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I. INTRODUCTION

The purpose of this article is to describe the interaction of an electromagnetic field with graphene and is
mainly motivated by reference [1]. We will consider the case of an electromagnetic field propagating perpendic-
ular to a single graphene layer and will discuss the transmisssivity and reflectivity of the graphene sheet. We
will show that there exists a 2.2% absorption of the incident field which leads to a non-zero conductivity on the
graphene layer. Moreover we will show that this optical absorption is frequency independent and depends only
on the fine structure constant, which is an impressive macroscopic observation of nature’s physical constants.
Additionally, the theoretical prediction of the transmissivity of a bilayer graphene will be briefly commented
[2]. Finally we will compare with experimental results for the visual transparency of graphene [3].

II. ELECTROMAGNETIC SCATTERING PROBLEM

We start with the scattering geometry given in figure 1. A single layer of graphene of the size As is placed
at the interface of two media 1 and 2 with the electrical permittivities ε1 and ε2. The graphene layer, lying in
the x, y-plane, is irradiated with an electromagnetic wave, polarised parallel to the interface, and the plane of
incidence is the x, z-plane. The wavevector k, the amplitudes of the incident and reflected electric field EI and
ER with the corresponding angle θ1 to the interface normal vector n, and the transmitted field ET with θ2,
respectively read

ki =

 kxi
0
kzi

 and Ei =

 Exi
0
Ezi

 with i = I,R, T. (1)

With the graphene charge density ρ, the boundary conditions at the interface for the electric displacement
field D and the electric field E hold

n · (D2 −D1) = ρ, (2)

n× (E2 −E1) = 0, (3)

and can be written out as
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ε1ε0 (EI + ER) sin θ1 − ε2ε0ET sin θ2 = ρ, (4)

(EI − ER) cos θ1 − ET cos θ2 = 0, (5)

where ε0 is the vacuum permittivity. The interaction of the electromagnetic field with the charge carriers of
the graphene layer produces a two-dimensional current density j (ω) of electrons, given by Ohm’s law

j (ω) = σ (ω) E (ω) , (6)

where the complex tensor σ (ω) is the optical conductivity, reading

σ (ω) =
(
σxx σxy
σyx σyy

)
. (7)

The current density is connected to the charge density via the continuity equation

∇ · j (r, t) = − ∂

∂t
ρ (r,t) . (8)

By Fourier transformation of equation (8) and concerning the scattering geometry one observes

ρ (ω) =
1
ω

j (ω) · k =
1
ω
jx (ω) kx =

kx
ω
σxx (ω)ET cos θ2. (9)

Combining equations (4), (5) and (9) with the expression for the transmissivity T and reflectivity R

T =
kzT
kzI

∣∣∣∣ETEI
∣∣∣∣2 =

√
ε2
ε1

cos θ2

cos θ1

∣∣∣∣ETEI
∣∣∣∣2 and R =

∣∣∣∣EREI
∣∣∣∣2 ,

one gets for normal incidence (θ1 = 0)

T =
√
ε2
ε1

4 (ε1ε0)2∣∣∣(√ε1ε2 + ε1
)
ε0 +

√
ε1
σxx(ω)
c

∣∣∣2 , (10)

R =

∣∣∣(√ε1ε2 − ε1) ε0 +
√
ε1
σxx(ω)
c

∣∣∣2∣∣∣(√ε1ε2 + ε1
)
ε0 +

√
ε1
σxx(ω)
c

∣∣∣2 . (11)

Figure 1: Electromagnetic scattering geometry [1].

2



The apperance of the optical conductivity in the transmissivity and reflectivity reflects a loss of energy flux
due to a current in the graphene layer. The result is the absorption of energy and the condition T +R = 1 does
not longer hold. The absorption A reads

A = 1− T −R =
4ε1
√
ε1ε0<σxx (ω)

c
∣∣∣(√ε1ε2 + ε1

)
ε0 +

√
ε1
σxx(ω)
c

∣∣∣2 . (12)

III. HAMILTONIAN AND CURRENT DENSITY OPERATOR

To get an expression for the optical conductivity, one first has to calculate the current density operator jx,
which can be obtained from the Hamiltonian of the system. In the tight-binding theory for nearest neighbors
the Hamiltonian is given in second quantisation by

H = −t
∑
r,s

∑
δ=δ1,δ2,δ3

[
a†s (r) bs (r + δ) + b†s (r + δ) as (r)

]
, (13)

where t is the nearest neighbor hopping parameter. a†s (r) [as (r)] and b†s (r) [bs (r)] are the creation [anni-
hilation] operators for an electron with spin s at site r of sublattice A and B respectively, and δ1, δ2, δ3 are
the vectors connecting nearest neighbors. The lattice structure is given in figure 2. With the carbon-carbon
distance a, the nearest neighbor connecting vectors read

δ1 =
a

2

(
1√
3

)
, δ2 =

a

2

(
1
−
√

3

)
and δ3 = −a

(
1
0

)
. (14)

The current density operator can now be obtained from the Hamilton mechanics with

jx = − ∂H

∂Ax
, (15)

where Ax is the x-component of the vector potential. To find the effect of the vector potential on the
Hamiltonian, it is easier to make a Fourier transformation to the momentum space. This has to be done by
transforming the creation and annihilation operators, reading

a†s (r) =
1√
As

∑
k

e−ik·ra†k,s and b†s (r) =
1√
As

∑
k

e−ik·rb†k,s, (16)

where a†k,s and b†k,s are the creation operators in momentum space. The annihilation operators can be
obtained similarly by complex conjugating the above expressions. The Hamiltonian in momentum space now
reads

H = − t

As

∑
r,s,δ

[∑
k

e−ik·ra†k,s

∑
k’

eik’·(r+δ)bk’,s +
∑
k

e−ik·(r+δ)b†k,s

∑
k’

eik’·rak’,s

]

= − t

As

∑
s,δ,k,k’

[
eik’·δa†k,sbk’,s

∑
r

ei(k’−k)r + e−ik·δb†k,sak’,s

∑
r

ei(k’−k)r

]

= −t
∑
k,s,δ

[
eik·δa†k,sbk,s + e−ik·δb†k,sak,s

]
, (17)

where we have used the identity

1
As

∑
r

ei(k’−k)r = δ (k− k’) . (18)

In presence of an electromagnetic field one has to make the substitution

p→ p + eA or k→ k +
e

h̄
A, (19)

where A is the vector potential, e the elementary charge and h̄ the Planck constant, leading to the Hamil-
tonian in momentum space in presence of an electromagnetic field

H = −t
∑
k,s,δ

[
ei(k+ e

h̄ A)·δa†k,sbk,s + e−i(k+ e
h̄ A)·δb†k,sak,s

]
. (20)
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Transformed back into real space, the Hamiltonian reads

H = −t
∑
r,s,δ

[
ei

e
h̄ A·δa†s (r) bs (r + δ) + e−i

e
h̄ A·δb†s (r + δ) as (r)

]
, (21)

where we see that the substitution in momentum space given in equation (19) is similar to the Pleiers
substitution in real space, given by

t→ t · ei e
h̄ A·δ. (22)

The current density operator jx can now be calculated with equation (15), reading

jx =
ite

h̄

∑
r,s,δ

[
δx · ei

e
h̄ A·δa†s (r) bs (r + δ)− δx · e−i

e
h̄ A·δb†s (r + δ) as (r)

]
. (23)

Expanding the exponential function up to first order in Ax with

ei
e
h̄Axδx ' 1 + i

e

h̄
Axδx, (24)

yields

jx ' jPx +Axj
D
x , (25)

with a term constant in Ax,

jPx =
ite

h̄

∑
r,s,δ

[
δxa
†
s (r) bs (r + δ)− δxb†s (r + δ) as (r)

]
, (26)

and linear in Ax,

jDx = − te
2

h̄2

∑
r,s,δ

[
δ2
xa
†
s (r) bs (r + δ)− δ2

xb
†
s (r + δ) as (r)

]
. (27)

Figure 2: Graphene lattice structure [1].

IV. OPTICAL CONDUCTIVITY

An expression of the optical conductivity σxx (ω) can be obtained from the Kubo formalism, that treats the
current j as a linear response to an electromagnetic perturbation with the response function

σxx (ω) =

〈
jDx
〉

iAs (ω + iε)
+

Λxx (ω + iε)
ih̄As (ω + iε)

, (28)
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where ε→ 0+. The function Λxx (ω + iε) is given by

Λxx (ω + iε) =
∫ h̄β

0

dτe(ω+iε)τ
〈
jPx (τ) jPx (0)

〉
, (29)

where β = (kBT )−1, with the Boltzmann constant kB and the temperature T , 〈· · · 〉 represents the mean
value in the grand canonical ensemble. jPx (τ) is a time dependent operator in the Heisenberg picture, reading

jPx (τ) = ei(H−µN)τ jPx e
−i(H−µN)τ , (30)

with the chemical potential µ and the number operator N given by

N =
∑
r,s

[
a†s (r) as (r) + b†s (r + δ3) bs (r + δ3)

]
. (31)

The real and imaginary part of the conductivity <σxx (ω) and =σxx (ω) can be separated using the identity

lim
ε→0

∫ ∞
−∞

f (ω)
ω + iε

dω = lim
ε→0

∫ −ε
−∞

f (ω)
ω + iε

dω + lim
ε→0

∫ ∞
ε

f (ω)
ω + iε

dω

−iπ
∫ ε

−ε
δ (ω) f (ω) dω, (32)

commonly written as

1
ω + iε

= P
1
ω
− iπδ (ω) , (33)

giving

<σxx (ω) = −

(〈
jDx
〉

Asω
+ π
<Λxx (ω + iε)

h̄As

)
δ (ω) +

=Λxx (ω + iε)
h̄ωAs

, (34)

where δ (ω) is the Dirac delta function. It can be set to zero, since we are interested in frequencies ω > 0.
The imaginary part reads

=σxx (ω) = −
〈
jDx
〉

Asω
− <Λxx (ω + iε)

h̄ωAs
. (35)

We see that the real part of the conductivity is directly conected to the imaginary part of Λxx (ω + iε). With
the wave functions of the graphene layer in the tight-binding model

∣∣ψ±kσ〉 =
1√
2

(
e−iθk/2

±eiθk/2
)
, (36)

where θk = arctan (kx/ky), the function Λxx (ω + iε) reads

Λxx (ω + iε) =
∫ h̄β

0

dτe(ω+iε)τTr
[
e−β(H−µN)jPx (τ) jPx (0)

]
=

∫ h̄β

0

dτe(ω+iε)τ

[
1
Z

∑
kσ±

〈
ψ±kσ

∣∣ e−β(H−µN)ei(H−µN)τ jPx e
−i(H−µN)τ jPx

∣∣ψ±kσ〉
]
, (37)

where Z represents the partition function and Tr [· · · ] the trace in the grand canonical ensemble. With the
energy bands of the graphene layer

E±k = ±t |φ (k)| = ±t ·
∣∣∣1 + ek·(δ1−δ3) + ek·(δ2−δ3)

∣∣∣ , (38)

the imaginary part of Λxx (ω + iε) reads

=Λxx (ω + iε) =
t2e2a2

8h̄2

∑
k

[
18− 4 |φ (k)|2 + 18

[<φ (k)]2 − [=φ (k)]2

|φ (k)|2

]
× [nF (−t |φ (k)| − µ)− nF (t |φ (k)| − µ)]

×
[
πδ

(
ω − 2t |φ (k)|

h̄

)
− πδ

(
ω +

2t |φ (k)|
h̄

)]
, (39)
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where nF (x) is the Fermi distribution and the second delta function cancels out since ω > 0. In the Dirac
cone approximation, where φ (k) ∝ k, one can set

[<φ (k)]2 − [=φ (k)]2

|φ (k)|2
' 0, (40)

and write equation (37) only in terms of the energy bands E±k , reading

=Λxx (ω + iε) =
t2e2a2

8h̄2

∑
k

[
πδ

(
ω −

2E+
k

h̄

)][
18− 4

(
E+

k

t

)2
]

×
[
nF
(
−E+

k − µ
)
− nF

(
E+

k − µ
)]
. (41)

The charge carriers in the graphene layer that contribute to the current are electrons which are excited from
the valence to the conduction band by photons of the energy h̄ω. The absorption process of the photons is
shown in figure 3. The conservation of energy and momentum leads directly to the condition

h̄ω = 2E+
k . (42)

The delta function in equation (39) can be written in terms of the density of states

ρ (E) =
1
Nc

∑
k

δ
(
E − E+

k

)
(43)

of the system, reading

ρ

(
h̄ω

2

)
=

1
Nc

∑
k

δ

(
h̄ω

2
− E+

k

)
=

1
Nc

∑
k

h̄

2
δ

(
ω −

2E+
k

h̄

)
. (44)

Figure 3: Excitation of an electron by absorbing a photon [3]. The momentum conservation leads to an excitation
path perpendicular to the momentum plane. The Pauli principle allows only the excitation energy h̄ω > 2µ.

With equations (39)-(41) and the sample area As = NcAc, where Nc is the number of atoms and Ac the
area of the unit cell, the ral part of the conductivity can be written as

<σxx (ω) = σ0
πt2a2

8Ach̄ω
ρ

(
h̄ω

2

)[
18− (h̄ω)2

t2

] [
tanh

h̄ω + 2µ
4kBT

+ tanh
h̄ω − 2µ

4kBT

]
, (45)

where σ0 =
(
e2/4h̄

)
. Figure 4 shows a plot of equation (45). Two things should be mentioned. First there

seems to be a threshhold for finite chemical potentials. This appears due to a vanishing optical conductivity
below a certain photon energy. In the presence of a chemical potential and zero temperature, there are now
free states below E+

k = µ, if µ > 0, and now occupied states above E−k = µ, if µ < 0. This leads with the Pauli
principle to the condition
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h̄ω > 2µ, (46)

which can be infringed at finite temperatures. Second and more intereseting is the fact, that the real part
of the optical conductivity remains nearly constant over a large frequency range, namely up to the end of the
visible party of the spectrum which is about 3.1eV. This is an exceptional behavior since usually the optical
conductivity in this region is dependent on the frequency. Performing an asymptotic expansion of the density
of states around E = 0, one gets the useful result

<σxx (ω) = σ0

[
1
2

+
(h̄ω)2

72t2

](
tanh

h̄ω + 2µ
4kBT

+ tanh
h̄ω − 2µ

4kBT

)
. (47)

The imaginary part of the optical conductivity =σxx (ω) can be calculated similar to <σxx (ω) reading

=σxx (ω) = σ0
4

πh̄ω

(
µ− 2µ3

9t2

)
− σ0

π
log
|h̄ω + 2µ|
|h̄ω − 2µ|

− σ0

26π

(
h̄ω

t

)2

log
|h̄ω + 2µ|
|h̄ω − 2µ|

. (48)

For h̄ω >> µ, =σxx (ω) → 0, i.e. only the real part of the conductivity gives a significant contribution.
Thus, in the visible region, for zero chemical potential and low temperatures we can make the approximation

σxx (ω) ' σ0 =
e2

4h̄
. (49)

Figure 4: Real part of the optical conductivity divided by σ0 for different chemical potentials and temperatures,
using t=2.7eV [1]. The lower plots are magnifications.

V. OPTICAL ABSORPTION

With the expression of the optical conductivity, the transmissivity and reflectivity for normal incidence

T =
√
ε2
ε1

4 (ε1ε0)2∣∣∣(√ε1ε2 + ε1
)
ε0 +

√
ε1σxx(ω)

c

∣∣∣2 and R =

∣∣∣(√ε1ε2 − ε1) ε0 +
√
ε1
σxx(ω)
c

∣∣∣2∣∣∣(√ε1ε2 + ε1
)
ε0 +

√
ε1
σxx(ω)
c

∣∣∣2 , (50)
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are plotted in figure 5. For zero chemical potential we see a constant behavior of the transmissivity and
reflectivity in the visible region as expected due to the real part of the conductivity. For a finite chemical
potential we see the influence of the threshold, visible due to T = 1 for h̄ω < 2µ, which leads to a vanishing
absorption. For h̄ω > 2µ we see also a constant behavior. This indicates, that for the given chemical potential
the imaginary part, which is inversely proportional to the frequency, can be neglected for the visible region.
With the graphene layer on a SiO2 substrate we observe a reduction in the transmissivity and increase in the
reflectivity. The behavior for ω = 0 is not valid since we dropped the delta function in equation (32).

Figure 5: Transmissivity and reflectivity in the visible region for normal incidence and T = 10K, for the first
medium vacuum (ε1 = 1) and the second medium is either vacuum (ε2 = 1) or a SiO2 substrate (ε2 = 2) [1].

In the case given in equation (47), the transmissivity, reflectivity and absorption read

T =
1(

1 + πα
2

)2 ' 1− πα ≈ 0.977, (51)

R =
π2α2

4
T ≈ 0.00013, (52)

and

A = 1− T −R =
πα(

1 + πα
2

)2 ≈ 0.022, (53)

with the fine-structure constant

α =
e2

4πε0ch̄
. (54)

The calculation is given the values T ≈ 0.977, R ≈ 0.00013 and A ≈ 0.022. One recognizes, that all quantities
are only dependent on universal constants and not on material properties, like e.g. the lattice constant. This
is an exceptional behavior and can be used to calculate the fine structure by a simple transmission experiment.
It is also interesting to see that a single layer of carbon atoms has for normal incidence an absorption of 2.2%.
We can compare this results to the calculations made for bilayer graphene [2]. in the limit h̄ω >> t⊥, with t⊥
being the hopping parameter between the layers, the transmissivity of a bilayer graphene is given by

T ' 1− 2πα. (55)

It is again only dependent on the fine-structure constant α and reduced by twice the value of a single layer.
This theoretical prediction confirms the experimental results for the visual transparency of graphene [3] given in
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figure 6, where a reduction in the transmittance of white light of 2.3% has been observed for a single graphene
layer. Further, a stepwise reduction of πα for more layers was shown experimentally up to 4 layers. Additionally,
the transmittance could be verified to be frequency independent in the visible region in good agreement with
the theory.

Figure 6: Experimental results for the visual transperancy of graphene [3].

VI. CONCLUSIONS

We have found that the interaction of an electromagnetic field with a single graphene layer leads to an
excitation of massless electrons at the K and K ′ point from valence to conduction band by absorbing the energy
h̄ω of a photon. In presence of a chemical potential, excitations with photon energies h̄ω < 2µ are supressed
due to the Pauli principle. The calculation of the optical conductivity showed that its real part vanishes for
h̄ω < 2µ and remains nearly constant up to the end of the visible region of the spectrum. The imaginary
part can be neglected for small chemical potentials and vanishes for µ = 0. The transmissivity, reflectivity and
absorption of a single layer or bilayer graphene are in the visible region of the spectrum only dependent on the
fine structure constant α. The stepwise reduction in the transmittance of πα by increasing the number of layers
is experimentally shown up to 4 layers and is in good agreement with the theoretical predictions for a single
layer and bilayer graphene.
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