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© Summary




2DEG

e 2-dimensional electron gas, builded in a structur metal-oxide-semiconductor
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* Variation of the band structure via Vg leads to a very thin layer of quasi-free electrons
between the semiconductor and the oxide

® Thickness of the 2DEG: 5-10 nm




Experimental facts

* Current in the 2DEG in x-direction and a magnetic field in z-direction
induces a Hall-voltage V4 in the y-direction
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The electrons in the 2DEG are described by the Schrodinger-equation:
Hi () = Ey(7)

P
() u) = Bv)

Adding a magnetic field, described by the vector potential A = (- By,0),
perpendicular to the x-y-plane leads to:

2.1 (= 2 2 - -
om0 = o (w2 ) U = B
— — —€ 2
where 7T =p— —A
c

We also need the following variables:

lp = he magnetic length
eB
e
W, = cyclotron frequency




Define the following operators:

a = amy + [,

at = o*n, + [my,

These operators should be ladder operators, so they have to fulfil:

la,a™] = 1

So we find the annihilation- and the creation-operators:

1 lB( )
a = v
V2 h 7
n 1 g ,
a = (7p + 27y)

Rewrite the Hamiltonian with this operators:

. 1
H = hw, <a+a + —)
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The eigenenergies with n = 0,1,2,... are called the Landau levels

1
E = hw, -
w<n+2>

A magnetic field quantizises the

parabolic energy functions in a 2DEG — Discrete energy

rE values with a high
\ / density of states
\ / — degeneracy Ns of the
Landau levels
> k A ()
N — p—
° 27'('1% (I)O
21.2
p = MF k2 =k; +k;

X
21M, J




energy spectrum with and without disorder
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Increasing the magnetic field
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Quantum Hall Effect in graphene

Here we have the same definitions as before:

A 5 (—By,O)
el3
B e o




Dirac-equation for an electron moving in a 2-dimensional plane:

vp G- pp(r) = E(r)

Switching on a magnetic field, the momentum operator has to be replaced:
— e —
—vp &+ (iV = SA) () = B
C
O is a vector including the Pauli spin matrixes
B 0 1 B 0 —1
e = 10 N A

So the Dirac equation for this problem is written as follows

—vr (00 (i0: = ~(~By)) +i0,0,) v(F) = Eb(P

C
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The e move freely in x-direction, so we can separate the wave function in x- and y-
direction:

Y(F) = P(z,y) = e (y)

. b
We obtain the Hamilton-operator for Ho(y) = ——¢(y) (1)
VF
- 0 By _ k-0
H = c J
( djy —k+ ay 0 )
Multiply (I) with |z and define a new variable | ¢ = li — Ik
B

0 ¢+0 _ V2E
(5_@ €)¢@>— #(¢)




Define again operators which should be ladder operators:

O = (g+ag) OF = (& — O¢)

7
0,07 =1

The wave function is a two component vector
_( 2a(§)
Pe) = ( ¢B(£) )

where A and B describe the two sublattices in the hexagonal lattice.
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s it possible to write this Hamilton operator also that it looks like a
harmonic oscillator?

— ldea:Write the eigenvalue equation for H?
2
0 O E”
(o 0)e© =10

— So we gain H?, looking like a h.o.
9 L 1 O 4+ 1 O 2
H” = {( 0o 7t OAN©, 0 1 W

O*0 is a number operator — we obtain the quantized eigenenergies for

sublattice A sublattice B

E? = (hwe)? - (m+1) E? = (hw.)* n

m = 0,1,2,... n = 0,1,2,...
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The quantum numbers n and m are not independent:

m = n—1

- E, = hw./n

— Every solution now can be constructed from the zero energy solution:

oxa® = (2000 )

To determine &, use Hp = E¢

o= IT1]




Zero energy state:

A solution with zero energy exists for n=0

wo=(or 5) (05 ) == (5

—»  O¢p(§) =0

)= o

ground state

Ot pa(§) = 0

— ¢B(€) — wn:O(s)
= ¢a(§) =0

Do () = ( ¢B,n(io(§) )




PN are the solutions of the harmonic oszillator

1
YN = BN 6%”[—552] Hy (&)

Hn is a Hermite polynomial

Remember the e~ wave function

OnF(§) = (ﬁfb;((g ) E+r = Fhw.VN

with its zero energy state for N=0

— This state ist very important for understanding the QHE in graphene




The anomalous integer QHE

graphene ribbon, rolled up, current circling
perpendicular to the magnetic field

— current generates a magnetic flux b

Changing the flux only would influence the
extended states (they contribute to the current)

o(x + 2R, y) = ¢(z,y)

hc
AP =n x g =n x —
0
e
Fermi energy in area of localized states e P, ——>

— change of one flux quantum will not L edended
1B states ™ ’

change number of occupied extended states I
w
(-}

(conductivity remains constant)

— integer number of states leave the
cylinder at one side, same number
enters the cylinder on the other side

when the flux changes hited e
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How many states cross the cylinder for 0® = (?

Current is described by [ = 05—E E: total energy in the system

0P

Each Landau level contributes to the current with one state times its degeneracy g
— g = 4 for graphene (two Dirac points times two spin states)

— change of energy when flux is changed by one flux quantum:

OFE = ::4N6VH
Ny
energy each electron has in y-direction

So the change in current in y-direction is given by:

2

5T — 4N%VH
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So we can calculate the Hall conductivity:

1 e?
vy = —— = AN
T h

This result is the same as for a 2DEG, but there would be only a factor 2 from
the spin degeneracy in Landau levels.

For graphene there is a problem with this result!
The equation above predicts a plateau of conductivity for N=0, which is not
possible for graphene because there is a Landau level for N=0.

— There is an area with extended states, so the conductivity changes by
changing the flux.

But: the lowest Landau level has some special properties, a different degeneracy
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Lowest Landau level has half the degeneracy:
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This result was determined by experimental results, which is i.e. shown in the
following picture, made by Novoselov, Geim, Morozov, et al., 2005
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2DEG

Summary

craphene

» Schrodinger equation

 Landau levels E,,

1

» Hall-conductivity
2
Opy — S

h

* Dirac equation

« Landau levels Ey

En = :Zhwc\/ﬁ

» Hall-conductivity
2

(&
0oy = — 2(2N +1)
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