,\varphi) = \delta_{ll'} \delta_{mm'}$$
$$\sum_{l=0}^{\infty} \sum_{m=-l}^{l} Y_{lm}^{*}(\vartheta,\varphi) Y_{lm}(\vartheta',\varphi') = \delta(\cos \vartheta - \cos \vartheta') \delta(\varphi - \varphi')$$

• Parität:

$$\vec{r} \to -\vec{r} \quad (\text{Raumspiegelung})$$
$$\vartheta \to \vartheta - \pi$$
$$\varphi \to \varphi + \pi$$
$$\cos \vartheta \to -\cos \vartheta \quad (\xi \to -\xi)$$
$$e^{im\varphi} = (-1)^m e^{im\varphi}$$
$$P_l^m (-\xi) = (-1)^{l-m} P_l^m (\xi)$$
$$Y_{lm}(\vartheta, \varphi) = (-1)^l Y_{lm}(\pi - \vartheta, \pi + \varphi)$$

lgerade \rightarrow Parität +, lungerade \rightarrow Parität -

• Veranschaulichung: Polardiagramm: Folie "Quadrate der Winkelfunktionen im Polardiagramm"

2010-06-22

8.3. Bewegung im Zentralfeld

$$H = \frac{p^2}{2m} + V(r)$$
, $r = |\vec{r}|$ (Zentralpotential)

Ortsdarstellung kinetische Energie: $-\frac{\hbar^2}{2m} \Delta$

$$\Delta = \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \underbrace{\frac{1}{r^2} \left[\frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial}{\partial \vartheta} \right) + \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial \varphi^2} \right]}_{= -\frac{L^2}{\hbar^2 r^2}}$$

 $[H,L]=[H,L^2]=[H,L_z]=0 \Rightarrow L^2$ ist Konstante der Bewegung \rightarrow es gibt gemeinsame Eigenzustände von $H, L^2, L_z: |E, l, m\rangle$. Außerdem gilt $[H, L_{\pm}] = 0$

Schrödingergleichung

$$\left(-\frac{\hbar^2}{2m_0}\frac{1}{r}\frac{\partial^2}{\partial r^2}r + \frac{L^2}{2m_0r^2} + V(r) - E\right)\Psi = 0$$
(8.22)

Separationsansatz, da Ψ Eigenfunktion zu L^2, L_z ist

$$\Psi(\vec{r}) = P_l(r)Y_{lm}(\vartheta,\varphi)$$

da H nur von L^2 und nocht von L_z abhängt. Normierung: $\int d^3r |\Psi|^2 = 1$

 $\Psi(\vec{r})$ einsetzen in Schrödingergleichung

$$\left(-\frac{\hbar^2}{2m_0}\frac{1}{r}\frac{\mathrm{d}^2}{\mathrm{d}r^2}r + \frac{\hbar^2}{2m_0}\frac{l(l+1)}{r^2} + V(r) - E\right)R_l(r) = 0 \quad (Radialgleichung) \tag{8.23}$$

→ *E* abhängig von V(r) und *l*, nicht von $m \rightarrow 2l + 1$ -fache Entartung. Der Term $\frac{\hbar^2}{2m_0} \frac{l(l+1)}{r^2}$ nennt man Zentrifugalbarriere, abstoßend für kleine *r*: verhindert, dass Teilchen mit $l \neq 0$ nahe ans Zentrum gelangen

$$V_{\text{eff}}(r) = V(r) + \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2}$$

Ansatz: $R_l(r) = \frac{u_l(r)}{r}$, 8.23 durchmultiplizieren mit r:

$$\left(-\frac{\hbar^2}{2m_0}\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \underbrace{\frac{\hbar^2}{2m_0}\frac{l(l+1)}{r^2} + V(r)}_{= V_{\mathrm{eff}}(r)} - E\right)u_l(r) = 0$$
(8.24)

 \rightarrow 1-dimensionale Schrödingergleichung, aber mit Potential $V_{\text{eff}}(r)$ und $0 \leq r < \infty$

 $r \to \infty$ Sei $V(r \to \infty) \to 0$

$$\left(-\frac{\hbar^2}{2m_0}\frac{d^2}{dr^2} + V_{\text{eff}}(r) - E\right)u_l(r) = 0$$

• E > 0:

$$u_l = e^{\pm ikr}$$
$$E = \frac{\hbar^2 k^2}{2m_0}$$
$$R_l \approx c_1 \frac{e^{ikr}}{r} + c_2 \frac{e^{-ikr}}{r}$$

• E < 0:

$$u_l = e^{\pm \kappa r}$$
$$E = \frac{\hbar^2 \kappa^2}{2m_0}$$
$$R_l \approx c_1 \frac{e^{\kappa r}}{r} + c_2 \frac{e^{-\kappa r}}{r}$$

1

 \rightarrow gebundene Zustände

 $r\to 0~$ Sei $r^2V(r\to 0)\to 0$ (gilt z. B. für Coulomb
potential) und $l\neq 0.$ Dann überwiegen 1. Term und Zentrifugal
barriere.

Ansatz: $u_l(r) \propto r^n$ für $r \to 0$

$$\rightarrow -n(n-1) + l(l+1) = 0$$

$$n = \begin{cases} -l & R_l \propto r^{-(l+1)} & \text{nicht normierbar} \\ l+1 & R_l \propto r^l \end{cases}$$

Wie sieht das Eigenspektrum prinzipiell aus?

- E > 0: Kugelwellen, 2 Konstanzen, deren Verhältnis von E abhängt \rightarrow kontinuierliches Spektrum (entspricht klassisch offenen Bahnen)
- E < 0: Ausschluss exponentiell wachsender Terme ($c_2 = 0$), nur für bestimmte E-Werte erfüllbar \rightarrow diskretes Spektrum

Beispiel

Abbildung 8.1: Beispiel für ein Eigenspektrum eines Potentialverlaufs

Quantenzahlen im diskreten Spektrum

- hängen ab von V(r)
- Wellenfunktionen $R_{nl}(r)Y_{lm}(\vartheta,\varphi)$ mit n_r : radiale Quantenzahl, beschreibt charakteristische Energie
- $\bullet\ l$: Bahndrehimpulsquantenzahl

8.4. Das H-Atom und H-ähnliche Atome

$$V(r) = -\frac{Ze^2}{4\pi\epsilon_0 r}$$

 ${\small {\bf Bemerkung}} \quad {\rm Auch \ algebraische \ Behandlung \ möglich \ "uber \ verallgemeinerten \ Lenz-Runge-Vektor"}$

Wellenfunktion (gebundene Zustände) $\Psi = R_{nrl}(r)Y_{lm}(\vartheta,\varphi)$ Radialgleichung für $R = \frac{u}{r}$:

$$\left(-\frac{\hbar^2}{2m_0}\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{\hbar^2}{2m_0}\frac{l(l+1)}{r^2} - \frac{Ze^2}{4\pi\epsilon_0 r} - E\right)u = 0$$
(8.25)

Dimensionslose Variablen:

$$\epsilon = \frac{E}{Z^2 R_y} \quad , \quad R_y = \frac{\hbar^2}{2m_0 a_0^2} \quad , \quad a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_0 l^2} \text{ (Bohr-Radius)} \quad , \quad \rho = \frac{Zr}{a_0} 2\sqrt{|\epsilon|}$$

Division der Gleichung durch $Z^2 R_y 4(-\epsilon)$:

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \frac{l(l+1)}{\rho^2} - \frac{1}{\rho\sqrt{-\epsilon}} + \frac{1}{4}\right)u(\rho) = 0$$
(8.26)

Verhalten für

- $\rho \to 0$: $u \propto \rho^{l+1}$
- $\rho \to \infty$: $u \sim e^{-\rho/2}$

Ansatz: $u = \rho^{l+1} e^{-\rho/2} F(\rho)$ wobe
i $F(\rho \to 0) \to \text{const}$ und nicht wachsend als Potenzen für
 $\rho \to \infty$

- $(a \cdot b \cdot c)'' = \dots$
- Division durch $\rho^{l-1} e^{-\rho/2}$

$$\rho F'' + (2(l+1) - \rho)F' - (l+1 + \frac{1}{\sqrt{-\epsilon}})F = 0$$

$$\rho F'' + (\beta - \rho)F' - \alpha F = 0 \qquad (Laguerre's che Differential gleichung) \qquad (8.27)$$

Lösung durch Potenzreihenansatz:

$$F \equiv F(\alpha, \beta, \rho) = \sum_{\nu=0}^{\infty} a_{\nu} \rho^{\nu}$$

o. B. d. A. sei $a_0 = 1$

Abbruch der Reiche: Verschwinden der Koeffizienten von ρ^{ν}

$$a_{\nu} = \frac{1}{\nu!} \frac{\alpha(\alpha+1)\cdots(\alpha+\nu-1)}{\beta(\beta+1)\cdots(\beta+\nu-1)} \underbrace{a_{0}}_{-1}$$

Falls α ganze Zahl $M \leq 0$: Abbruch $\rightarrow F$ Polynom Falls α keine ganze Zahl: $F(\alpha, \beta, \rho) \rightarrow e^{\rho}$ asymptotisch $\rightarrow R$ divergiert für $\rho \rightarrow \infty$ Für $\alpha = 0$: $F(\rho) = a_0 = 1$

$$\rightarrow \frac{1}{\sqrt{-\epsilon}} - (l+1) = n_r \quad \text{mit} \quad n_r = 0, 1, 2, \dots$$

 $F(\alpha, \beta, \rho)$: Polynom n_r -ten Grades, Laguerre'sche Polynome.

Festlegung der Eigenwerte: wähle $n := n_r + l + 1$ Hauptquantenzahl

$$\epsilon = -\frac{1}{n^2}$$
 oder $E_n = \frac{Z^2 R_y}{n^2}$ mit $n = 1, 2, 3, ...$ (8.28)

Mögliche Werte für $l \colon 0 \leq l \leq n-1$

Entartung des *n*-ten Niveaus

$$\sum_{l=0}^{n-1} (2l+1) = n^2$$

Zusätzliche Entartung um Faktor 2 durch Spin: $G = 2n^2$

- Ursache der *m*-Entartung: Zentralpotential, wird aufgehoben durch Brechen der Rotationssymmetrie z. B. mit Magnetfeld \rightarrow Zeeman-Effekt
- Ursache der *l*-Entartung ist folge des $\frac{1}{r}$ -Potentials

Spektrum des H-Atoms

Abbildung 8.2: Spektroskopische Bezeichnung: "s-Orbital"

Radialfunktion

$$R_{nl} = a_0^{-3/2} N_{nl} \rho^l e^{-\rho/2} F_{nl}(\rho)$$

$$F_{nl}(x) = L_{n-l-1}^{2l+1}(x) \qquad (\text{vers})$$

(verallgemeinertesLaguerre'sches Polynom)

$$L_p^k(x) = (-1)^k \frac{\mathrm{d}^k}{\mathrm{d}x^k} L_{p+k}^0 \text{ vom Grad } p$$
$$L_p^0(x) = \mathrm{e}^x \frac{\mathrm{d}^p}{\mathrm{d}x^p} (x^p \mathrm{e}^{-x}) \text{ (Laguerre'sch Polynome)}$$
$$N_{nl} = \frac{2}{n^2} \sqrt{\frac{(n-l-1)!}{[(n+l)!]^3}} \text{ (Normierungsfaktor)}$$

 N_{nl} so gewählt, dass

$$\int_0^\infty \mathrm{d}r \, r^2 \big| P_{nl}(r) \big|^2 = 1$$

Alexander Kimmig, Uni Konstanz

 $Seite\ 124$

Gesamtwellenfunktion

$$\Psi_{nlm}(r,\vartheta,\varphi) = R_{nl}Y_{lm}(\vartheta,\varphi)$$

Beispiel

$$R_{1,0} = \frac{2}{a_0^{3/2}} \mathrm{e}^{-r/a_0}$$

 $r^2 |R_{1,0}|$: radiale Aufenthaltswahrscheinlichkeit

$$\langle r \rangle = \int_0^\infty dr \, r^3 |R_{1,0}|^2 = \frac{3}{2} a_0$$
$$R_{2,0} = \frac{1}{(2a_0)^{3/2}} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0}$$
$$R_{2,1} = \frac{1}{(2a_0)^{3/2}} \frac{r}{\sqrt{3}a_0} e^{-r/2a_0}$$

Für hohe l bei festem n "wächst" die Ausdehnung der Elektronenwolke $\langle r \rangle$ an.

$$\langle r \rangle_{nl} = \frac{a_0}{2} [3n^2 - l(l+1)]$$

Folien:

- Radialteil der Wellenfunktion des Elektrons im H-Atom
- Aufenthaltswahrscheinlichkeit des Elektrons im H-Atom
- Beispiele für die wellenmechanische Behandlung

2010-06-25

• Kugelflächenfunktionen und Sommerfeld'sches Vektormodell der Drehimpulse

Nachtrag Problem: Wellenfunktion für $m \neq 0$ sind komplex \rightarrow erzeuge reelle Wellenfunktion durch Linearkombination der Wellenfunktionen zu gleichem l aber verschiedenem m:

$$\Psi_{n,p_x} = \frac{1}{\sqrt{2}} (\Psi_{n,1,-1} - \Psi_{n,1,1}) = \sqrt{\frac{4}{4\pi}} R_{n,1}(r) \frac{x}{r}$$
$$\Psi_{n,p_y} = \frac{1}{\sqrt{2}} (\Psi_{n,1,-1} - \Psi_{n,1,1}) = \sqrt{\frac{4}{4\pi}} R_{n,1}(r) \frac{y}{r}$$
$$\Psi_{n,p_z} = \Psi_{n,1,0} = \sqrt{\frac{3}{4\pi}} R_{n,1}(r) \frac{z}{r}$$

 \rightarrow analog *d*-Orbitale (l = 2)

$$d_{zx}$$
, d_{zy} , d_{xy} , $d_{x^2-y^2}$, $d_{3z^2-r^2}$

Kapitel 9. Magnetische Momente

- Bahnmoment des Elektrons
 $\widehat{=}$ Kreisstrom; ganzzahlige l,m
- Spinmoment des Elektrons
 $\hat{=}$ kein klassisches Analogon; halbzahlige Quantenzahle
n s,m_s
- $\rightarrow\,$ Spin-Bahn-Kopplung $\rightarrow\,$ Feinstruktur der Atomspektren

9.1. Magnetisches Moment eines klassischen Kreisstroms

Wiederholung IK2:

 $\vec{L} = m\vec{r} \times \vec{v}$, $|\vec{v}| = v$ (Bahngeschwindigkeit)

Strom:

$$I = \frac{q}{t} = -\frac{e}{T} = -\frac{ev}{2\pi r}$$

Magnetisches Moment:

Strom × Fläche ,
$$\vec{\mu} = \vec{I} \times \vec{A}$$

$$ert ec{\mu} ert = ert I ert \pi r^2 = rac{eL}{2m_0}$$

 $ec{\mu} = I = -rac{e}{2m_0} ec{L}$
 m_0 : Ruhemasse des Elektrons
Bahnmoment für Elektron auf Kreisbahn

Maßeinheit: Bohr'sches Magneton

magnetisches Moment für Bahndrehimpuls $|\vec{L}|=1\hbar$

$$\mu_{\rm B} = \frac{e}{2m_0}\hbar = 9.27 \cdot 10^{-24} \,\mathrm{A} \,\mathrm{m}^2 = 5.77 \cdot 10^{-5} \frac{eV}{\mathrm{T}}$$

Allgemein

$$\mu_l = \mu_{\rm B} \sqrt{l(l+1)}$$
$$\vec{\mu}_l = -g_l \mu_{\rm B} \frac{\vec{L}}{\hbar}$$

mit g-Faktor $g_l = 1$ für Bahndrehimpuls

 $\mbox{Bemerkung}~$ Es gibt verschieden
e $g\mbox{-}\mbox{Faktoren}$ für Bahndrehmoment und Spinmoment und Kombination derer

- 1. Aufspaltung der Spektrallinien im Magnetfeld \rightarrow Zeeman-Effekt (s. u.)
- 2. Einstein-de-Haas-Effekt (s. u.)
- 3. De-Haas-van-Alphen-Effekt (Festkörperphysik)
- 4. Elektronenspinresonanz (ESR) (s. u.)

9.2. Bahnmoment imäußeren Magnetfeld

- Präzession mit Kreisfrequen
z ω
- Winkel α zwischen \vec{L} und \vec{B}
- $\omega = \frac{\text{Drehmoment}}{\text{Drehimpuls } \sin \alpha}$
- Drehmoment: $|\vec{\mu} \times \vec{B}| = \mu B \sin \alpha$

$$\omega_{\rm L} = \frac{\mu B}{L} = \frac{e}{2m_0} B \quad (Larmor-Frequenz) \tag{9.1}$$

- $\omega_{\rm L}$ hängt für Bahndrehimpuls nicht von μ und L ab, sondern nur vom Magnetfeld
- Für beliebige Momente (Spin+Bahn)

$$\omega_{\rm L} = \frac{g_l \mu_{\rm B}}{\hbar} B = \gamma B \quad , \quad \gamma : \text{ gyromagnetisches Verhältnis}$$
(9.2)

Suche geeigneten Operator für Schrödingergleichung: Energie eines magnetischen Dipols im Magnetfeld $V_{\rm mag}=-\vec{\mu}\cdot\vec{B}$

$$V_{\rm mag} = \frac{g_l \mu_{\rm B}}{\hbar} \ \vec{L} \cdot \vec{B}$$

Das magnetische Moment $\vec{\mu}$ entspricht bis auf einen Faktor dem Drehimpuls \vec{L}

- \rightarrow Eigenschaften des quantenmechanischen $\vec{\mu}$ entsprechen denen eines quantenmechanischen \vec{L}
- \rightarrow gleichzeitig beobachtbar: $\vec{\mu}^2, \mu_z$

Abbildung 9.1: hier fehlt noch eine passende Bildunterschrift!

Änderung von \vec{L}_z um 1 \hbar entspricht Änderung der Energie um $\Delta V_{\text{mag}} = \Delta \mu_z B = g \mu_{\text{B}} B = \hbar \omega_{\text{L}}$ \rightarrow Drehung des Dipols um eine Einheit $\Delta m = \frac{\Delta L_z}{\hbar} = 1$ kann durch Absorption oder Emission eines Photons mit der Energie $\hbar \omega_{\text{L}}$ erfolgen.

Welche Änderungen sind kompatibel zu Erhaltungssätzen?

9.3. Abstrahlung

9.3.1. Übergangswahrscheinlichkeiten

Bisher: nur stationäre Zustände

Jetzt: Wahrscheinlichkeit, mit der ein e^- vom Anfangszustand $|i\rangle$ in einen Endzustand $|f\rangle$ übergeht.

Experiment: Übergänge im Atom erfolgen durch Emission und Absorption elektromagnetischer Strahlung, überwiegend Dipolstrahlung.

IK3: für klassische Dipole (parallel zu z schwingend)

$$\dot{W} = -\frac{e^2}{6\pi\epsilon_0 c^3} \langle \ddot{Z}^2 \rangle$$

 \dot{W} : ausgestrahlte Energie pro Zeiteinheit \rightarrow proportional zum mittleren Beschleunigungsquadrat.

Quantenmechanik: zusätzlich Mittelung über Erwartungswerte z_{fi} ; $\langle z_{fi} \rangle$: Maß für Übergangswahrscheinlichkeit, also Intensität des Übergangs $|i\rangle \rightarrow |f\rangle$, "Matrixelement" (exakte Herleitung: Störungstheorie)

Beispiel Berechne $\langle z_{fi}$ in Ortsdarstellung für zeitabhängige Wellenfunktionen $|i\rangle$ und $|f\rangle$

$$u_i(\vec{r},t) = \Psi_i(\vec{r}) \mathrm{e}^{-\mathrm{i}\omega_i t}$$
, $u_f(\vec{r},t) = \Psi_f(\vec{r}) \mathrm{e}^{-\mathrm{i}\omega_f t}$

 u_i, u_f normierbar, bildenvollständiges Orthonormalsystem.

Wegen Hermitizität (aus Störungstheorie):

$$\langle z_{fi} = \int u_i^* z u_f \, \mathrm{d}^3 r + \underbrace{\int u_f^* z u_i \, \mathrm{d}^3 r}_{\text{wegen Hermitizität}}$$

$$\langle z_{fi} = \mathrm{e}^{\mathrm{i}(\omega_f - \omega_i)t} \int \Psi_i^* z \Psi_f \, \mathrm{d}^3 r + \mathrm{h.\, c.}$$

$$= \mathrm{e}^{\mathrm{i}(\omega_f - \omega_i)t} M_{if} + \mathrm{e}^{-\mathrm{i}(\omega_f - \omega_i)t} M_{fi}$$

$$\Rightarrow \langle \ddot{z}_{fi} \rangle = -(\omega_i - \omega_f)^2 \langle z_{fi} \rangle$$

$$\langle \ddot{z}_{fi} \rangle^2 = (\omega_i - \omega_f)^4 \left(\mathrm{e}^{2\mathrm{i}(\omega_i - \omega_f)t} (M_{if})^2 + \mathrm{e}^{-2\mathrm{i}(\omega_i - \omega_f)t} (M_{fi})^2 + \underbrace{2M_{if} M_{fi}^*}_{= 2|M_{if}|^2} \right)$$

es gilt:

•
$$\mu_{if}^* = \mu_{if}$$

• zeitliche Mittelung: $\langle e^{2i(\cdot)t} \rangle = 0$

$$\rightarrow \langle \langle \ddot{z}_{if} \rangle^2 \rangle = 2(\omega_i - \omega_f)^4 |M_{if}|^2$$

- \rightarrow wenn Ψ_i, Ψ_f bekannd, dann sind M_{if} bekannt
- M_{if} kann für bestimmte i, f verschwinden $\rightarrow Auswahlregeln \rightarrow$ kein optischer Übergang möglich, "verboten"

2010-06-28

9.3.2. Spezialfall: H-Atom

$$\Psi_{nlm} = R_{nl}Y_{lm}$$
, $Y_{lm} = \underbrace{c_{lm}}_{\text{Normierung}}\varphi_m P_l^m$, $\varphi_m = e^{im\varphi}$

1. M_{fi}^z : Schwingung der e^- in z-Richtung

$$\begin{split} |M_{fi}| &= \left| \langle z_{fi} \right| = \int \underbrace{\Psi_{n'l'm'}^*}_{\langle f|} z \underbrace{\Psi_{nlm}}_{|i\rangle} d^3r \\ &= \iiint R_{n'l'}^* c_{l'm'}^* P_{l'}^{m'*} \underbrace{\varphi_{m'}^*}_{e^{-im'\varphi^*}} \underbrace{r \cos \vartheta}_{z} R_{nl} c_{lm} P_{l}^m \underbrace{\varphi_{m}}_{e^{im\varphi}} r^2 \sin \vartheta \, d\vartheta \, dr \, d\varphi \\ &= \underbrace{\frac{1}{2\pi} \int e^{i(m-m')\varphi} \, d\varphi}_{1} \int \cdots \, d\vartheta \int \cdots \, dr \\ &= \begin{cases} 0 & \text{für } m \neq m' \\ 1 & \text{für } m = m' \end{cases} \Rightarrow 1. \text{ Auswahlregel: } \Delta m = m - m' = 0 \end{cases}$$

$$M_{if}^z \neq 0$$
 für $\Delta m = m - m' = 0$

2. e^- macht Kreisbahn im x-y-Ebene

$$\begin{aligned} x^{+} &:= x + \mathrm{i}y = r \sin \vartheta \mathrm{e}^{\mathrm{i}\varphi} & \text{rechtssinnig} \\ x^{-} &:= x - \mathrm{i}y = r \sin \vartheta \mathrm{e}^{-\mathrm{i}\varphi} & \text{linksssinnig} \\ \left| M_{fi}^{x^{\pm}} \right| &= \iiint \Psi_{n'l'm'} \underbrace{r \sin \vartheta \mathrm{e}^{\pm \mathrm{i}\varphi}}_{x^{\pm}} \Psi_{nlm} \, \mathrm{d}^{3}r \\ &= \underbrace{\frac{1}{2\pi} \int \mathrm{e}^{\mathrm{i}(m-m'\pm 1)\varphi}}_{1 \quad \mathrm{für} \ m-m' = \pm 1} & \Rightarrow 2. \text{ Auswahlregel: } \Delta m = \pm 1 \end{aligned}$$

- 3. Auswertung des Integrals über ϑ liefert $\Delta l\pm 1$ (Drehimpulserhaltungssatz), da Photon $l_{\rm Ph}=1\hbar$ hat
- 4. Integral über r: keineweitere Auswahlregel, Δn beliebig
- \rightarrow beim H-Atom gibt es nur optische Übergänge mit $\Delta m=0,\pm 1$ und $\Delta l=\pm 1$

Gedankenexperiment Drehimpuls sei durch Magnetfeld in z-Richtung quantisiert

Abbildung 9.2: Polarisationen beim Zeeman-Effekt

Beobachtung $\parallel z$:

- \updownarrow : $\Delta m = 0$, keine Emission, linear polarisiert || z
- $(, :): \Delta m = \pm 1$, zirkular polarisiert \rightarrow linear-polarisiert in x-y-Ebene

9.4. H-Atom im Magnetfeld (ohne Spin), Zeeman-Effekt

Abbildung 9.3: Aufbau des Versuchs zur Messung des Zeeman-Effekts

Experimenteller Aufbau

- $\frac{\lambda}{\Delta \lambda}$: Auflösungsvermögen eines spektral-optischen Instruments
- Gitterspektrometer $\frac{\lambda}{\Delta \lambda} = m n$
- Fabry-Perot-Interferometer
- Lummer-Gehrke-Platte

Beobachtung Aufspaltung der Spektrallinien ist proportional zur Stärke des (nicht zu starken) Magnetfeldes $|B|\approx 3\,{\rm T}$

- Normaler Zeeman-Effekt (selten, klassisch erklärbar), z. B. bei Cd
- Anormaler Zeeman-Effekt (häufig, nicht klassisch erklärbar), z. B. H, Na-Doppellinie

Hier zunächst normaler Zeeman-Effekt:

 $\rightarrow\,$ nur 9 erlaubte optische Übergänge

Abbildung 9.4: Normaler Zeeman-Effekt: äquidistante Aufspaltung, ungerade Anzahl

Abbildung 9.5: Anormaler Zeeman-Effekt: äquidistante Aufspaltung innerhalb eines *Multipletts*, gerade Anzahl

Abbildung 9.6: mögliche Übergänge beim Zeeman-Effekt

- $\rightarrow\,$ nur 3 verschiedene Frequenzen
- $\rightarrow\,$ analyse der Polarisationen: $\Delta m=0$ linear polarisiert in z-Richtung
 - $\rightarrow\,$ nicht in z-Richtung beobachtbar
 - \rightarrow nur 2 Linien ($\Delta m = \pm 1$)

Kapitel 10. Der Elektronenspin

10.1. Stern-Gerlach-Experiment, 1922

Vorbemerkungen Kraft auf magnetisches Moment $\vec{\mu} = -\frac{ge}{2m_0}\vec{L}$:

 $V_{\rm mag} = -\vec{\mu} \cdot \vec{B}$, $F_z = \mu_z \frac{\mathrm{d}B}{\mathrm{d}z}$ (\rightarrow inhomogenes Magnetfeld)

Abbildung 10.1: Schematischer Aufbau des Stern-Gerlach-Experiments

Durchführung Atomstrahl der Energie E_{kin} mit zunächst ungeordneten magnetischen Momenten durchläuft ein inhomogenes Magnetfeld, $\vec{v} \perp \vec{B}$, $\vec{v} \perp \nabla \cdot |B|$, $\vec{B} \parallel \vec{\nabla} \cdot |B|$.

Experiment zunächst mit Ag, H, Na, K, \ldots

Abbildung 10.2: Beobachtung für Ag: Aufspaltung in 2 Flecke, klassische Erwartung: 1 großer Fleck

Aufspaltung in 2 Flecke: kann kein Bahndrehimpuls sein, da die Aufspaltung in nur 2 Anteile erfolgt!

2010-06-29

Interpretation neue Quanteneigenschaft, kein Bahndrehimpuls sondern *Eigendrehimpuls (Spin)*. Quantitative Auswertung des Stern-Gerlach-Versuchs \rightarrow Übungsaufgabe

Ergebnis (für Ag-Atome)

 $\mu_z = \pm \mu_{\rm B}$, $\mu_z = gm$

Weitere Beobachtungen

- ablenkende Kraft ist gleich für alle Atome, die nur ein s-Elektron haben $(l=0) \rightarrow$ Spinmagnetismus
- für Atome mit $l \neq 0$: komplexere Aufspaltung
- für l = 0:: zwei Einstellmöglichkeiten: $m_s = \pm \frac{1}{2} \rightarrow s = \frac{1}{2}$

$$\begin{split} \vec{S}^2 \left| \Psi \right\rangle &= \hbar s(s+1) \left| \Psi \right\rangle \\ S_z \left| \Psi \right\rangle &= m_s \hbar \left| \Psi \right\rangle \end{split}$$

Allgemein Gesamtdrehimpuls \vec{J} des Slektrons setzt sich zusammen aus Bahndrehimpuls \vec{L} und Spin \vec{S} : $\vec{J} = \vec{L} + \vec{S}$, $\vec{\mu}_J = \vec{\mu}_L + \vec{\mu}_S$

10.2. Eigenschaften des Spins

UHLENBECK und GOUDSMIT, 1925

Elektron besitzt eigendrehimpuls \vec{S} mit $|\vec{S}| = \sqrt{s(s+1)}\hbar$ mit magnetischem Moment $\vec{\mu}_S = -g_s \frac{e}{2m_0}\vec{S}$ mit $s = \frac{1}{2}$ und $g_s = 2.0023$

10.3. Messung des gyromagnetischen Verhältnisses

10.3.1. Einstein-de-Haas-Versuch

ldee Zu jedem magnetischen Moment μ_z gehört ein mechanischer Drehimpuls J_z

$$-\frac{\mu_z}{J_z} = \gamma = g \frac{\mu_z}{\hbar} = g \frac{e}{m_0}$$

 μ_z und J_z sehr klein
 \to messe große Anzahl gleichzeitig \to Festkörper mi
tN Elementarmagneten mit jeweils magnetischem Momen
t μ_z

$$\gamma = \left|\frac{N\mu_z}{NJ_z}\right| = \frac{\mu_z}{J_z} = \frac{\text{Magnetisierung}}{\text{Drehimpuls auf Festkörper}}$$

Erzeuge Magnetisierung durch äußeres Magnetfeld und messe Rotation des Festkörpers (\rightarrow Übung)

10.3.2. Resonanzmethode von Rabi

I, III: inhomogene B-Felder mit entgegengesetzem Gradienten

II: homogenes *B*-Feld $(\vec{B} \perp \vec{v})$ und zusätzlich betragsmäßig kleines Wechselfeld $B_{\rm HF}$ $(\vec{B}_{\rm HF} \parallel \vec{v})$ mit Frequenz ω

rote Bahn: Atome mit $m_z = \frac{1}{2}$ so dass diese im Detektornachgewiesen werden, solange $\hbar \omega \neq g\mu_{\rm B}B$, ansonsten Resonanzbedingung erfüllt $\rightarrow z$ -Komponente klappt um zu $m_z = -\frac{1}{2} \rightarrow$ Ablenkung in III umgekehrt (blaue Bahn) \rightarrow erreichen den Detektor nicht mehr. \rightarrow Minimum des Detektorsignals bei $\omega = \omega_{\rm R}, \omega_{\rm R} \approx 10^{10} \,\text{Hz}$ für e^-

2010-06-30

Abbildung 10.3: Schematischer Aufbau der Resonanzmessung von Rabi

Bemerkungen

1. Sehr genaue Methode \rightarrow auch Kernspin messbar mit Kernmagneton $(\mu_{\rm B})_{\rm Kern} \equiv \mu_{\rm K} = \frac{e\hbar}{2M_{\rm P}} \approx \frac{1}{2000} \mu_{\rm B}$

wenn $\mu_{\rm Elektron}=0:$ "nackte" Kerne oder diamagnetische Atome (Elektronenspins heben sich auf) $\omega_{\rm R}$ im MHz-Bereich

2. Rabioszillationen: induzierte Übergänge zwischen 2 Zuständen

10.3.3. Elektronenspinresonanz (ESR), Elektronen-paramagnetische Resonanz

Analog zu Rabioszillationen

Abbildung 10.4: Aufbau zur Messung der Elektronenspinresonanz

Feldspule wird in Resonanz betrieben, Umklappen der Spins in Probe stört Resonanzbedingung, Feedbackschleife hält Resonanz aufrecht. Messe Signal, das zur Aufrechterhaltung notwendig ist. Messe Resonanzamplitude als Funktion der Feldstärke $B_{\rm P}$

- Breite wird bestimmt durch Relaxation der Spins in Ausgangszustand \rightarrow Messung der WEchselwirkung der Spins mit Umgebung
- $B_{\rm R}$ durch Feldstärke am Ort des Spins
- Variante: Kernspin resonanz \rightarrow Medizin, Hyperfeinauf spaltung

SS 10

Abbildung 10.5: Messergebnis der Elektronenspinresonanz

10.4. Einfluss des Spins auf die Wasserstoff-Energieniveaus

10.4.1. Spin-Bahn-Wechselwirkung, Feinstruktur des Spektrums

Experimentelle Beobachtung Auch ohne äußeres Magnetfeld sind die Spektrallinien in zwei Komponenten aufgespalten (*Dubletts*): *Feinstruktur*

Abbildung 10.6: Aufspaltung der Spektrallinien

Ursache Bahnbewegung des e^- im Coulombfeld erzeugt Magnetfeld, Spin des Elektrons wechselwirkt mit diesem Magnetfeld \vec{B}_L

$$\vec{B}_L \propto \vec{v} \times \vec{E} \quad \rightarrow \quad \vec{B}_L \parallel \vec{L}$$

 $\rightarrow~\vec{\mu}_S$ wechselwirkt mit $\vec{B}_L:$ 2 Einstellmöglichkeiten

 \rightarrow zusätzlicher Term in Hamilton-Funktion der Form

$$V_{LS} = -\vec{\mu}_S \cdot B_L$$

 \rightarrow Spin-Bahn-Kopplung

Da $\vec{B}_L \propto \vec{L}$: $V_{LS} = f(\vec{L}, \vec{S})$, Energie hängt von relativer Einstellung von \vec{L} und \vec{S} ab. Rechnung liefert für Coulombpotential

$$V_{LS} = \frac{Ze^2\mu_0}{8\pi m_0^2 r^3} (\vec{L} \cdot \vec{S})$$

Typische $|\vec{B}_L|$ im H-Atom: $B_L \approx 1 \text{ T} \rightarrow V_{LS} \approx 10^{-4} eV$ (klassische Rechnung im Rahmen des Bohr'schen Atommodells)

Neue Erhaltungsgröße: $\vec{J} = \vec{L} + \vec{S}$, gleichzietig scharf bestimmbar: $\vec{J}^2, \vec{L}^2, \vec{S}^2$ und $j_z = \hbar m_j$ mit $j_z = l_z + s_z$, aber m_l und m_s nicht separat scharf messbar \rightarrow keine guten Quantenzahlen.

Präzessionsbewegung von \vec{L} und von \vec{S} um \vec{J}

 \vec{J} erfüllt die üblichen Drehimpulsregeln:

$$J^2 = \hbar^2 j(j+1)$$

$$m_j = -j, -j+1, \dots, j-1, j$$

H-Atom: $s = \frac{1}{2} \rightarrow j = l \pm \frac{1}{2}$, je 2 *j*-Werte für 1 $l \rightarrow$ Aufspaltung der Energieniveaus in 2 Unterniveaus, z. B. n = 2, l = 1:

Allgemein

- Vektoraddition zweier Drehimpuls \vec{L},\vec{S} zu $\vec{J:}$ Folie: Vektordiagramm zur Berechnung des Zeeman-Effekts
- Wenn mehr als 1 Elektron, dann kann j ganzzahlig werden $m_j = 0, \pm 1, \pm 2, \ldots$
- Für 1 Elektron: j halbzahlig $m_j = \pm \frac{1}{2}, \pm \frac{3}{2}, \ldots$
- immer 2j + 1 Einstellmöglichkeiten
- Mögliche $|\vec{J}|$ -Werte: $|l-s| \le j \le |l+s|$ mit $\Delta j = 1 \rightarrow$ Zahl der *j*-Werte: $2\min\{s, l\} + 1$, stets gilt $|m_j| \le j$

2010-07-02

$$E_{LS} \sim \frac{Z^4}{n^3 l \left(l + \frac{1}{2} \right) (l+1)}$$

Zusammenfassung

- $\vec{\mu}_S$ kann zwei Einstellungen bezüglich $\vec{\mu}_L$ einnehmen (*parallel* und *antiparallel* oder *up* und *down*)
- Kopplung der Drehimpulse zu neuen Quantenzahlen $J^2,\,L^2,\,S^2$ und J_z
- $l = 0 \rightarrow$ keine Aufspaltung
- höheres j energetisch höher
- $E_{LS} \propto Z^4 \rightarrow$ bei Na gut sichtbar
- Aufspaltung am größten für kleine n
10.4.2. H-Atom im Magnetfeld (mit Spin)

Effekt: Aufhebung der Entartung b
zgl. $J_{\boldsymbol{z}}$

- 1. schwaches Magnetfeld: $V_{mag} = -\vec{\mu}_j \cdot \vec{B} \ll V_{LS}$ (äußeres \vec{B} -Feld zu schwach um Spin-Bahn-Kopplung aufzuheben)
 - $\rightarrow \ \vec{L}$ und \vec{S} bleiben zu \vec{J} gekoppelt, m_j ist gute Quantenzahl
 - $\rightarrow\,$ Energienive aus spalten auf in 2j+1 Komponenten

$$E_{nj} = E_{nj}(B = 0) - \mu_{\rm B}g_j B_{mj}$$

$$g_j = 1 + \frac{j(j+1) - l(l+1) + s(s+1)}{2j(j+1)} \quad (Land\acute{e}\text{-}Faktor)$$

Für Einelektronensystem:

$$g_j = \frac{j + \frac{1}{2}}{l + \frac{1}{2}} \to \frac{2}{3} < g_j < 2$$

 \rightarrow Anormaler Zeeman-Effekt, z. B. Na – D-Linie (Notation: $n^{2s+1}L_J$)

D₁-Linie

```
D<sub>2</sub>-Linie
```


Abbildung 10.7: optische Übergänge beim anormalen Zeeman-Effekt

 $\rightarrow\,$ Termanalyse durch Messung des Zeeman-Effekts

2. starkes Magnetfeld $V_{\rm mag} > V_{LS}$

- $\rightarrow\,$ Entkopplung von \vec{L} und $\vec{S}\rightarrow\vec{L}$ und \vec{S} präzedieren unabhängig voneinander um \vec{B}
- $\rightarrow~L_z$ und S_z sind Erhaltungsgrößen $\rightarrow~m_l$ und m_s sind gute Quantenzahlen

$$E_{n,l,m_l,m_s} = E(B=0) - \mu_{\rm B}B(g_lm_l + g_sm_s)$$

mit $g_s = 2$.

Auswahlregeln: $\Delta m_l = 0, \pm 1, \ \Delta m_s = 0$

Beispiel: Na- D-Linie:jeweils 2 der 6 Linien fallen zusammen \to Aufspaltung der Multipletts wird gleich \to 4 Linien wie beim normalen Zeeman-Effekt

 \rightarrow Paschen-Back-Effekt: Folie

10.4.3. Quantenmechanische Behandlung des Spins und des elektrons im Magnetfeld

(nur kurze Skizze)

1. e^- im Magnetfeld

$$\vec{B} = \operatorname{rot} \vec{A} \rightarrow H = \frac{1}{2m_0} (\underbrace{\vec{p}}_{\rightarrow -i\hbar\nabla} + e\vec{A})^2 + V(r)$$

 \hat{H} -Operator:

$$\hat{H} = \frac{1}{2m_0}(-\mathrm{i}\hbar\nabla + e\vec{A})^2 + V(r)$$

2. Spin: Paulimatrizen

$$\begin{split} \vec{S}^2 \left| s, m_s \right\rangle &= \hbar^2 s(s+1) \left| s, m_s \right\rangle \\ S_z \left| s, m_s \right\rangle &= \hbar m_s \left| s, m_s \right\rangle \end{split}$$

Elektron: $s = \frac{1}{2} \rightarrow m_s = \pm \frac{1}{2}$

$$\begin{vmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix} = |\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \quad (Spin \ up)$$
$$\begin{vmatrix} \frac{1}{2}, -\frac{1}{2} \end{pmatrix} = |\downarrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \quad (Spin \ down)$$
$$S_{z} \begin{pmatrix} 1\\0 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 1\\0 \\1 \end{pmatrix} \\ S_{z} \begin{pmatrix} 0\\1 \end{pmatrix} = -\frac{\hbar}{2} \begin{pmatrix} 0\\1 \end{pmatrix} \\ \end{vmatrix} \Rightarrow S_{z} \rightarrow \frac{\hbar}{2} \begin{pmatrix} 1&0\\0&-1 \end{pmatrix}$$

Definiere:

$$\vec{S} = \frac{\hbar}{2}\vec{\sigma}$$

$$\sigma_z = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} , \quad \sigma_x = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} , \quad \sigma_y = \begin{pmatrix} 0 & -\mathbf{i}\\ \mathbf{i} & 0 \end{pmatrix} \quad (Paulimatrizen)$$

$$[\sigma_x, \sigma_y] = 2\mathbf{i}\sigma_z , \quad \sigma_i^{\dagger} = \sigma_i , \quad \sigma_i^2 = 1$$

B-Feld: $V_{\text{mag}} = -\vec{\mu} \cdot \vec{B}$ für e^- :

$$\vec{\mu} = -\frac{eg}{2m_0}\vec{S}$$

Eigenwertgleichung:

$$\frac{g_s e}{2m_0} \vec{S} \cdot \vec{S}\chi = E\chi$$

Zeitabhängige Schrödingergleichung:

$$\frac{ge\hbar}{4m_0}\vec{B}\cdot\vec{\sigma}\chi = i\hbar\frac{\partial\chi}{\partial t}$$

solange Spinfreiheitsgrad unabhängig von anderen Freiheitsgraden \rightarrow Produktansatz:

$$\Psi_{\uparrow} = \Psi(\vec{r})\chi^+(s)$$

Stand: 13. Juli 2010, 20:05

UNKORRIGIERT!

$$\Psi_{\downarrow} = \Psi(\vec{r})\chi^{-}(s)$$

 $\chi^\pm :$ Eigenfunktionen zu S_z

Wellenfunktion mit beliebigem S_z :

$$\begin{split} \Psi_{\nearrow} &= \alpha^+ \Psi_{\uparrow} + \alpha^- \Psi_{\downarrow} \quad \text{mit} \quad |\alpha^+|^2 + |\alpha^-|^2 = 1 \\ &\Rightarrow \Psi_{\nearrow} = \Psi_r(\alpha^+ \chi^+ + \alpha^- \chi^-) \end{split}$$

3. Spin-Bahn-Wechselwirkung

$$\frac{\mu_0 Z e^2 \hbar}{16\pi m_0^2 r^3} \vec{L} \cdot \vec{\sigma} = V_{LS} \quad \text{(als Operator)}$$

Schrödinger gleichung insgesamt (Pauli-Gleichung):

$$\left[\frac{1}{2m_0}(-\mathrm{i}\hbar\nabla + e\vec{A})^2 + V(r) + \frac{g_s e\hbar}{4m_0}\vec{\sigma}\cdot\vec{B} + \frac{\mu_0 Z e^2\hbar}{16\pi m_0^2 r^3}\vec{L}\cdot\vec{\sigma}\right]\Psi = E\Psi$$

Kapitel 11. Weitere Effekte auf Spektren des H-Atoms

11.1. Relativistische Korrekturen

Weiterer Beitrag zur Feinstruktur. Zunächst klassisch, nicht-relativistisch:

$$H_0 = \frac{p^2}{2m_0} + V$$

relativistisch:

$$H_{\rm R} = \sqrt{p^2 c^2 + m_0^2 c^4} - m_0 c^2 + V$$
$$\approx \frac{p^2}{2m_0} - \frac{p^4}{8m_0^3 c^2} + V$$
relativistische Korrektur

quantenmechanisch:

$$p^4 \rightarrow \bigwedge^2 \quad (\vec{p} = -\mathrm{i}\hbar\vec{\nabla})$$

physikalische Ursache: relativistische Massenzunahme durch Bahnbewegung \rightarrow Erzeugung eines effektiven Magnetfeldes \rightarrow Wechselwirkung mit magnetischem Moment

$$\Delta E_{\rm FS} = \Delta E_{ls} + \Delta E_{\rm rel} = \Delta E_{n,j}$$
$$\Delta E_{n,j} = -E_n \frac{(Z\alpha)^2}{n} \left(\frac{1}{j+\frac{1}{2}} - \frac{3}{4n}\right) \qquad (Dirac)$$

2010-07-05

$$E_n = -\frac{Z^2 e^4 m_0}{32\pi^2 \epsilon_0^2 \hbar^2} \frac{1}{n^2} \quad , \quad \alpha = \frac{e^2}{2\epsilon_0 hc} \approx \frac{1}{137} \quad (Feinstrukturkonstante)$$

Zusammenfassung H-Atom mit Feinstruktur-Korrektur (Notation: $n^{2s+1}l_i$)

- Entartung bzgl. j, keine Entartung bzgl. l
- (2j+1)-fache Entartung bzgl. j_z

2010-07-07

11.2. Die Lamb-Verschiebung

1952: Experimentelle Beobachtung: Auch beim H-Atom gibt es Aufhebung der l-Entartung bei gleichem j. s-Zustände sind systematisch höher als p-Zustände.

Abbildung 11.1: Spektrallinieanaufspaltung durch Spin-Bahn-Kopplung, Feinstruktur und Lamb-Verschiebung

Quantenelektrodynamik (QED)

- Auch Felder sind quantisiert
- Photonen sind Feldquanten des elektromagnetischen Feldes
- Proton und Elektron tauschen ständig virtuelle Photonen (\vec{p} imaginär, E negativ) miteinander aus
- Stichworte: Vakuumfluktuationen, Selbstenergie
- $\rightarrow\,$ Renormierung der Masse und auch der Ladung des e^-
- QED-Vorhersage: Abschwächung des $\frac{1}{r}$ -Potentials für kleine r.
- Nur s-Elektronen haben endliche Aufenthaltswahrscheinlichkeit am Kernort \rightarrow Bindungsenergie für s-Elektronen geringer \rightarrow energetisch höher \rightarrow großer Erfolg der QED.

11.3. Die Hyperfeinstruktur

Auch der Atomkern hat magnetisches Moment.

Proton: Spin $\frac{1}{2}$, anormaler *g*-Faktor: $g_{\rm P} = 5.58$, magnetisches Moment: $\mu_{\rm P} = g_{\rm P}\mu_{\rm K}I$ ($\mu_{\rm K}$: Kernmagneton, *I*: Kernspin)

$$\frac{\mu_{s,e}}{\mu_{\rm P}} = \frac{g_{s,e}\mu_{\rm B}s}{g_{\rm P}\mu_{\rm K}I} = \frac{2}{5.58} \cdot 1836 \approx 660$$

 $\rightarrow \vec{\mu}_{\rm K}$ hat verschiedene Einstellmöglichkeiten im magnetischen Feld das am Kernort durch die e^- erzeugt wird: \vec{B}_0

$$V_{\rm HFS} = -\vec{\mu}_{\rm K} \vec{B}_0$$

(Der Wert von \vec{B}_0 ist im Allgemeinen schwer zu berechnen)

• Kopplung der Drehimpulse des Kerns und der Elektronenhülle zu neuer Erhaltungsgröße

$$\vec{F} = \vec{I} + \vec{J}$$

$$(\vec{F}: \text{Gesamtdrehimpuls des Atoms}, \vec{I}: \text{Kernspin}, \vec{J}: \text{Drehimpuls der Elektronen } \vec{L} + \vec{S})$$

$$\vec{F}^2 = \hbar^2 F(F+1)$$
$$F_Z = m_F \hbar$$

$$m_f = -F, -F+1, \dots, F-1, F$$

Größe der Energieaufspaltung $\Delta E_{\rm HFS} \approx 6 \cdot 10^{-6} \, eV$

Seite 142

Beispiel: H-Atom

$$I = \frac{1}{2}$$
 , $S = \frac{1}{2}$, $F = 0 (\uparrow\downarrow)$ oder $F = 1 (\uparrow\uparrow)$

Messung und Anwendung

- Analog zum Zeeman-Effekt, aber höher auflösendes Spektrometer (Fabry-Perot-Interferometer)
- $\bullet\,$ NMR: Nuclear-Magnetic-Resonance, Kernspin resonanz (wie ESR aber mit Hyperfeinniveaus)
 - $\rightarrow\,$ medizinische Diagnostik: NMR am Proton (Wasserstoff), Messung der Protonenverteilung
 - \rightarrow Chemie: chemische Bindung verändert $\vec{B}_0 \rightarrow$ Verschiebung der Resonanzlinien
 - $\rightarrow\,$ Cs-Atomuhr: Rabioszillationen zwischen zwei Hyperfein-Niveaus des $^{137}{\rm Cs},\,I=\frac{7}{2},\,J=\frac{1}{2}$ $\rightarrow\,F=3,4$
 - $\rightarrow~{\rm Quantenoptik}$

11.4. Weitere Kerneigenschaften

- 1. Isotopieverschiebung: Endliche Masse, endliche Ausdehnung der Ladungsverteilung des Kerns \rightarrow Abweichung vom Coulomb-Potential \rightarrow Verschiebung der Energieniveaus \rightarrow Untersuchung mit myonischen Atomen (da näher am Kern).
- 2. NQR: Nuclear-Quadrupol-Resonance: Abweichung des Kerns von Kugelgestalt \rightarrow Aufspaltung der Niveaus durch Quadrupolmoment.

IK4 Teil 2: Einschub

Kapitel E. Einschub: Wechselwirkung von Strahlung mit Materie und Strahlungsdetektor

Bemerkung

inelastische Streuung Teil der E_{kin} der Stoßpartner geht in Anregungsenergie über

$$\sum E_{\mathrm{kin,vorher}} \neq \sum E_{\mathrm{kin,nachhher}}$$

elastische Streuung E_{kin} wird zwischen Stoßpartnern ausgetauscht

$$\sum E_{\rm kin,vorher} = \sum E_{\rm kin,nachhher}$$

E.1. Wechselwirkung

E.1.1. geladene Teilchen

(geordnet nach Häufigkeit)

- 1. inelastische Streuung an Elektronen: geladenes Teilchen (α , e^-) verliert Energie an die e^- der Atome oder Moleküle. Atome werden dabei angeregt oder *ionisiert*, wenn Energie > Bindungsenergie
- elastische Streuung am Kern oder an den inneren Schalen der Atome: Teilchen werden bei Annäherung an den positiv geladenen Kern gestreut und beschleunigt bzw. abgebremst. Aber der Kern wird nicht angeregt. Rückstoßenergie klein, wenn Massenunterschied zwischen streuenden Teichen und Targetteilchen groß.
- 3. Inelastische Streuung am Kern: Bei hochangeregten schweren Kernen können diese angeregt werden oder sogar Kernreaktionen (z. B. Einbau des Beschussteilchens in Kern) auftreten.
- 4. Elastische Streuung an Elektronen: Bei geringen Energien $E_{\rm kin} < 100 e\,{\rm V}$ möglich, bei hohen Energien zu vernachlässigen

Bremsstrahlung e^- erfährt im Coulombfeld des Kerns eine Beschleunigung \rightarrow Abstrahlung von Photonen $\rightarrow e^-$ verliert $E_{\rm kin}$

- $\lambda_{\min} = \frac{hc}{E_{\min}}$
- charakteristisches Spektrum: Übergänge zwischen der e^{-in} der Atomhülle

Moseley'sches Gesetz $\nu_{K_{\alpha}} = \frac{3}{4}hc(Z-1)^2$ (Frequenz der langwelligsten charakteristischen Linie eines Elements), K_{α}: Übergang von n = 2 auf n = 1

Bethe-Bloch-Formel Energieverlust, Bremsvermögen (*stopping power*): $\frac{dE}{dx}$

Abbildung E.1: Zur Herleitung der Bethe-Bloch-Formel

- z, Z: Ladung des einfallenden und des Targetteilchens
- v: Geschwindigkeit des einfallenden Teilchensorten
- nZ: Ladungsdichte
- I: Ionisierungspotential $(I \approx 13.6 e \,\mathrm{V} \cdot Z)$

$$\frac{\mathrm{d}E}{\mathrm{d}x} = -\frac{4\pi e^2}{m_e} n Z \frac{z^2}{v^2} \left| \ln\left(\frac{2m_e v^2}{I}\right) - \ln(1-\beta^2) - b^2 - \frac{A}{Z} \right|$$
(E.1)

 m_e : Elektronenmasse

 $\beta = \frac{v}{c}$

A: Konstante, die die Bindung der e^- in verschiedenen Zuständen berücksichtigt

Interpretation

 $\frac{\mathrm{d}E}{\mathrm{d}r} \propto n$ proportional zu der Anzahl der Stöße

- $\frac{\mathrm{d}E}{\mathrm{d}x} \propto x^2$ hochgeladene Teilchen werden stark gebremst
- $\frac{\mathrm{d}E}{\mathrm{d}x}$ hängt nicht von der Masse der einfallenden Teilchen ab $\to \frac{\mathrm{d}E}{\mathrm{d}x}$ ist für alle Teilchen gleicher Geschwindigkeit und Ladung gleich

Annahmen

- 1. Geschossteilchen hat konstante Ladung
- 2. Neutrale, nicht-ionisierte Materie

3.
$$E > I$$

- $E \lesssim 500I \rightarrow \ln \frac{2mv^2}{I}$ steigt stark an
- $500I < E < Mc^2 \rightarrow \ln \frac{v^2}{I} \approx \text{const}$, weitere Terme vernachlässigbar $\rightarrow -\frac{\mathrm{d}E}{\mathrm{d}x} \propto \frac{1}{E}$
- Für $E \gtrsim 3Mc^2$: relativistische Korrekturen
- $\rightarrow\,$ schnelle Teilchen verlieren weniger Energie pro Strecke
- \rightarrow größter Teil der Energie wird kurz vordem Stoppen abgegeben (später mehr in E2: Detektoren)

Abbildung E.2: Ergebnis der Bethe-Block-Formel

E.1.2. Neutrale Teilchen (hier: Photonen)

E.1.2.1. Nachweis zumeist über geladenes Teilchen

1. Paarbildung

Erlaubte Energien für relativistische Elektronen

$$E = \sqrt{p^2 c^2 + E_0^2}$$
(E.2)

 E_0 : Ruheenergie des e^- , $E_0 = m_e c^2 = 511 \,\mathrm{keV}$

Dirac-Theorie: $E > E_0$: Elektron, $E < -E_0$: Positron (positive Ladung, gleiche Ruhemasse)

→ wenn Photonenenergie ausreicht h $\nu < 2E_0$ und Impulssatz erfüllt werden kann (schweres Teilchenin der Nähe), kann e^-e^+ -Paar erzeugt werden. e^+ werden wieder vernichtet durch Stoß mit e^- unter Abstrahlung zweier Photonen mit h $\nu = 511 \text{ keV}$

2. Compton-Effekt

Betrachte $e^-,$ an dem gestreut wurde. Bei Rückwärtsstreuung des Photons hat e^- maximale Emergie

$$E_{\rm kin,max} = \frac{E}{1 + \frac{E_0}{2}E}$$

 $E = h\nu, E_0 = m_e c^2$: Ruheenergie des e^-

Abbildung E.3: Compton-Strahlung

3. Photoeffekt

Ionisierung eines Atoms durch Absorption eines Photons

$$E_{\rm kin} = E - W = h\nu - W$$

 \rightarrow gesamte Energie des Photons wird an e^- übertragen (bis auf kleine Austrittsarbeit $W\sim 5e\,{\rm V})$

Angereffekt: Anregungsenergie wird anderem e^- übertragen.

Abbildung E.4: Spektrum bei Wechselwirkung eines Photons mit Materie

E.1.2.2. Totaler Absorptionskoeffizient für elektromagnetische Strahlung in Materie

vgl. IK3:

$$I(x) = I_0 e^{-\alpha x}$$
, $\alpha = \frac{1}{\lambda}$ (E.3)

 α : linearer Absorptionskoeffizient, λ : mittlere freie Weglänge

$$\alpha = \alpha_{\text{Comptoneffekt}} + \alpha_{\text{Photoeffekt}} + \alpha_{\text{Paarbildung}} \tag{E.4}$$

Zusammenhang mit Wirkungsquerschnitten:

$$\alpha = \underbrace{N}_{\text{Teilchendichte}} (\sigma_{\text{C}} + \sigma_{\text{Ph}} + \sigma_{\text{Paar}})$$
(E.5)

 σ und α sind alle element- und energieabhängig. Herleitung aufwändig, hier nur Ergebnisse, z. B. Aluminium: leichtes Element und viele freie Elektronen: Comptoneffekt außerdem Photoeffekt bei kleinen Energien, Paarbildung bei hohen Energien. (S. Folie 3.21: Die Energieabhängigkeit der linearen Absorptionskoeffizienten)

	Energieabhängigkeit	Kernladungsabhängigkeit	überwiegt bei
Comptoneffekt	$\propto rac{1}{E^2}$	$\propto rac{1}{Z}$	Z klein, $E \lesssim 1{\rm MeV}$
Photoeffekt	$\propto E^{-7/2}$	$\propto Z^4$ bis Z^5	Z groß, E klein
Paarbildung	$\log E$ ab $E > 2E_0$	$\propto Z^2$	Z groß, E groß

Wiederholung IK2, IK3: Nachweis und Erzeugung niederenergetischer Photonen: Infrarot, Mikrowellen, Radiowellen \rightarrow Übungsaufgabe

IK4 Teil 3:

Anhang

Abbildungsverzeichnis

2.1Zerlegung des Würfels in kleine Teilstücke \rightarrow Verdampfung (Verdampfungsenergie, Oberflächenenergie)42.2Schematischer Aufbau des Laue-Verfahrens52.3Beugung an Gitterebenen52.4Feldüberhöhung an der Spitze62.5Schematischer Aufbau eines Feldemissionsmikroskops62.6Aufbau der Drehspiegelmethode und zeitlicher Verlauf92.7Aufbau der Drehspiegelmethode und zeitlicher Verlauf92.8Messwerte des Millikan-Versuchs \rightarrow diskrete Ladungswerte102.9Massenspektrometrie I: Trajektorie von Teilchen im elektrischen Feld hängt nur von der Anfangsenergie ab122.10Massenspektrometrie II: Trajektorie von Teilchen im magnetischen Feld hängt nur vom Impuls ab122.11Kombination von E - und B -Feld zur Relisierung eines Massenspektrometers122.12Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B -Feld nach ASTON, 1919132.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektorma- gnet142.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom, gesucht: Anzahl der abgelenkten Teilchen mit Radius r_2 162.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie182.21Messengebnisse zur Elektronenstreung182.22Zusammenhang zwischen Stre	1.1	Aufbau einer Schattenkreuzröhre	3
gie, Oberflächenenergie)42.2Schematischer Aufbau des Laue-Verfahrens52.3Beugung an Gitterebenen52.4Feldüberhöhung an der Spitze62.5Schematischer Aufbau eines Feldemissionsmikroskops62.6Aufbau eines Rastertunnelmikroskops72.7Aufbau der Drehspiegelmethode und zeitlicher Verlauf92.8Messwerte des Milikan-Versuchs \rightarrow diskrete Ladungswerte102.9Massenspektrometrie I: Trajektorie von Teilchen im elektrischen Feld hängt nur von der Anfangsenergie ab112.10Massenspektrometrie II: Trajektorie von Teilchen im magnetischen Feld hängt nur vom Impuls ab122.11Kombination von E- und B-Feld zur Relisierung eines Massenspektrometers122.12Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B-Feld nach ASTON, 1919132.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektormagnet142.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom, gesucht: Anzahl der abgelenkten Teilchen162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teilchen162.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie182.21Geschwindigkeit durch elektrische and Materie182.22Rutherford-Streuung192.	2.1	Zerlegung des Würfels in kleine Teilstücke \rightarrow Verdampfung (Verdampfungsener-	
2.2Schematischer Aufbau des Laue-Verfahrens52.3Beugung an Gitterebenen52.4Feldüberhöhung an der Spitze62.5Schematischer Aufbau eines Feldemissionsmikroskops62.6Aufbau eines Rastertunnelmikroskops72.7Aufbau der Drehspiegelmethode und zeitlicher Verlauf52.8Messwerte des Millikan-Versuchs \rightarrow diskrete Ladungswerte102.9Massenspektrometrie I: Trajektorie von Teilchen im elektrischen Feld hängt nur von der Anfangsenergie ab112.10Massenspektrometrie II: Trajektorie von Teilchen im magnetischen Feld hängt nur vom Impuls ab122.11Kombination von E - und B -Feld zur Relisierung eines Massenspektrometers122.12Geschwindigkeitsfokussierung durch Linsatz von geschickt geformtem B -Feld mach ASTON, 1919132.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektorma- gnet132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer152.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstreung182.21Messung zur Streuung von Elektronen an Materie182.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung22 <td< td=""><td></td><td>gie, Oberflächenenergie)</td><td>4</td></td<>		gie, Oberflächenenergie)	4
2.3Beugung an Gitterebenen52.4Feldüberhöhung an der Spitze62.5Schematischer Aufbau eines Feldemissionsmikroskops62.6Aufbau eines Rastertunnelmikroskops72.7Aufbau der Drehspiegelmethode und zeitlicher Verlauf92.8Messwerte des Millikan-Versuchs \rightarrow diskrete Ladungswerte102.9Massenspektrometrie I: Trajektorie von Teilchen im elektrischen Feld hängt nur von der Anfangsenergie ab112.10Massenspektrometrie II: Trajektorie von Teilchen im magnetischen Feld hängt nur vom Impuls ab122.11Kombination von E- und B-Feld zur Relisierung eines Massenspektrometers122.12Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B-Feld nach ASTON, 1919132.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektorma- gnet132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie182.21Messergebnisse zur Elektronenstreuung182.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung<	2.2	Schematischer Aufbau des Laue-Verfahrens	5
2.4Feldüberhöhung an der Spitze662.5Schematischer Aufbau eines Feldemissionsmikroskops662.6Aufbau eines Rastertunnelmikroskops72.7Aufbau der Drehspiegelmethode und zeitlicher Verlauf72.8Messwerte des Millikan-Versuchs \rightarrow diskrete Ladungswerte102.9Massenspektrometrie I: Trajektorie von Teilchen im elektrischen Feld hängt nur von der Anfangsenergie ab112.10Massenspektrometrie II: Trajektorie von Teilchen im magnetischen Feld hängt nur vom Impuls ab122.11Kombination von E- und B-Feld zur Relisierung eines Massenspektrometers122.12Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B-Feld nach ASTON, 1919132.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektormagnet132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teichen162.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie182.21Messergebnisse zur Elektronenstreuung182.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streupar	2.3	Beugung an Gitterebenen	5
2.5Schematischer Aufbau eines Feldemissionsmikroskops62.6Aufbau eines Rastertunnelmikroskops72.7Aufbau der Drehspiegelmethode und zeitlicher Verlauf72.8Messwerte des Millikan-Versuchs \rightarrow diskrete Ladungswerte102.9Massenspektrometrie I: Trajektorie von Teilchen im elektrischen Feld hängt nur von der Anfangsenergie ab112.10Massenspektrometrie II: Trajektorie von Teilchen im magnetischen Feld hängt nur vom Impuls ab122.11Kombination von E - und B -Feld zur Relisierung eines Massenspektrometers122.12Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B -Feld nach ASTON, 1919132.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektorma- gnet132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teiclchen162.20Messung zur Streuung von Elektronen an Materie182.21Messergebnisse zur Elektronenstreuung192.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim$ cot $\frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt23 <t< td=""><td>2.4</td><td>Feldüberhöhung an der Spitze</td><td>6</td></t<>	2.4	Feldüberhöhung an der Spitze	6
2.6Aufbau eines Rastertunnelmikroskops772.7Aufbau der Drehspiegelmethode und zeitlicher Verlauf782.8Messwerte des Millikan-Versuchs \rightarrow diskrete Ladungswerte102.9Massenspektrometrie I: Trajektorie von Teilchen im elektrischen Feld hängt nur von der Anfangsenergie ab112.10Massenspektrometrie II: Trajektorie von Teilchen im magnetischen Feld hängt nur vom Impuls ab122.11Kombination von E - und B -Feld zur Relisierung eines Massenspektrometers122.12Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B -Feld nach ASTON, 1919132.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektorma- gnet132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teiclchen162.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie182.21Messergebnisse zur Elektronenstreuung192.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Aufbau des Rutherford-Streuversuchs242.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängig	2.5	Schematischer Aufbau eines Feldemissionsmikroskops	6
2.7Aufbau der Drehspiegelmethode und zeitlicher Verlauf92.8Messwerte des Millikan-Versuchs \rightarrow diskrete Ladungswerte102.9Massenspektrometrie I: Trajektorie von Teilchen im elektrischen Feld hängt nur von der Anfangsenergie ab112.10Massenspektrometrie II: Trajektorie von Teilchen im magnetischen Feld hängt nur vom Impuls ab122.11Kombination von E- und B-Feld zur Relisierung eines Massenspektrometers122.12Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B-Feld nach ASTON, 1919132.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektormagnet gnet132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teilchen162.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie182.21Messergehnisse zur Elektronenstreuung182.22Rutherford-Streuung2222Herleitung zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes24	2.6	Aufbau eines Rastertunnelmikroskops	$\overline{7}$
2.8Messwerte des Milikan-Versuchs \rightarrow diskrete Ladungswerte102.9Massenspektrometrie I: Trajektorie von Teilchen im elektrischen Feld hängt nur von der Anfangsenergie ab112.10Massenspektrometrie II: Trajektorie von Teilchen im magnetischen Feld hängt nur vom Impuls ab122.11Kombination von E - und B -Feld zur Relisierung eines Massenspektrometers122.12Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B -Feld nach ASTON, 1919132.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektorma- gnet132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teilchen162.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie182.21Messergebnisse zur Elektronenstreuung182.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28	2.7	Aufbau der Drehspiegelmethode und zeitlicher Verlauf	9
2.9Massenspektrometrie I: Trajektorie von Teilchen im elektrischen Feld hängt nur von der Anfangsenergie ab112.10Massenspektrometrie II: Trajektorie von Teilchen im magnetischen Feld hängt nur vom Impuls ab122.11Kombination von E- und B-Feld zur Relisierung eines Massenspektrometers122.12Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B-Feld nach Astron, 1919132.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektormagnet132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teilchen162.20Messeng zur Streuung von Elektronen an Materie182.21Messergebnisse zur Elektronenstreuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.8	Messwerte des Millikan-Versuchs \rightarrow diskrete Ladungswerte	10
2.10Massenspektrometrie II: Trajektorie von Teilchen im magnetischen Feld hängt nur vom Impuls ab122.11Kombination von E - und B -Feld zur Relisierung eines Massenspektrometers122.12Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B -Feld nach ASTON, 1919132.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektormagnet132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teiclchen162.19Verlauf der Lichtintensität durch ein Medium172.20Messergebnisse zur Elektronenstreuung182.21Messergebnisse zur Elektronenstreuung182.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-2.24Lusammenharg zwischen Streuversuchs242.25Herleitung Photoeffekt: negativ geladene Zinkplatte wird durch UV-	2.9	Massenspektrometrie I: Trajektorie von Teilchen im elektrischen Feld hängt nur von der Anfangsenergie ab	11
111112112nur vom Impuls ab112113Kombination von E- und B-Feld zur Relisierung eines Massenspektrometers112114112Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B-Feld113115Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektormagnet113114Massenspektrometrie durch elektrische Wechselfelder114115Quadrupolmassenspektrometer114116Wien'sches Geschwindigkeitsfilter115117Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 116118Teilchenstrom, gesucht: Anzahl der abgelenkten Teiclchen116119Verlauf der Lichtintensität durch ein Medium117120Messung zur Streuung von Elektronen an Materie118121Messergebnisse zur Elektronenstreuung118122Rutherford-Streuung118123Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung126124Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 122125Herleitung zum differentiellen Streuquerschnitt123126Potentialverlauf in Abhängigkeit des Abstandes124127Aufbau des Rutherford-Streuversuchs124128qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-129LeiterLeiter126	2.10	Massenspektrometrie II: Trajektorie von Teilchen im magnetischen Feld hängt	**
2.11Kombination von E - und B -Feld zur Relisierung eines Massenspektrometers122.12Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B -Feld nach Aston, 1919132.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektormagnet132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teilchen162.19Verlauf der Lichtintensität durch ein Medium172.20Messengebnisse zur Elektronenstreuung182.21Messergebnisse zur Elektronenstreuung192.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuyerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.10	nur vom Impuls ab	12
2.12Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem B-Feld nach Astron, 1919132.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektormagnet132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teiclchen162.19Verlauf der Lichtintensität durch ein Medium172.20Messergebnisse zur Elektronenstreuung182.21Messergebnisse zur Elektronenstreuung192.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuwerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.11	Kombination von E- und B-Feld zur Belisierung eines Massenspektrometers	12
111nach Astron, 19191112.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektormagnet132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teiclchen162.19Verlauf der Lichtintensität durch ein Medium172.20Messengebnisse zur Elektronenstreuung182.21Messergebnisse zur Elektronenstreuung182.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.12	Geschwindigkeitsfokussierung durch Einsatz von geschickt geformtem <i>B</i> -Feld	
2.13Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektormagnetgnet132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teilchen162.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie182.21Messergebnisse zur Elektronenstreuung182.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24		nach ASTON. 1919	13
1131131132.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter142.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teichen162.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie182.21Messergebnisse zur Elektronenstreuung182.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.13	Richtungsfokussierung durch unterschiedliche Laufzeiten durch den Sektorma-	
2.14Massenspektrometrie durch elektrische Wechselfelder142.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter142.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teiclchen162.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie182.21Messergebnisse zur Elektronenstreuung182.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24		gnet	13
2.15Quadrupolmassenspektrometer142.16Wien'sches Geschwindigkeitsfilter142.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teiclchen162.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie182.21Messergebnisse zur Elektronenstreuung182.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.14	Massenspektrometrie durch elektrische Wechselfelder	14
2.16Wien'sches Geschwindigkeitsfilter172.16Wien'sches Geschwindigkeitsfilter152.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teiclchen162.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie182.21Messergebnisse zur Elektronenstreuung182.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.15	Quadrupolmassenspektrometer	14
2.17Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2 162.18Teilchenstrom, gesucht: Anzahl der abgelenkten Teilchen162.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie182.21Messergebnisse zur Elektronenstreuung182.22Rutherford-Streuung192.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.16	Wien'sches Geschwindigkeitsfilter	15
2.11Teilchenström der Fuhren inte Tetatab († 600 der Fuhren inte Tetatab († 200 der Lichtintensität durch ein Medium	2.17	Teilchenstrom der Teilchen mit Radius r_1 trifft auf Teilchen mit Radius r_2	16
2.19Verlauf der Lichtintensität durch ein Medium172.20Messung zur Streuung von Elektronen an Materie172.21Messergebnisse zur Elektronenstreuung182.22Rutherford-Streuung182.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.18	Teilchenstrom, gesucht: Anzahl der abgelenkten Teiclchen	16
2.20Messung zur Streuung von Elektronen an Materie112.21Messergebnisse zur Elektronenstreuung182.22Rutherford-Streuung182.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.19	Verlauf der Lichtintensität durch ein Medium	17
2.21Messergebnisse zur Elektronenstreuung12.22Rutherford-Streuung182.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.20	Messung zur Streuung von Elektronen an Materie	18
2.22Rutherford-Streuung122.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.21	Messergebnisse zur Elektronenstreuung	18
2.23Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung222.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.22	Rutherford-Streuung	19
2.24Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$ 222.25Herleitung zum differentiellen Streuquerschnitt232.26Potentialverlauf in Abhängigkeit des Abstandes242.27Aufbau des Rutherford-Streuversuchs242.28qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-24	2.23	Zusammenhang zwischen Streuwinkel ϑ und δ bei der Rutherford-Streuung .	22
2.25 Herleitung zum differentiellen Streuquerschnitt 23 2.26 Potentialverlauf in Abhängigkeit des Abstandes 24 2.27 Aufbau des Rutherford-Streuversuchs 24 2.28 qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent- 24	2.24	Zusammenhang zwischen Streuwinkel ϑ und Streuparameter $b \sim \cot \frac{\vartheta}{2}$	${22}$
2.26 Potentialverlauf in Abhängigkeit des Abstandes 24 2.27 Aufbau des Rutherford-Streuversuchs 24 2.28 qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent- 24	2.25	Herleitung zum differentiellen Streuguerschnitt	23
2.27 Aufbau des Rutherford-Streuversuchs 24 2.28 qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-	2.26	Potentialverlauf in Abhängigkeit des Abstandes	<u>-</u> 0 24
2.28 qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-	2.27	Aufbau des Rutherford-Streuversuchs	24
	2.28	qualitativer Photoeffekt: negativ geladene Zinkplatte wird durch UV-Licht ent-	
laden		laden	25
2.29 Aufbau einer Photozelle (Polarität der Spannung so, dass alle ausgelösten e^- zur Anode gelangen) 26	2.29	Aufbau einer Photozelle (Polarität der Spannung so, dass alle ausgelösten e^- zur Anode gelangen)	26
2.30 Versuchsaufbau zum quantitativen Photoeffekt	2.30	Versuchsaufbau zum quantitativen Photoeffekt	26
2.31 Ergebnisse des Photoeffekt-Versuchs	2.31	Ergebnisse des Photoeffekt-Versuchs	26
2.32 Abhängigkeit des Photostroms I und der Grenzfrequenz $\nu_{\rm G}$ von der Intensität P und vom Metall	2.32	Abhängigkeit des Photostroms I und der Grenzfrequenz $\nu_{\rm G}$ von der Intensität P und vom Metall	27
2.33 Abhängigkeit der Energie U_0 und der Austrittsenergie U_A von der Frequenz und vom Metall	2.33	Abhängigkeit der Energie U_0 und der Austrittsenergie U_A von der Frequenz und vom Metall	27
2.34 Aufbau zum Erzeugen von Röntgenstrahlung und Röntgenspektrum	2.34	Aufbau zum Erzeugen von Röntgenstrahlung und Röntgenspektrum	$\frac{1}{29}$
2.35 Intensität der Röntgenstrahlung für Molvbdän	2.35	Intensität der Röntgenstrahlung für Molvbdän	29
2.36 Aufbau des Compton-Versuchs 29	2.36	Aufbau des Compton-Versuchs	29

2.37	Experimentelle Beobachtung des Compton-Effekts: Die Intensitätsspitze wird
	mit zunehmendemStreuwinkel in den niederenergetischeren Bereich verschoben 30
2.38	Stoßvorgang beim Compton-Effekt
2.39	Aufbau zum Davisson-Germer-Versuch32
2.40	Polardiagramme der Ergebnisse des Davisson-Germer-Experiments bei 40 V und 54 V
2 41	Aufbau zum Debve-Scherrer-Verfahren 33
2.41	Bragg-Bedingung
2.42	Elektronenbeugung an polykristalliner Graphitfolie
2.10	Geometrie der Öffnungswinkel beim Dehve-Scherrer-Verfahren 34
2.11	Hohlraum als Bealisierung eines schwarzen Körpers
2.46	Hohlraum mit Öffnung 35
2.47	Moden im 3-dimensionalen Koordinatensystem im \vec{k} -Baum $k_i > 0$ 36
2.48	Vergleich der $\langle \varepsilon_n \rangle$ für den klassischen Fall und nach der Quantenhypothese 38
2.49	Verlauf der Planck'schen Strahlungsformel
2 50	Abhängigkeit der Planck'schen Strahlungsformel von der Temperatur 40
2.50 2.51	Aufbau zur Messung des Planck'schen Strahlungsgesetzes 40
31	Grundsätzlicher Aufbau des Doppelspaltexperiments 41
3.2	Doppelspaltexperiment mit klassischen Teilchen und dessen Wahrscheinlichkeits-
	verteilung
3.3	Doppelspaltexperiment mit klassischen Wellen und dessen Wahrscheinlichkeits- verteilung
3.4	Doppelspaltexperiment mit Elektronen (Photonen) und dessen Wahrscheinlich-
0.1	keitsverteilung
3.5	Gauß'sches Wellenpaket
3.6	Gauß'sches Wellenpaket im Ortsraum zerfließt mit der Zeit
3.7	Aufbau zum "Quantenradierer"
4.1	Aufbau zur Messung der Spektrallinien48
4.2	Messung der gelben Na-Doppellinie mit Hilfe eines Gitterspektrometers 49
4.3	Ritz'sches Kombinationsprinzip \rightarrow Vermutung gleicher, diskreter Energieniveaus der e^{-im} Atom 50
44	Aufbau des Franck-Hertz-Versuchs und dessen Ergebnis 50
4.5	Zur Berechnung im Schwerpunktsystem
5.1	Wellenfronten bewegen sich über die Flächen mit $\vec{n}' = \text{const}$ und $W = \text{const}$
0.12	hinweg
6.1	stückweise konstantes $V(x)$ 68
6.2	Wellenfunktion an Potentialstufe
6.3	Potentialstufe 69
6.4	Ansatz zum Streuproblem
6.5	Zur Normierung der Teilchenstromdichte
6.6	Aufspaltung der Aufenthaltswahrscheinlichkeit
6.7	Wellenfunktion an Potential für $E < V$
6.8	Potentialbarriere der Breite a und der Höhe V
6.9	Tunnelung durch eine Potentialbarriere
6.10	Potentialverlauf beim α -Zerfall
6.11	Messung des Tunnelstroms durch einen Isolator
6.12	Potentialverlauf bei kalter Emission von e^-
6.13	Potentialtopf mit $V < V_{\infty}$

6.14	Potentialtopf mit unendlich hohen Wänden	76
6.15	Lösungen der Wellengleichung im Potentialtopf	77
6.16	Potentialtopf mit endlich hohen Wänden	78
6.17	Grafische Lösungen der Gleichungen 6.39 und 6.40	80
6.18	Resonanzen	81
6.19	Delta-Potential: $aV = \text{const}$	81
6.20	Gebundener Zustand am Delta-Potential	83
6.21	freie Elektronen in einem periodischen Potential: reduziertes Zonenschema	84
6.22	freie Elektronen in einem periodischen Potential: reduziertes Zonenschema	85
6.23	Morse-Potential \rightarrow Näherung als harmonischer Oszillator	86
6.24	Ψ -Funktion mit Hermite-Polynomen	89
8.1	Beispiel für ein Eigenspektrum eines Potentialverlaufs	122
8.2	Spektroskopische Bezeichnung: "s-Orbital"	124
9.1	hier fehlt noch eine passende Bildunterschrift!	127
9.2	Polarisationen beim Zeeman-Effekt	130
9.3	Aufbau des Versuchs zur Messung des Zeeman-Effekts	130
9.4	Normaler Zeeman-Effekt: äquidistante Aufspaltung, ungerade Anzahl	131
9.5	Anormaler Zeeman-Effekt: äquidistante Aufspaltung innerhalb eines <i>Multipletts</i> ,	
	gerade Anzahl	131
9.6	mögliche Übergänge beim Zeeman-Effekt	131
10.1	Schematischer Aufbau des Stern-Gerlach-Experiments	133
10.2	Beobachtung für Ag: Aufspaltung in 2 Flecke, klassische Erwartung: 1 großer	
	Fleck	133
10.3	Schematischer Aufbau der Resonanzmessung von Rabi	135
10.4	Aufbau zur Messung der Elektronenspinresonanz	135
10.5	Messergebnis der Elektronenspinresonanz	136
10.6	Aufspaltung der Spektrallinien	136
10.7	optische Übergänge beim anormalen Zeeman-Effekt	138
11.1	Spektrallinieanaufspaltung durch Spin-Bahn-Kopplung, Feinstruktur und Lamb-	
	Verschiebung	142
E.1	Zur Herleitung der Bethe-Bloch-Formel	146
E.2	Ergebnis der Bethe-Block-Formel	147
E.3	Compton-Strahlung	147
E.4	Spektrum bei Wechselwirkung eines Photons mit Materie	148