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Bilayer Stacking

a = £(V3VE)  as = 4(v3,—V3)

51 = 2(1,V3) 82=2(1,—v3) 85 =—a(1,0)

a=2.46 A




Tight-binding In Bernal stacking

Yo =t in-plane hopping

v1 =t1 ~ 0.4 eV hopping energy between
Al and A2

v3 ~ 0.3 eV hopping energy between
Bl and B2

v4 =~ 0.04 eV hopping energy between
Al(A2) and B2(BI)

Ui, o (bm,i,o) annihilates an electron with spin s, on sublattice
A(B), in plane m=1,2, at site i
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Minimal tight-binding model

Neglect contributions coming from 73, Y4 a; = (a,0)

stacking

t~3.1eV in-plane hopping

t1 =~ 0.4 eV  hopping energy between Al and B2

o (R)bi o (R) +a] , (R)bio(R —ay) +a]
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Perpendicular electric and
magnetic field

External E field: electrostatic energy difference between the two layers

. (R+8
External B field: affects only the in-plane hopping ¢t — te'® Jr T Adr




Bulk electronic properties

impose periodic boundary condition a;-(R) = ﬁ S e Ra; oy

apply a Fourier transform bio(R) = ﬁ S ek Ry,

H = Za,k wi,kawo_J{
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s = 1 4 etkar 4 gika €k = Tt|sk|  single layer graphene dispersion
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Energy disperison for V=0

2
B =ty g

Conduction (+) and valence (-) bands
touch at the corners of the BZ, the K
and K’ points

Undoped Bilayer graphene has one electron per p-orbital

Fermi energy crosses at the K and K’ points

Fermi see: K and K’ inequivalent points

parabolic dispersion
expanding at
aK' = (47/3,0) = —aK

effective mass

Gapless
semiconductor




Energy disperison for V

Gap: semiconductor
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A tunable gap opens between the conduction and valence band

Fermi see no longer a point

for V <t, Fermiseearing
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Trigonal distortion originating
from single layer dispersiojn

Mexican hat: Fermi ring

Eigenvalues effective two-band
Hamiltonian




Low energy physics

Near the K point linear expansion of ex = vpli(k, — iky,) = vppe"¥p
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Effective two-band Hamiltonian
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we want to find an effective description of the dynamics of the subspace of Hll

Introduce the Green function G = (H — E)~!
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Askingthat GG '=G(H-E)=1

we obtain Gl_ll + FE = Hqi1 — ngGéOQ)Hgl
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Effective Hamiltonian

& =1 involves

£ = —1 involves




Chirality and Berry phase

H o ( 2 7gr ) B (r1)? )

Family of Hamiltonians which are chiral in the sublattice space

n=e, COS(JQO) + €y SiH(JSO) degree of chirality:

Hj; = fjf(|p‘)0' -1 P/p — (COS(SO)a Sin(@)) J=1 monolayer

T = pew J=2 bilayer

P

p—
P

o - Chirality operator (elicity)
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monolayer 7T

Berry phase: propagation along a closed orbit  J7r bilayer 27T

Due to inverted definition of * Quasiparticle in different valley have
sublattice component opposite chirality




