The Quantum Hall Effect in graphene

Seminar: Electronic properties of graphene SS 2009

Matthias Bädicker

Content

- Quantum Hall Effect in a 2DEG
- How to produce a 2DEG
- QHE by solving the Schrödinger equation
- Experimental results
- Quantum Hall Effect in graphene
- QHE described by the Dirac equation
- The anomalous integer QHE
- Experimental results
- Summary

2DEG

- 2-dimensional electron gas, builded in a structur metal-oxide-semiconductor

- Variation of the band structure via V_{G} leads to a very thin layer of quasi-free electrons between the semiconductor and the oxide
- Thickness of the 2DEG: 5-10 nm

Experimental facts

- Current in the 2DEG in x-direction and a magnetic field in z-direction induces a Hall-voltage V_{H} in the y-direction
$V_{13}=V_{H}$

$$
\begin{aligned}
j_{x} & =\sigma_{x x} E_{x} \\
j_{y} & =\sigma_{x y} E_{x}
\end{aligned}
$$

$$
\rho_{x x}=\frac{\sigma_{x x}}{\sigma_{x x}^{2}+\sigma_{x y}^{2}}
$$

$$
\rho_{x y}=\frac{\sigma_{x y}}{\sigma_{x x}^{2}+\sigma_{x y}^{2}}
$$

The electrons in the 2DEG are described by the Schrödinger-equation:

$$
\begin{aligned}
\hat{H} \psi(\vec{r}) & =E \psi(\vec{r}) \\
\left(\frac{\vec{p}^{2}}{2 m_{e}}\right) \psi(\vec{r}) & =E \psi(\vec{r})
\end{aligned}
$$

Adding a magnetic field, described by the vector potential $\boldsymbol{A}=(-\mathrm{By}, 0)$, perpendicular to the x - y-plane leads to:

$$
\frac{1}{2 m_{e}} \pi^{2} \psi(\vec{r})=\frac{1}{2 m_{e}}\left(\pi_{x}^{2}+\pi_{y}^{2}\right) \psi(\vec{r})=E \psi(\vec{r})
$$

where $\vec{\pi}=\vec{p}-\frac{-e}{c} \vec{A}$
We also need the following variables:

$$
\begin{array}{rlr}
l_{B}=\sqrt{\frac{\hbar c}{e B}} & \text { magnetic length } \\
\omega_{c} & =\frac{e B}{m_{e}} & \text { cyclotron frequency }
\end{array}
$$

Define the following operators:

$$
\begin{aligned}
& a=\alpha \pi_{x}+\beta \pi_{y} \\
& a^{+}=\alpha^{*} \pi_{x}+\beta^{*} \pi_{y}
\end{aligned}
$$

These operators should be ladder operators, so they have to fulfil:

$$
\left[a, a^{+}\right]=1
$$

So we find the annihilation- and the creation-operators:

$$
\begin{aligned}
a & =\frac{1}{\sqrt{2}} \frac{l_{B}}{\hbar}\left(\pi_{x}-i \pi_{y}\right) \\
a^{+} & =\frac{1}{\sqrt{2}} \frac{l_{B}}{\hbar}\left(\pi_{x}+i \pi_{y}\right)
\end{aligned}
$$

Rewrite the Hamiltonian with this operators:

$$
\hat{H}=\hbar \omega_{c}\left(a^{+} a+\frac{1}{2}\right)
$$

The eigenenergies with $n=0,1,2, \ldots$ are called the Landau levels

$$
E=\hbar \omega_{c}\left(n+\frac{1}{2}\right)
$$

A magnetic field quantizises the parabolic energy functions in a 2DEG

$$
E=\frac{\hbar^{2} k^{2}}{2 m_{e}} \quad k^{2}=k_{x}^{2}+k_{y}^{2}
$$

\rightarrow Discrete energy
values with a high density of states
\rightarrow degeneracy N_{S} of the Landau levels

$$
N_{S}=\frac{A}{2 \pi l_{B}^{2}}=\frac{\Phi}{\Phi_{0}}
$$

energy spectrum with and without disorder

Increasing the magnetic field

Increasing the densitiy of electrons

Quantum Hall Effect in graphene

Here we have the same definitions as before:

$$
\begin{aligned}
\vec{A} & =(-B y, 0) \\
l_{B} & =\sqrt{\frac{\hbar c}{e B}} \\
\omega_{c} & =\sqrt{2} \cdot \frac{v_{F}}{l_{B}}
\end{aligned}
$$

Dirac-equation for an electron moving in a 2-dimensional plane:

$$
v_{F} \vec{\sigma} \cdot \vec{p} \psi(\vec{r})=E \psi(\vec{r})
$$

Switching on a magnetic field, the momentum operator has to be replaced:

$$
\vec{p} \rightarrow \vec{p}-\frac{-e}{c} \vec{A}
$$

$$
-v_{F} \vec{\sigma} \cdot\left(i \vec{\nabla}-\frac{e}{c} \vec{A}(\vec{r})\right) \psi(\vec{r})=E \psi(\vec{r})
$$

$\boldsymbol{\sigma}$ is a vector including the Pauli spin matrixes

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

So the Dirac equation for this problem is written as follows

$$
-v_{F}\left(\sigma_{x}\left(i \partial_{x}-\frac{e}{c}(-B y)\right)+i \sigma_{y} \partial_{y}\right) \psi(\vec{r})=E \psi(\vec{r})
$$

The e^{-}move freely in x-direction, so we can separate the wave function in x - and y direction:

$$
\psi(\vec{r})=\psi(x, y)=e^{i k x} \phi(y)
$$

We obtain the Hamilton-operator for $\quad \hat{H} \phi(y)=-\frac{E}{v_{F}} \phi(y)$

$$
\hat{H}=\left(\begin{array}{cc}
0 & \frac{e B y}{c}-k-\partial_{y} \\
\frac{e B y}{c}-k+\partial_{y} & 0
\end{array}\right)
$$

Multiply (I) with I_{B} and define a new variable $\xi=\frac{y}{l_{B}}-l_{B} k$

$$
\left(\begin{array}{cc}
0 \\
\xi-\partial_{\xi} & \xi+\partial_{\xi}
\end{array}\right) \phi(\xi)=-\frac{\sqrt{2} E}{\omega_{c}} \phi(\xi)
$$

Define again operators which should be ladder operators:

$$
\begin{gathered}
O=\frac{1}{\sqrt{2}}\left(\xi+\partial_{\xi}\right) \quad O^{+}=\frac{1}{\sqrt{2}}\left(\xi-\partial_{\xi}\right) \\
{\left[O, O^{+}\right]=1} \\
\left.\searrow \begin{array}{c}
0 \\
O^{+} \\
0
\end{array}\right) \phi(\xi)=-\frac{E}{\omega_{c}} \phi(\xi)
\end{gathered}
$$

The wave function is a two component vector

$$
\phi(\xi)=\binom{\phi_{A}(\xi)}{\phi_{B}(\xi)}
$$

where A and B describe the two sublattices in the hexagonal lattice.

Is it possible to write this Hamilton operator also that it looks like a harmonic oscillator?
\rightarrow Idea:Write the eigenvalue equation for H^{2}

$$
\left(\begin{array}{cc}
0 & O \\
O^{+} & 0
\end{array}\right)^{2} \phi(\xi)=\frac{E^{2}}{\omega_{c}^{2}} \phi(\xi)
$$

\rightarrow So we gain H^{2}, looking like a h.o.

$$
\hat{H}^{2}=\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+O^{+} O\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right] \omega_{c}^{2}
$$

$\mathrm{O}^{+} \mathrm{O}$ is a number operator \rightarrow we obtain the quantized eigenenergies for
sublattice A

$$
\begin{gathered}
E^{2}=\left(\hbar \omega_{c}\right)^{2} \cdot(m+1) \\
m=0,1,2, \ldots
\end{gathered}
$$

sublattice B

$$
\begin{aligned}
E^{2} & =\left(\hbar \omega_{c}\right)^{2} \cdot n \\
n & =0,1,2, \ldots
\end{aligned}
$$

The quantum numbers \mathbf{n} and \mathbf{m} are not independent:

$$
m=n-1
$$

$\rightarrow \quad E_{n}=\hbar \omega_{c} \sqrt{n}$
\rightarrow Every solution now can be constructed from the zero energy solution:

$$
\phi_{N, \alpha}(\xi)=\binom{\psi_{N-1}(\xi)}{\alpha \cdot \psi_{N}(\xi)}
$$

To determine α, use $H \phi=E \phi$

$$
\alpha=\mp 1
$$

Zero energy state:

A solution with zero energy exists for $\mathrm{n}=0$

$$
\begin{aligned}
& \hat{H} \phi=\left(\begin{array}{cc}
0 & O \\
O^{+} & 0
\end{array}\right)\binom{\phi_{A}(\xi)}{\phi_{B}(\xi)}=E\binom{\phi_{A}(\xi)}{\phi_{B}(\xi)}=0 \\
& O \phi_{B}(\xi)=0 \\
& O^{+} \phi_{A}(\xi)=0 \\
& \text { ground state } \\
& \Rightarrow \begin{array}{l}
\Rightarrow \phi_{B}(\xi)=\psi_{n=0}(\xi) \\
\Rightarrow \phi_{A}(\xi)=0 \\
\phi_{0}(\xi)=\binom{0}{\psi_{B, n=0}(\xi)}
\end{array}
\end{aligned}
$$

Ψ_{N} are the solutions of the harmonic oszillator

$$
\psi_{N}=\frac{1}{\sqrt{2^{N} N!}} \exp \left[-\frac{1}{2} \xi^{2}\right] H_{N}(\xi)
$$

H_{N} is a Hermite polynomial

Remember the e^{-}wave function

$$
\phi_{N, \mp}(\xi)=\binom{\psi_{N-1}(\xi)}{\mp \psi_{N}(\xi)} \quad E_{\mp}=\mp \hbar \omega_{c} \sqrt{N}
$$

with its zero energy state for $\mathrm{N}=0$
\rightarrow This state ist very important for understanding the QHE in graphene

The anomalous integer QHE

graphene ribbon, rolled up, current circling perpendicular to the magnetic field
\rightarrow current generates a magnetic flux

Changing the flux only would influence the extended states (they contribute to the current)

$$
\begin{aligned}
& \phi(x+2 \pi R, y)=\phi(x, y) \\
& \Delta \Phi=n \times \Phi_{0}=n \times \frac{h c}{e}
\end{aligned}
$$

Fermi energy in area of localized states \rightarrow change of one flux quantum will not change number of occupied extended states (conductivity remains constant)
\rightarrow integer number of states leave the cylinder at one side, same number enters the cylinder on the other side when the flux changes

How many states cross the cylinder for $\delta \Phi=\Phi_{0}$?

Current is described by $I=c \frac{\delta E}{\delta \Phi}$
E: total energy in the system

Each Landau level contributes to the current with one state times its degeneracy g
$\rightarrow \mathrm{g}=4$ for graphene (two Dirac points times two spin states)
\rightarrow change of energy when flux is changed by one flux quantum:

$$
\delta E= \pm 4 N \underbrace{e V_{H}}_{\text {energy each electron has in y-direction }}
$$

So the change in current in y-direction is given by:

$$
\delta I=4 N \frac{e^{2}}{h} V_{H}
$$

So we can calculate the Hall conductivity:

$$
\sigma_{x y}=\frac{I}{V_{H}}=4 N \frac{e^{2}}{h}
$$

This result is the same as for a 2DEG, but there would be only a factor 2 from the spin degeneracy in Landau levels.

For graphene there is a problem with this result!

The equation above predicts a plateau of conductivity for $\mathrm{N}=0$, which is not possible for graphene because there is a Landau level for $\mathrm{N}=0$.
\rightarrow There is an area with extended states, so the conductivity changes by changing the flux.

But: the lowest Landau level has some special properties, a different degeneracy

Lowest Landau level has half the degeneracy:

$$
\sigma_{x y}=4 \frac{e^{2}}{h}(4 N+2)=\frac{e^{2}}{h} 2(2 N+1)
$$

$N=1 / 2$
$N=0$
$N=-I / 2$

This result was determined by experimental results, which is i.e. shown in the following picture, made by Novoselov, Geim, Morozov, et al., 2005

Summary

2DEG

graphene

- Schrödinger equation
- Landau levels E_{n}

$$
E_{n}=\hbar \omega_{c}\left(n+\frac{1}{2}\right)
$$

- Hall-conductivity

$$
\sigma_{x y}=\frac{e^{2}}{h} N
$$

- Dirac equation
- Landau levels E_{N}

$$
E_{N}=\mp \hbar \omega_{c} \sqrt{N}
$$

- Hall-conductivity

$$
\sigma_{x y}=\frac{e^{2}}{h} 2(2 N+1)
$$

References

* A. H. Castro Neto et al., The electronic properties of graphene, Reviews of Modern Physics 81, 109 (2009)
* K. von Klitzing, The quantized hall effect, Reviews of Modern Physics 58, 519 (1986)
* D. Yoshioka, The Quantum Hall Effect, Springer, 2002
* Ibach Lüth, Festkörperphysik, Springer, 2008

