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2DEG

• 2-dimensional electron gas, builded in a structur metal-oxide-semiconductor 

• Variation of the band structure via VG leads to a very thin layer of quasi-free electrons 
between the semiconductor and the oxide

• Thickness of the 2DEG:  5-10 nm

2DEG

Geschichtliches
Grundlagen

ganzzahliger QHE
Anwendung

Zweidimensionales Elektronengas
Landau Quantisierung

! 2DEG direkt unter der
Grenze zur Isolierschicht
(Siliziumdioxid)

! Variation der
Ladungsträgerdichte durch
GATE-Spannung möglich [5]

Abbildung: Bandstruktur im
MOSFET

S. Richter QHE
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Experimental facts

• Current in the 2DEG in x-direction and a magnetic field in z-direction 
induces a Hall-voltage VH in the y-direction

V13 = VH

VG2DEG

jy

jx

jx = σxxEx

jy = σxyEx

ρxx =
σxx

σ2
xx + σ2

xy

ρxy =
σxy

σ2
xx + σ2

xy
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The electrons in the 2DEG are described by the Schrödinger-equation:

Ĥψ("r) = Eψ("r)
(

"p2

2me

)
ψ("r) = Eψ("r)

Adding a magnetic field, described by the vector potential A = (- By,0), 
perpendicular to the x-y-plane leads to: 

where

We also need the following variables:

lB =
√

!c

eB

ωc =
eB

me

magnetic length

cyclotron frequency

!π = !p− −e

c
!A

1
2me

π2ψ(#r) =
1

2me

(
π2

x + π2
y

)
ψ(#r) = Eψ(#r)
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Define the following operators:

a = απx + βπy

a+ = α∗πx + β∗πy

These operators should be ladder operators, so they have to fulfil:

[a, a+] = 1

So we find the annihilation- and the creation-operators:

Rewrite the Hamiltonian with this operators:

Ĥ = !ωc

(
a+a +

1
2

)

a =
1√
2

lB
! (πx − iπy)

a+ =
1√
2

lB
! (πx + iπy)

7



E = !ωc

(
n +

1
2

)
The eigenenergies with n = 0,1,2,... are called the Landau levels

A magnetic field quantizises the 
parabolic energy functions in a 2DEG → Discrete energy 

values with a high 
density of states

→ degeneracy NS of the 
Landau levels

B

Overlap of two harmonic oszillators in x- and 
y-direction cause a circular path of the e- 

x

y

k

E

NS =
A

2πl2B
=

Φ
Φ0

k2 = k2
x + k2

yE =
!2k2

2me
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energy spectrum with and without disorder
Geschichtliches

Grundlagen
ganzzahliger QHE

Anwendung

einfaches Modell
Interpretation für Heterostrukturen

zu 1.

[2]

Abbildung: Verbreiterung der Landau-Niveaus

! localized states: bilden geschlossene Leitungskanäle

S. Richter QHE

D(E)

E
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Increasing the magnetic field

E

D

!ωc

EF

E

!ωc

EF

Geschichtliches
Grundlagen

ganzzahliger QHE
Anwendung

einfaches Modell
Interpretation für Heterostrukturen

zu 1.

[2]

Abbildung: Verbreiterung der Landau-Niveaus

! localized states: bilden geschlossene Leitungskanäle

S. Richter QHE

Increasing the densitiy of electrons

Landau levels
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conductivity

11



Quantum Hall Effect in graphene

Here we have the same definitions as before:

!A = (−By, 0)

lB =
√

!c

eB

ωc =
√

2 · vF

lB
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Dirac-equation for an electron moving in a 2-dimensional plane:

−vF !σ · !p ψ(!r) = Eψ(!r)

Switching on a magnetic field, the momentum operator has to be replaced:

σ is a vector including the Pauli spin matrixes

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)

So the Dirac equation for this problem is written as follows

!p→ !p− −e

c
!A

−vF

(
σx

(
i∂x −

e

c
(−By)

)
+ iσy∂y

)
ψ($r) = Eψ($r)

−vF !σ ·
(
i!∇− e

c
!A(!r)

)
ψ(!r) = Eψ(!r)
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We obtain the Hamilton-operator for 

Ĥ =
(

0 eBy
c − k − ∂y

eBy
c − k + ∂y 0

)

The e- move freely in x-direction, so we can separate the wave function in x- and y-
direction:

ψ("r) = ψ(x, y) = eikxφ(y)

Ĥφ(y) = − E

vF
φ(y) (1)

Multiply (1) with lB and define a new variable

(
0 ξ + ∂ξ

ξ − ∂ξ

)
φ(ξ) = −

√
2 E

ωc
φ(ξ)

ξ =
y

lB
− lBk
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Define again operators which should be ladder operators:

O =
1√
2

(ξ + ∂ξ) O+ =
1√
2

(ξ − ∂ξ)

(
0 O

O+ 0

)
φ(ξ) = − E

ωc
φ(ξ)

The wave function is a two component vector

φ(ξ) =
(

φA(ξ)
φB(ξ)

)

where A and B describe the two sublattices in the hexagonal lattice.

[O,O+] = 1
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Is it possible to write this Hamilton operator also that it looks like a 
harmonic oscillator?

→ Idea: Write the eigenvalue equation for H2

→ So we gain H2, looking like a h.o.

(
0 O

O+ 0

)2

φ2(ξ) =
E2

ω2
c

φ2(ξ)

Ĥ2 =
[(

1 0
0 0

)
+ O+O

(
1 0
0 1

)]

O+O is a number operator → we obtain the quantized eigenenergies for

E2
A = (!ωc)2 · (m + 1) E2

B = (!ωc)2 · n

sublattice A sublattice B

n = 0, 1, 2, ...m = 0, 1, 2, ...

ω2
c
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The quantum numbers n and m are not independent:

→ Every solution now can be constructed from the zero energy solution:

m = n− 1

En = !ωc
√

n

φN,α(ξ) =
(

ψN−1(ξ)
α · ψN (ξ)

)

To determine α, use 

α = ∓1

Hφ = Eφ
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Zero energy state: 

A solution with zero energy exists for n=0

Ĥφ =
(

0 O
O+ 0

) (
φA(ξ)
φB(ξ)

)
= E

(
φA(ξ)
φB(ξ)

)

OφB(ξ) = 0

O+φA(ξ) = 0

⇒ φB(ξ) = ψn=0(ξ)

⇒ φA(ξ) = 0

ground state

φ0(ξ) =
(

0
ψB,n=0(ξ)

)

= 0
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ψN are the solutions of the harmonic oszillator

ψN =
1√

2NN !
exp[−1

2
ξ2] HN (ξ)

HN is a Hermite polynomial

φN,∓(ξ) =
(

ψN−1(ξ)
∓ψN (ξ)

)
Remember the e- wave function

with its zero energy state for N=0

→ This state ist very important for understanding the QHE in graphene

E∓ = ∓!ωc

√
N
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!Jiang, Henriksen, Tung, et al., 2007", and to scanning
tunneling spectroscopy !Li and Andrei, 2007" !STS" on a
graphite surface.

J. The anomalous integer quantum Hall effect

In the presence of disorder, Landau levels get broad-
ened and mobility edges appear !Laughlin, 1981". Note
that there will be a Landau level at zero energy that
separates states with hole character !!"0" from states
with electron character !!#0". The components of the
resistivity and conductivity tensors are given by

$xx =
%xx

%xx
2 + %xy

2 ,

$xy =
%xy

%xx
2 + %xy

2 , !109"

where %xx !$xx" is the longitudinal component and %xy
!$xy" is the Hall component of the conductivity !resistiv-
ity". When the chemical potential is inside a region of
localized states, the longitudinal conductivity vanishes,
%xx=0, and hence $xx=0, $xy=1/%xy. On the other hand,
when the chemical potential is in a region of delocalized
states, when the chemical potential is crossing a Landau
level, we have %xx!0 and %xy varies continuously !Sheng
et al., 2006, 2007".

The value of %xy in the region of localized states can
be obtained from Laughlin’s gauge invariance argument
!Laughlin, 1981": one imagines making a graphene rib-
bon such as shown in Fig. 19 with a magnetic field B
normal through its surface and a current I circling its
loop. Due to the Lorentz force, the magnetic field pro-
duces a Hall voltage VH perpendicular to the field and
current. The circulating current generates a magnetic
flux & that threads the loop. The current is given by

I = c
'E
'&

, !110"

where E is the total energy of the system. The localized
states do not respond to changes in &, only the delocal-
ized ones. When the flux is changed by a flux quantum
'&=&0=hc /e, the extended states remain the same by

gauge invariance. If the chemical potential is in the re-
gion of localized states, all the extended states below the
chemical potential will be filled both before and after
the change of flux by &0. However, during the change of
flux, an integer number of states enter the cylinder at
one edge and leave at the opposite edge.

The question is: How many occupied states are trans-
ferred between edges? We consider a naive and, as
shown further, incorrect calculation in order to show the
importance of the zero mode in this problem. Each Lan-
dau level contributes with one state times its degeneracy
g. In the case of graphene, we have g=4 since there are
two spin states and two Dirac cones. Hence, we expect
that when the flux changes by one flux quantum, the
change in energy would be 'Einc= ±4NeVH, where N is
an integer. The plus sign applies to electron states
!charge +e" and the minus sign to hole states !charge −e".
Hence, we conclude that Iinc= ±4!e2 /h"VH and hence
%xy,inc=I /VH= ±4Ne2 /h, which is the naive expectation.
The problem with this result is that when the chemical
potential is exactly at half filling, that is, at the Dirac
point, it would predict a Hall plateau at N=0 with
%xy,inc=0, which is not possible since there is an N=0
Landau level, with extended states at this energy. The
solution for this paradox is rather simple: because of the
presence of the zero mode that is shared by the two
Dirac points, there are exactly 2( !2N+1" occupied
states that are transferred from one edge to another.
Hence, the change in energy is 'E= ±2!2N+1"eVH for a
change of flux of '&=hc /e. Therefore, the Hall conduc-
tivity is !Schakel, 1991; Gusynin and Sharapov, 2005;
Herbut, 2007; Peres, Guinea, and Castro Neto, 2006a,
2006b"

%xy =
I

VH
=

c
VH

'E
'&

= ± 2!2N + 1"
e2

h
, !111"

without any Hall plateau at N=0. This result has been
observed experimentally !Novoselov, Geim, Morozov, et
al., 2005; Zhang et al., 2005" as shown in Fig. 20.

K. Tight-binding model in a magnetic field

In the tight-binding approximation, the hopping inte-
grals are replaced by a Peierls substitution,

eie#R
R!A ·drtR,R! = ei!2)/&0"#R

R!A ·drtR,R!, !112"

where tR ,R! represents the hopping integral between the
sites R and R!, with no field present. The tight-binding
Hamiltonian for a single graphene layer, in a constant
magnetic field perpendicular to the plane, is conve-
niently written as

H = − t $
m,n,%

%ei)!&/&0"n%!1+z"/2&a%
†!m,n"b%!m,n"

+ e−i)!&/&0"na%
†!m,n"b%„m − 1,n − !1 − z"/2…

+ ei)!&/&0"n%!z−1"/2&a%
†!m,n"b%!m,n − z" + H.c.& ,

!113"

FIG. 19. !Color online" Geometry of Laughlin’s thought ex-
periment with a graphene ribbon: a magnetic field B is applied
normal to the surface of the ribbon; a current I circles the loop,
generating a Hall voltage VH and a magnetic flux &.
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Φ

→ integer number of states leave the 
cylinder at one side, same number 
enters the cylinder on the other side 
when the flux changes

Geschichtliches
Grundlagen

ganzzahliger QHE
Anwendung

einfaches Modell
Interpretation für Heterostrukturen

zu 1.

[2]

Abbildung: Verbreiterung der Landau-Niveaus

! localized states: bilden geschlossene Leitungskanäle

S. Richter QHE

The anomalous integer QHE

graphene ribbon, rolled up, current circling 
perpendicular to the magnetic field

→ current generates a magnetic flux 

Changing the flux only would influence the 
extended states (they contribute to the current)

Fermi energy in area of localized states 
→ change of one flux quantum will not 
change number of occupied extended states
(conductivity remains constant)

x

y

φ(x + 2πR, y) = φ(x, y)

∆Φ = n× Φ0 = n× hc

e
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Current is described by I = c
δE

δΦ
E:   total energy in the system

How many states cross the cylinder for                ?δΦ =Φ 0

Each Landau level contributes to the current with one state times its degeneracy g

→ g = 4 for graphene (two Dirac points times two spin states)

→ change of energy when flux is changed by one flux quantum:

δE = ±4NeVH{

energy each electron has in y-direction

So the change in current in y-direction is given by:

δI = 4N
e2

h
VH
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So we can calculate the Hall conductivity:

σxy =
I

VH
= 4N

e2

h

This result is the same as for a 2DEG, but there would be only a factor 2 from 
the spin degeneracy in Landau levels.

For graphene there is a problem with this result!
The equation above predicts a plateau of conductivity for N=0, which is not 
possible for graphene because there is a Landau level for N=0.

→ There is an area with extended states, so the conductivity changes by 
changing the flux.

But: the lowest Landau level has some special properties, a different degeneracy

22



Lowest Landau level has half the degeneracy:

N = 0

N = 1/2

N = -1/2

B

σxy

σxy = 4
e2

h
(4N + 2) =

e2

h
2(2N + 1)
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This result was determined by experimental results, which is i.e. shown in the 
following picture, made by Novoselov, Geim, Morozov, et al., 2005 

holding for a graphene stripe with a zigzag !z=1" and
armchair !z=−1" edges oriented along the x direction.
Fourier transforming along the x direction gives

H = − t #
k,n,!

$ei"!#/#0"n$!1+z"/2%a!
†!k,n"b!!k,n"

+ e−i"!#/#0"neikaa!
†!k,n"b!„k,n − !1 − z"/2…

+ ei"!#/#0"n$!z−1"/2%a!
†!k,n"b!!k,n − z" + H.c.% .

We now consider the case of zigzag edges. The eigen-
problem can be rewritten in terms of Harper’s equations
!Harper, 1955", and for zigzag edges we obtain !Rammal,
1985"

E$,k%!k,n" = − t&eika/22 cos'"
#

#0
n −

ka
2
(&!k,n"

+ &!k,n − 1") , !114"

E$,k&!k,n" = − t&e−ika/22 cos'"
#

#0
n −

ka
2
(%!k,n"

+ %!k,n + 1") , !115"

where the coefficients %!k ,n" and &!k ,n" show up in
Hamiltonian’s eigenfunction *'!k"+ written in terms of
lattice-position-state states as

*'!k"+ = #
n,!

$%!k,n"*a ;k,n,!+ + &!k,n"*b ;k,n,!+% .

!116"

Equations !114" and !115" hold in the bulk. Considering
that the zigzag ribbon has N unit cells along its width,
from n=0 to n=N−1, the boundary conditions at the
edges are obtained from Eqs. !114" and !115", and read

E$,k%!k,0" = − teika/22 cos'ka
2
(&!k,0" , !117"

E$,k&!k,N − 1" = −2 te−ika/2 cos&"
#

#0
!N − 1" −

ka
2 )

(%!k,N − 1" . !118"

Similar equations hold for a graphene ribbon with arm-
chair edges.

In Fig. 21, we show 14 energy levels, around zero en-
ergy, for both the zigzag and armchair cases. The forma-
tion of the Landau levels is signaled by the presence of
flat energy bands, following the bulk energy spectrum.
From Fig. 21, it is straightforward to obtain the value of
the Hall conductivity in the quantum Hall effect regime.
We assume that the chemical potential is in between two
Landau levels at positive energies, shown by the dashed
line in Fig. 21. The Landau level structure shows two
zero-energy modes; one of them is electronlike !hole-
like", since close to the edge of the sample its energy is
shifted upwards !downwards". The other Landau levels
are doubly degenerate. The determination of the values
for the Hall conductivity is done by counting how many
energy levels !of electronlike nature" are below the
chemical potential. This counting produces the value
2N+1, with N=0,1 ,2 , . . . !for the case of Fig. 21 one has

FIG. 20. !Color online" Quantum Hall effect in graphene as a
function of charge-carrier concentration. The peak at n=0
shows that in high magnetic fields there appears a Landau level
at zero energy where no states exist in zero field. The field
draws electronic states for this level from both conduction and
valence bands. The dashed lines indicate plateaus in !xy de-
scribed by Eq. !111". Adapted from Novoselov, Geim, Moro-
zov, et al., 2005.
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FIG. 21. !Color online" Fourteen energy levels of tight-binding
electrons in graphene in the presence of a magnetic flux #
=#0 /701, for a finite stripe with N=200 unit cells. The bottom
panels are zoom-in images of the top ones. The dashed line
represents the chemical potential $.
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Summary
2DEG graphene

• Schrödinger equation

• Landau levels En

• Hall-conductivity

En = !ωc(n +
1
2
) EN = ∓!ωc

√
N

σxy =
e2

h
2(2N + 1)σxy =

e2

h
N

• Dirac equation

• Landau levels EN

• Hall-conductivity
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