Skript zur Vorlesung

Integrierter Kurs III - Experimentalphysik

Optik und Thermodynamik

Wintersemester 2009/10 Version vom 31. März 2010

Prof. Alfred Leitenstorfer

Mitschrift von Andreas Donges

Korrekturen bitte an:

stefan.gerlach@uni-konstanz.de

Inhaltsverzeichnis

1	Ele	Elektromagnetische Welle 4								
	1.1	Einführung			•				4	
	1.2	Dispersion von Licht								
		1.2.1 Frequ	uenzabhängigkeit der Dielektrizitätskonstante - LORENTZ-Modell		•				8	
		1.2.2 Brech	hungsindex						9	
		1.2.3 Absor	prption						10	
		1.2.4 Dispe	ersion dichter Medien		•				11	
		1.2.5 Brech	hungsindex und Absorption von Metallen - DRUDE-Modell		•				12	
	1.3	Elektromagnetische Wellen an Grenzflächen								
		1.3.1 Reflexions-und Brechungsgesetz								
		1.3.2 Fres	SNELsche Formeln für den Reflexionsgrad einer Grenzfläche						13	
		1.3.3 Totalı	reflexion und evaneszente Welle						15	
	1.4	Lichtwellenle	eiter						16	
1.5 Absorbierende und streuende Medien									18	
		1.5.1 Reflex	exion absorbierender Medien						18	
		1.5.2 Farbe	e von Gegenständen						18	
		1.5.3 Licht	tstreuung						19	
			6						-	
2	Geo	ometrische O)ptik						21	
	2.1	FERMATsche	es Prinzip						21	
		2.1.1 Reflex	exionsgesetz						22	
		2.1.2 Brech	hungsgesetz						22	
	2.2	Strahlablenku	ung durch Prisma						23	
	2.3	Die optische	Abbildung						23	
		2.3.1 Reelle	le und virtuelle Abbildungen						24	
		2.3.2 Abbil	ldung mit Kugelspiegel						24	
		2.3.3 Abbil	ldung durch brechende Kugelflächen						25	
		2.3.4 Abbil	ldungsgleichung für eine dünne Linse						26	
		2.3.5 Dicke	e Linsen und Linsensysteme						27	
	2.4	Abschluss der	r Linearen Optik						27	
3	Wel	Wellenoptik					34			
	3.1	Beugung: Qu	alitatives Bild						34	
		3.1.1 HUY	GENsches Prinzip						34	
		3.1.2 Fres	SNELsche Beugung						35	
	3.2	Beugung: Ma	athematische Behandlung						38	
		3.2.1 Fres	SNEL-KIRCHHOFFsche Beugungstheorie						38	
		3.2.2 Fres	SNEL und FRAUNHOFER Beugung						40	
		3.2.3 FRAU	UNHOFER Beugung in der Praxis						40	
		3.2.4 Das E	BABINETsche Prinzip		•				41	
	3.3	Spezialfälle d	der FRAUNHOFER Beugung						41	
		3.3.1 Beug	ung an einem langen Spalt						41	
		3.3.2 Beng	rung an Rechteckblende						44	
		3.3.3 Beng	rung an Kreisblende						44	
		3.3.4 Beng	gung am Doppelspalt.						45	
		3.3.5 Beng	ging am Gitter		•				48	
		336 Gitter	rspektrometer		•		•••	•	50	
	34	Interferenz			•	••	•••	•	52	
	- · · ·				•		• •	•	~ ~	

		3.4.1 Kohärenz von Lichtquellen
		3.4.2 Spezielle Interferometer
		3.4.3 Interferenz dünner Schichten
	3.5	Polarisation von Licht
		3.5.1 Polarisationszustände
		3.5.2 Polarisatoren
		3.5.3 Doppelbrechung
4	The	rmische Physik 6
	4.1	Einleitung
	4.2	Die Temperatur
		4.2.1 Das GAY-LUSSAC-Thermometer
	4.3	Das ideale Gas
		4.3.1 Das ideale-Gas-Gesetz
		4.3.2 Barometrische Höhenformel
		4.3.3 Mikroskopisches Modell des idealen Gases
	4.4	Reales Gas 7
		4.4.1 Stoßquerschnitt und mittlere freie Weglänge
		4.4.2 Diffusion als Beispiel für Transportprozess
		4.4.3 VAN-DER-WAALSsche Zustandsgleichung
	4.5	Thermische Eigenschaften der Materie 8
		4.5.1 Spezifische Wärme
		4.5.2 Adiabatische Zustandsänderung des idealen Gases
		4.5.3 Anmerkungen zu Phasenübergängen
	4.6	Die Hauptsätze der Thermodynamik 8
		4.6.1 1. Hauptsatz der Thermodynamik
		4.6.2 2. Hauptsatz der Thermodynamik
	4.7	Irreversibilität und Entropie
		4.7.1 Reversible und irreversible Prozesse
		4.7.2 Entropie
		4.7.3 3. Hauptsatz der Thermodynamik

1 Elektromagnetische Welle

1.1 Einführung

Sonderfall

- nichtmagnetische Medien
- keine Ladungsdichte
- keine Stromdichte

$$\mu = 1, \ \varrho = 0, \ \vec{j} = 0$$

Dielektrische Verschiebung

 $\vec{D} = \varepsilon \varepsilon_0 \vec{E}$ "lineare Optik"

MAXWELLgleichungen

$$\vec{\nabla}\vec{D} = 0 \qquad \qquad \vec{\nabla}\vec{B} = 0 \tag{1.1}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 $\vec{\nabla} \times \vec{B} = \mu_0 \frac{\partial \vec{D}}{\partial t}$ (1.2)

Wellengleichung für elektromagnetische Wellen

$$\begin{split} \Delta \vec{E} &- \varepsilon \varepsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} &= 0\\ \Delta \vec{B} &- \varepsilon \varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial t^2} &= 0\\ v_{\rm ph} &= \frac{1}{\sqrt{\varepsilon \varepsilon_0 \mu_0}} &= -\frac{c}{\sqrt{\varepsilon}} \end{split}$$

Einfachste Lösung der Wellengleichung:

Ebene Wellen:

$$\vec{E}(\vec{r},t) = \vec{E}_0 \cdot \cos\left(\omega t - \vec{k}\vec{r} + \varphi\right)$$

ebene Welle

Kugelwelle

Dispersionsrelation für Licht

$$\begin{split} \vec{k}^2 &= k_x^2 + k_y^2 + k_z^2 = \frac{n^2 \omega^2}{c^2} \\ k &= \frac{2\pi n}{\lambda}, \quad \lambda = \frac{2\pi n}{k} = \frac{2\pi c}{\omega} = \frac{c}{\nu} \\ \tilde{\nu} &= \frac{\nu}{c} = \frac{1}{\lambda}, \quad [\tilde{\nu}] = \text{cm}^{-1} \quad \text{(für Chemiker)} \end{split}$$

Abbildung 1.1: Ausbreitung von elektromagnetischen Wellen; Quelle [2]

Periodendauer

$$\omega = 2\pi\nu = \frac{2\pi}{T}, \ c = \lambda\nu = \frac{\lambda\omega}{2\pi}$$
$$\vec{E}_c(\vec{r},t) = \vec{E}_{0,c} \cdot \exp\left[i\left(\omega t - \vec{k}\vec{r} + \varphi\right)\right]$$

Physikalisch messbar

$$\vec{E}(\vec{r},t) = \Re\left(\vec{E}_{c}(\vec{r},t)\right) = \frac{1}{2}\left(\vec{E}_{c}(\vec{r},t) + \vec{E}_{c}^{*}(\vec{r},t)\right)$$

Räumliche Beziehung von $\vec{E}, \ \vec{B}, \ \vec{D}, \ \vec{k}$:

$$\begin{split} \vec{k} \perp \vec{D}, \quad \vec{k} \perp \vec{B}, \quad \vec{E} \perp \vec{B}, \quad \vec{D} \perp \vec{B} \\ |\vec{E}| &= \frac{c}{n} \cdot |\vec{B}| = \frac{1}{\sqrt{\varepsilon \varepsilon_0 \mu_0}} \cdot |\vec{B}| \\ \vec{\nabla} \vec{A} \propto \vec{k} \vec{A}, \quad \vec{\nabla} \times \vec{A} \propto \vec{k} \times \vec{A} \end{split}$$

Optik – Lichtstrahlen, Wellen, Photonen © Wolfgang Zinth

Abbildung 1.2: TEM-Welle; Quelle [2]

Energie und Intensität - Energiestromdichte einer elektromagnetischen Welle

$$\vec{S}(\vec{r},t) = \frac{1}{\mu_0} \left(\vec{E} \times \vec{B} \right) = \varepsilon_0 c^2 \vec{E} \times \vec{B} \quad \text{POYNTING-Vektor}$$
(1.3)
$$I = \left\langle |\vec{S}| \right\rangle = \varepsilon_0 c \left\langle |\vec{E}|^2 \right\rangle$$
(1.4)

Impuls des Lichtes

Optik – Lichtstrahlen, Wellen, Photonen © Wolfgang Zinth

Abbildung 1.3: Schema zur Verdeutlichung des Strahlungsdrucks; Quelle [2]

Wellenpakete \rightarrow Lichtimpulse

$$\vec{E}(t) = \sum_{j=-\infty}^{\infty} \vec{E}_{0j} \cdot \exp(i\omega_j t)$$
$$\vec{E}_0(\omega) = \int_{-\infty}^{\infty} \vec{E}(t) \cdot \exp(-i\omega t) dt$$
$$\vec{E}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \vec{E}_0(\omega) \cdot \exp(i\omega t) d\omega$$

GAUSS-Impuls

$$E(\omega) = A \cdot \exp\left[-\left(\frac{\omega - \omega_0}{\delta\omega}\right)^2\right] + A \cdot \exp\left[-\left(\frac{-\omega - \omega_0}{\delta\omega}\right)^2\right]$$
(1.5)

$$E(t) = \int_{-\infty}^{\infty} E(\omega) \cdot \exp\left[i\omega t\right] \frac{d\omega}{2\pi}$$

$$= \frac{A}{\sqrt{\pi}} \frac{\delta\omega}{2} \exp\left[-\left(\frac{\delta\omega}{2}\right)^2 t^2\right] \cdot \left(\exp\left[i\omega_0 t\right] + \exp\left[-i\omega_0 t\right]\right)$$

$$= \frac{A}{\sqrt{\pi}} \frac{\delta\omega}{2} \exp\left[-\left(\frac{\delta\omega}{2}\right)^2 t^2\right] \cdot \cos(\omega_0 t)$$
(1.6)

Abbildung 1.4: Frequenz-und Zeitverlauf einer elektromagnetischen Welle; Quelle [2]

Bandbreitenprodukt

$$\begin{array}{rcl} \Delta\omega_F \Delta t_F &=& 2\left(\Delta\omega_I \Delta t_I\right) \\ \Delta\omega_I \Delta t_I &=& 4\ln 2 \\ \Delta\nu_I \Delta t_I &=& \frac{2}{\pi}\ln 2 \\ \Rightarrow & \Delta\omega_F \Delta t_F &\cong& 2\pi \quad \text{oder} \quad \Delta\nu_F \Delta t_F \cong 1 \quad \text{Gauss-Impulse} \end{array}$$

Phasen-und Gruppengeschwindigkeit - Ausbreitung von Lichtimpulsen

Optik – Lichtstrahlen, Wellen, Photonen © Wolfgang Zinth

Abbildung 1.5: Unterschied zwischen Phasen-und Gruppengeschwindigkeit; Quelle [2]

$$E_x(z,t) = \int_{-\infty}^{\infty} E_x(\omega) \cdot \exp\left(i\omega t - ik(\omega)z\right) \frac{\mathrm{d}\omega}{2\pi}$$

Potenzreihe:

$$\begin{aligned} k(\omega) &= k_0 + \Omega \left(\frac{\mathrm{d}k}{\mathrm{d}\omega}\right)_{\omega_0} + \frac{1}{2}\Omega^2 \left(\frac{\mathrm{d}^2\omega}{\mathrm{d}\omega^2}\right)_{\omega_0} + \dots \\ &= k_0 + \Omega k'(\omega_0) + \frac{1}{2}\Omega^2 k''(\omega_0) + \dots \\ E_x(z,t) &= \frac{1}{2\pi} \exp\left[i\omega_0 t - ik_0 z\right] \\ &\int E_x(\omega_0 + \Omega) \cdot \exp\left[i\Omega \left(t - z \left(k'(\omega_0) + \frac{1}{2}\Omega k''(\omega_0) + \dots\right)\right)\right)\right] \mathrm{d}\Omega \\ &= \frac{1}{2\pi} \exp\left[i\omega_0 t - ik_0 z\right] \cdot A(z,t) = \frac{1}{2\pi} \exp\left[i\Phi(z,t)\right] \cdot A(z,t) \\ \text{mit } \Phi(z,t) &= \omega_0 t - k_0 z(t) = \Phi_0 \\ \text{und } z(t) &= \frac{\omega_0 t}{k_0} - \frac{\Phi_0}{k_0} \\ &\Rightarrow v_{\text{ph}} &= \frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\omega_0}{k_0} = \frac{c}{n} \end{aligned}$$
(1.7)

Gruppengeschwindigkeit

$$t - z(t) \left(\frac{\mathrm{d}k}{\mathrm{d}\omega}\right) = \xi_0$$

$$v_{\mathrm{gr}} = \left(\frac{\mathrm{d}z(t)}{\mathrm{d}t}\right)_{\xi_0} = \frac{1}{(\mathrm{d}k/\mathrm{d}\omega)_{\omega_0}} = \left(\frac{\mathrm{d}\omega}{\mathrm{d}k}\right)_{\omega_0}$$

$$v_{\mathrm{gr}} = \left(\frac{\mathrm{d}\omega}{\mathrm{d}k}\right)_{\omega_0} = \frac{c}{n} - \frac{kc}{n^2} \cdot \frac{\mathrm{d}n}{\mathrm{d}k}$$

$$\frac{1}{v_{\mathrm{gr}}} = 1\frac{1}{v_{\mathrm{ph}}} \left(1 - \frac{\lambda}{n}\frac{\mathrm{d}n}{\mathrm{d}\lambda}\right) \qquad (1.8)$$

Verbreiterung eines gaußförmigen Lichtimpulses: nächste Ordnung Gruppengeschwindigkeitsdispersion GVD

$$\delta t(D) = \delta t_0 \sqrt{1 + 4(Dk'')^2 / (\delta t_0)^4} \quad \text{Medium mit der Dicke } D$$
(1.9)

1.2 Dispersion von Licht

- Ausbreitung von Licht, Brechungsindex $n(\omega)$
- klassisches Modell für die Polarisierbarkeit eines Dielektrikums \Rightarrow Dispersion (Zusammenhang zwischen Wellenvektor \vec{k} und Frequenz ω)

1.2.1 Frequenzabhängigkeit der Dielektrizitätskonstante - LORENTZ-Modell

- bisher: Dielektrizitätskonstante ε
- gilt im engen Frequenzintervall, weit ab von Resonanzen
- experimentell ergibt sich:

$\sqrt{\varepsilon(\omega=0)}$	$n(\lambda = 589 \text{nm})$
4,63	1,46
5,04	1,628
5,08	1,361
8,96	1,333
1,51	1,501
	$ \sqrt{\varepsilon(\omega = 0)} 4,63 5,04 5,08 8,96 1,51 $

• jetzt: Ein negativ geladenes Elektron:

 $m = m_e, \quad q = -e$

- harmonische Rückstellkraft; Polarisation

 $\vec{P} = (\varepsilon - 1)\varepsilon_0 \vec{E}$, mit dielektrischer Funktion $\varepsilon = \varepsilon(\omega)$

- externe Kraft:

$$\vec{F}(t) = -e\vec{E}(t) = -e\vec{E}_0 \cdot e^{i\omega t}$$

Oszillator mit Resonanzfrequenz ω_0 und schwacher Dämpfung $\gamma \ll \omega_0$ erfährt eine Auslenkung x(t), Ansatz:

$$x(t) = x_0 \cdot e^{i\omega t}$$

$$\Rightarrow \qquad \ddot{x} + \gamma \dot{x} + \omega_0^2 x = \frac{1}{m_e} \cdot F(t) = -\frac{e}{m_e} E_0 \cdot e^{i\omega t}$$

$$x(t) = -\frac{e}{m_e} \frac{1}{(\omega_0^2 - \omega^2) + i\gamma\omega} E(t) \qquad (1.10)$$

Teilchendichte N: Dielektrische Funktion im LORENTZ-Modell:

$$\Rightarrow P(t) = -eN \cdot x(t) = \frac{e^2 N}{m_e} \frac{1}{(\omega_0^2 - \omega^2) + i\gamma\omega} E(t)$$

$$= (\varepsilon(\omega) - 1) \varepsilon_0 \cdot E(t) \qquad (1.11)$$

$$\varepsilon(\omega) = 1 + \frac{e^2 N}{\varepsilon_0 m_e} \frac{1}{(\omega_0^2 - \omega^2) + i\gamma\omega} \quad \text{Dielektrische Funktion} \qquad (1.12)$$

• bei mehreren Resonanzen ω_{0j} summieren wir auf

$$\varepsilon(\omega) = 1 + \frac{e^2}{\varepsilon_0 m_e} \sum_j \frac{N_j}{\left(\omega_{0j}^2 - \omega^2\right) + i\gamma\omega}$$
(1.13)

1.2.2 Brechungsindex

• verdünnte Medien (z.B. Gasen):

$$\varepsilon(\omega) = 1 + \Delta \varepsilon \text{ mit } |\Delta \varepsilon| \ll 1$$

• Für den Brechungsindex $n(\omega) = \sqrt{\varepsilon(\omega)}$ gilt:

$$(\varepsilon - 1) = (n^2 - 1) = (n + 1)(n - 1) \approx 2(n - 1)$$

$$\Rightarrow (n - 1) \approx \frac{1}{2}(\varepsilon(\omega) - 1) = \frac{e^2 N}{2\varepsilon_0 m} \frac{1}{(\omega_0^2 - \omega^2) + i\gamma\omega}$$

$$\Re(n) = n_R = 1 + \frac{e^2 N}{2\varepsilon_0 m} \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + \gamma^2\omega^2}$$
(1.14)

$$\Im(n) = n_I = \frac{e^2 N}{2\varepsilon_0 m} \frac{-\gamma \omega}{\left(\omega_0^2 - \omega^2\right)^2 + \gamma^2 \omega^2}$$
(1.15)

Optik – Lichtstrahlen, Wellen, Photonen © Wolfgang Zinth

Abbildung 1.6: LORENTZ-Profil; Quelle [2]

1.2.3 Absorption

• Ausbreitung einer ebenen Welle E(z,t), Brechungsindex $n = n_R + in_I$, Ansatz:

$$E(z,t) = E_0 \cdot \exp\left[i\omega t - ikz\right]$$

= $E_0 \cdot \exp\left[i\omega t - i\frac{\omega n_R}{c}z + \frac{\omega n_I}{c}z\right]$
= $E_0 \cdot \exp\left[\frac{\omega n_I}{c}z\right] \cdot \exp\left[i\omega t - i\frac{\omega n_R}{c}z\right]$

Für $n_I < 0$: Dämpfung (Absorption)

• Lichtintensität:

$$I(z) = I(0) \cdot \exp\left[-\frac{2\omega n_I}{c}z\right]$$

= $I(0) \cdot \exp\left[-az\right]$ LAMBERT-BEERsches Gesetz (1.16)

Dabei ist a der Extinktions-oder Absorptionskoeffizient.

$$a = \frac{e^2 N}{\varepsilon_0 m_e c} \frac{\gamma \omega^2}{\left(\omega_0^2 - \omega^2\right)^2 - \gamma^2 \omega^2}$$
(1.17)

• Experiment: Lichtstrahl wird durch eine Farbstofflösung geschickt

Abbildung 1.7: Absorptionsspektrum und optische Dichte von Rhodamin 6G; Quelle [2]

1.2.4 Dispersion dichter Medien

Polarisation P: CLAUSIUS-MOSOTTI-Beziehung. Erhalten identischen funktionalen Verlauf der Resonanzen $n(\omega)$, bzw. $\varepsilon(\omega)$

$$n^{2}(\omega) = 1 + \sum_{j} \frac{\varrho_{j}}{\tilde{\omega}_{0j}^{2} - \omega^{2}}$$
(1.18)

Im dichteren Medium: Verschiebung der Resonanzen $\omega_{0j} \to \tilde{\omega}_{0j}$. Weit ab von Resonanzen gilt

$$n^{2}(\omega) = A + \sum_{j=1}^{N} \frac{B_{j}}{\lambda^{2} - C_{j}^{2}}$$
 SELLMEIER-Beziehung (1.19)

Die freien Konstanten A, B_j , C_j ergeben sich aus experimentellen Messwerten $n(\lambda)$, anhand einer Regression (engl. "Fit").

Abbildung 1.8: Frequenzabhängikeit des Brechungsindex; Quelle [2]

1.2.5 Brechungsindex und Absorption von Metallen - DRUDE-Modell

Metalle zeichnen sich physikalisch durch ihre freie Elektronen aus. Es gibt keine Rückstellkräfte $\Rightarrow \omega_0 = 0$. Sei $\gamma = 0$:

$$\varepsilon(\omega) = 1 - \frac{\omega_P^2}{\omega^2} \tag{1.20}$$

$$\omega_P^2 = \frac{e^2 N}{\varepsilon_0 m_e}$$
 Plasma-Frequenz (1.21)

1.3 Elektromagnetische Wellen an Grenzflächen

- Randbedingungen:
 - Tangentialkomponente von \vec{E} und $\vec{H} = \frac{1}{\mu\mu_0}\vec{B}$
 - Normalkomponente von $\vec{D} = \varepsilon \varepsilon_0 \vec{E}$ und \vec{B}

sind stetig

- Betrachten zwei homogene Medien
 - mit den Brechungsindizes n_e und n_t ,
 - mit x-z-Ebene als Grenzfläche (y = 0).
 - Licht: ebene Welle \vec{E}_e aus Medium M_e mit einem Einfallswinkel θ_e (Winkel mit der Normalen \vec{u}_n).
 - transmittierte Welle $\vec{E_t}$ im Medium M_t
 - reflektierte Welle $\vec{E_r}$ im Medium M_e

$$\vec{E}_{e} = \vec{E}_{e0} \cdot \cos\left(\omega_{e}t - \vec{k}_{e}\vec{r}\right) = \vec{E}_{e0} \cdot \cos\left(\phi_{e}(\vec{r},t)\right)$$
$$\vec{E}_{r} = \vec{E}_{r0} \cdot \cos\left(\omega_{r}t - \vec{k}_{r}\vec{r} + \varphi_{r}\right) = \vec{E}_{r0} \cdot \cos\left(\phi_{r}(\vec{r},t)\right)$$
$$\vec{E}_{t} = \vec{E}_{t0} \cdot \cos\left(\omega_{t}t - \vec{k}_{t}\vec{r} + \varphi_{t}\right) = \vec{E}_{t0} \cdot \cos\left(\phi_{t}(\vec{r},t)\right)$$

• Die $\vec{k_e}, \vec{k_r}, \vec{k_t}$ müssen die Dispersionsrelationen erfüllen, φ_r, φ_t beschreiben die Phase relativ zu $\vec{E_e}$

1.3.1 Reflexions-und Brechungsgesetz

- Fordern Stetigkeit der Tangentialkomponente \vec{E}
- x-und y-Komponente müssen unmittelbar ober-und unterhalb der Grenzfläche identisch sein, d.h.

$$E_{0ex} \cdot \cos\left(\phi_e(\vec{r}, t)\right) + E_{0rx} \cdot \cos\left(\phi_r(\vec{r}, t)\right) = E_{0tx} \cdot \cos\left(\phi_t(\vec{r}, t)\right)$$

Analog für die z-Komponente, für alle \vec{r} mit y = 0 und für alle t

$$\Rightarrow \quad \omega_e t - \vec{k}_e \vec{r} = \omega_r t - \vec{k}_r \vec{r} = \omega_t t - \vec{k}_t \vec{r}$$
$$\Rightarrow \quad \omega := \omega_e = \omega_r = \omega_t$$

weiterhin gilt

$$\vec{k}_{e}\vec{r} = \vec{k}_{r}\vec{r} = \vec{k}_{t}\vec{r} \begin{pmatrix} \vec{k}_{e} - \vec{k}_{r} \end{pmatrix} \vec{r} = 0 \\ (\vec{k}_{e} - \vec{k}_{t}) \vec{r} = 0 \end{cases}$$
 Ebenengleichungen, Grenzfläche

- Die Komponenten von \vec{k}_e und \vec{k}_r , die parallel zu den Grenzflächen liegen sind $\vec{k}_{eG} = \vec{k}_{rG}$
- Die Dispersionsrelation beschreibt die Beträge der Wellenvektoren:

$$k_e = k_r = \frac{\omega n_e}{c}$$

– Einfallswinkel θ_e , Ausfallswinkel θ_r :

$$k_{eG} = \frac{\omega n_e}{c} \sin \theta_e = k_{rG} = \frac{\omega n_e}{c} \sin \theta_r$$

$$\Rightarrow \quad \sin \theta_e = \sin \theta_r$$

$$\Rightarrow \quad \theta_e = \theta_r \quad \text{Reflexionsgesetz}$$
(1.22)

 \Rightarrow Wellenvektoren des reflektierten Lichtes in der Einfallsebene: Es gilt der Ausfallswinkel ist gleich dem Einfallswinkel $\theta_r = \theta_e$.

• Analoges gilt für den transmittierten Strahl

$$k_{eG} = k_{tG}$$

$$k_{eG} = \frac{\omega n_e}{c} \sin \theta_e = k_{tG} = \frac{\omega n_t}{c} \sin \theta_t$$

$$n_e \sin \theta_e = n_t \sin \theta_t$$
SNELLIUSsches Brechungsgesetz (1.23)

1.3.2 FRESNELsche Formeln für den Reflexionsgrad einer Grenzfläche

Es stellt sich die Frage nach der Stärke des reflektierten, bzw. transmittierten Lichts.

• Betrachten zunächst einen senkrechten Lichteinfall: Es gelten dabei die Randbedingungen

$$\vec{E}_{0e} + \vec{E}_{0r} = \vec{E}_{0t}$$
$$\vec{B}_{0e} + \vec{B}_{0r} = \vec{B}_{0t}$$

Aus den MAXWELL-Gleichungen erhält man für eine Ebene Welle mit der Beziehung

$$\vec{B}_{0} = \frac{1}{\omega} \left(\vec{k} \times \vec{E}_{0} \right)$$

$$\Rightarrow \vec{k}_{r} = -\vec{k}_{e} \text{ bzw. } \vec{k}_{t} = \frac{n_{t}}{n_{e}} \vec{k}_{e}$$

$$\Rightarrow n_{t} \vec{E}_{0t} = n_{e} \vec{E}_{0e} - n_{e} \vec{E}_{0r}$$

$$\Rightarrow \vec{E}_{0r} = \frac{n_{e} - n_{t}}{n_{e} + n_{t}} \vec{E}_{0e} =: r \vec{E}_{0e}$$

$$\vec{E}_{0t} = t \vec{E}_{0e} \text{ mit } t = \frac{2n_{e}}{n_{e} + n_{t}}$$

Dabei sind r der Reflexionskoeffizient und t der Transmissionskoeffizient für elektrische Felder. Aus (*) sehen wir, dass für $n_e < n_t$, also der Reflexion am optisch dichteren Medium, ein Phasensprung um π auftritt. Das Reflexionsvermögen in der Intensität I ist:

$$R = \frac{I_r}{I_e} = \left(\frac{n_e - n_t}{n_e + n_t}\right)^2 \tag{1.24}$$

Beispiel: Luft-Glas-Grenzfläche

 $\begin{array}{ll} n_{\rm Glas}\approx 1 & n_{\rm Diamant}=2,41\\ n_{\rm Luft}\approx 1 & n_{\rm Luft}\approx 1\\ R_{\rm Glas-Luft}\approx 4\% & R_{\rm Luft-Diamant}=17\% \end{array}$

• Betrachten einen beliebigen Einfallswinkel: Unterteilen dazu den Reflexionskoeffizienten r in Feldkomponenten r_{\parallel} parallel und r_{\perp} senkrecht zur Einfallsebene.

FRESNELschen Formeln:

$$r_{\perp} = \frac{E_{r_{\perp}}}{E_{e\perp}} = \frac{n_e \cos \theta_e - n_t \cos \theta_t}{n_e \cos \theta_e + n_t \cos \theta_t} = -\frac{\sin \left(\theta_e - \theta_t\right)}{\sin \left(\theta_e + \theta_t\right)}$$
(1.25)

$$r_{||} = \frac{E_{r_{|}|}}{E_{e||}} = \frac{n_t \sin \theta_e - n_e \sin \theta_t}{n_t \cos \theta_e + n_e \cos \theta_t} = -\frac{\tan \left(\theta_e - \theta_t\right)}{\tan \left(\theta_e + \theta_t\right)}$$
(1.26)

• Reflexions grad bei Einfall aus optisch dünnerem Medium ($n_e < n_t$):

Beim BREWSTER-Winkel θ_B gilt $r_{||} = 0$.

$$\theta_B + \theta_t = 90^\circ \Rightarrow \tan \theta_B = \frac{n_t}{n_e}, \quad \text{bzw.} \quad \theta_B = \arctan \frac{n_t}{n_e}$$
(1.27)

Anwendungen des BREWSTER-Winkels:

- einfacher Polarisator
- verschwindende Reflexion \Rightarrow keine Verluste beim Durchgang durch sog. "BREWSTER-Fenster"
- Reflexion bei Einfall aus optisch dichterem Medium $(n_e > n_t)$:

Einfallswinkel $\theta_e = \theta_T < 90^\circ \Rightarrow$ Reflexionsvermögen von 100%. Mit SNELLIUS folgt

$$\sin \theta_t = 1$$

$$\sin \theta_T = \frac{n_t}{n_e} \Rightarrow \theta_T = \arcsin\left(\frac{n_t}{n_e}\right) \quad \text{Grenzwinkel der Totalreflexion}$$
(1.28)

a)

b)

1.3.3 Totalreflexion und evaneszente Welle

- Verlauf des Feldes an Rückseiten einer Grenzfläche
- Bereich der Totalreflexion, d.h. $k_{t\perp} \in i\mathbb{R}$ rein imaginär

$$k_{t\perp} = \pm i k_t \sqrt{\frac{n_e^2}{n_t^2}} \sin^2 \theta - 1 = \pm i \beta$$

$$\vec{E}(x, y, t) = \vec{E}_{0t} \cdot e^{-\beta y} \cdot e^{i k_{tG} x - i \omega t}$$
(1.29)

 \Rightarrow ein exponentieller Abfall der Feldstärke auf der Rückseite \Rightarrow evaneszente Welle, bzw. Oberflächenwelle.

Abbildung 1.9: Tunneln von Licht über schmalen Spalt mit $d \approx \frac{1}{\beta}$

1.4 Lichtwellenleiter

- Motivation ist die Glasfasertechnologie
- Übertragungsraten von Tb/s möglich (= 10^{12} b/s)
- Die Informationsdatenrate ist immer kleiner als die Trägerfrequenz.
 ⇒ Licht: λ = 1,55μm = f = 200THz
- Führung des Lichtes mithilfe der Totalreflexion.
- Lichtleitender Kern mit n_K und Mantel mit n_M , jeweils hoch-transparent

• Berechnung des Raumwinkels, unter dem Totalreflexion auftritt. Grenzwinkel

$$\theta_{\rm gr} = \phi_{\rm max} - \pi/2$$

Der Akzeptanzwinkel im Außenraum $\phi_{max,a}$:

$$\frac{n_M}{n_K} = \sin \theta_{\rm gr} = \cos \phi_{\rm max} = \sqrt{1 - \sin^2 \phi_{\rm max}}$$

$$n_K \sin \phi_{\rm max} = \sqrt{n_K^2 - n_M^2}$$
(1.30)

• NA: Numerische Apertur der Glasfaser

NA =
$$n_0 \sin \phi_{\max,a} = \sqrt{n_K^2 - n_M^2}$$
 (1.31)

- Beispiel: SMF28 (Single Mode Fiber @ 155nm)
 - Modenfeld-Durchmesser: $10,5\mu m$
 - Dämpfung: 0,05dB/km

$$- NA = 0.13$$

- $\lambda_{\text{ZeroDispersion}} = 1313 \text{nm}$

$$-\frac{n_K-n_M}{n_K}=0,004$$

• Krümmung der Faser führt zu einem geringeren Akzeptanzwinkel

• Einteilung in Monomode-Glasfaser (a) und Multimode-Glasfaser (b)

Abbildung 1.10: Für die Multimode-Faser gilt $r_K\gg\lambda$

- Wellenlängen für Glasfaser Telekom:
 - Keine Gruppengeschwindigkeitsdispersion in Quarzglas: $\lambda_{\text{ZeroDispersion}} \approx 1300 \text{nm}$
 - Minimum der Dämpfung: $\lambda_0 \approx 1550 \text{nm}$

• Herstellungsprozess

• mikrostrukturierte Faser

1.5 Absorbierende und streuende Medien

1.5.1 Reflexion absorbierender Medien

- Verwenden komplexe Werte für Brechungsindex: $n = n_R + in_I$
- identische Ausdrücke für den Feld-Reflexionskoeffizienten r
- Für senkrechten Lichteinfall auf absorbierendes Medium von Luft: $n_e = n_{\text{Luft}}$

$$r = \frac{n-1}{n+1}$$
(1.32)

bzw.
$$R = rr^* = \frac{(n_R - 1)^2 + n_I^2}{(n_R + 1)^2 + n_I^2}$$
 (1.33)

 \Rightarrow R nimmt mit steigender Absorption zu.

 \Rightarrow Insbesondere für Metalle: starke Absorption für $\omega < \omega_P$, d.h. $R \rightarrow 100\%$

1.5.2 Farbe von Gegenständen

Bezeichnet die spektrale Zusammensetzung von Licht, welches von einem Körper ausgeht (unter Beleuchtung von Weißleicht, d.h. Licht welches alle sichtbaren Wellenlängen gleich enthält).

- 1. Metalle:
 - hohe Leitfähigkeit
 - hohe Reflexion ⇒ metallischer Glanz
 Bei Metallen wie z.B. Au oder Cu tritt zusätzliche Absorption durch resonante Anregung von Elektronen auf. ⇒ gelbe bzw. rötliche Färbung
- 2. Isolatoren ohne Absorption im sichtbaren Spektrum:
 - Transparenz, z.B. Fensterglas
- 3. Isolatoren mit schwacher Absorption im Sichtbaren:
 - Absorption im gelbroten Spektrum
 - blaue Farbe in Transmission, z.B. Tinte
- 4. Isolatoren mit sehr hoher Absorption im Sichtbaren;
 - z.B. Halbleiter wie Silizium
 - Farbeindruck ist schwarz (Absorption im gesamten Sichtbaren)
 - farbig für teilweise Transparenz, z.B. GaP absorbiert vom UV-Licht bis $\lambda \approx 600$ nm \Rightarrow orange in Transmission, starke Reflexion.

1.5.3 Lichtstreuung

- Bisher haben wir homogene Medien betrachtet. $\rightarrow \varepsilon(\omega)$
- Betrachten jetzt inhomogene Medien
- Beispiele:
 - Milch: Fetttröpfchen in Wasser
 - Wolken: Wassertröpfchen in Luft
- Allgemein: Streuung von Licht an kleinen Partikeln: TYNDALL-Streuung

Grenzfälle:

- 1. $d \gg \lambda$: große dielektrische Teilchen
 - \rightarrow Reflexions-und Brechungsgesetz
- 2. $d \approx \lambda$: MIE-Streuung
 - -> MAXWELL-Gleichungen mit speziellen Randbedingungen
 - \rightarrow komplizierte Resonanz-Phänomene und Abstrahlcharakteristik
- 3. $d \ll \lambda$: RAYLEIGH-Streuung

 \rightarrow Streuung an Punktdipolen,

Ebene Welle

siehe dazu auch bsw. http://web.mit.edu/jbelcher/www/anim.html

Merke:

- Für gegebene Richtung vom Dipol weg ist die Feldamplitude im Fernfeld proportional zum reziproken Abstand.
- Nahfeld mit schnellerem Abfall hat keine Propagation in den freien Raum.

Nahfeld Fernfeld

$$\vec{E} \sim \vec{j}$$
 $\vec{E}(t) \sim \dot{\vec{j}}$
 $\vec{E}(\vec{r}) \sim 1/r$
 $I(\vec{r}) \sim 1/r^2$

Bild: Anregung von Punktdipolen, z.B. gebundenes Elektron an Atom, bzw. Molekül. Analog zum LOR-ENTZ-Modell mit Resonanzfrequenz ω_0 folgt der Streukoeffzizient σ

$$\sigma = \frac{8\pi}{3} \cdot \left(\frac{e^2}{4\pi\varepsilon_0 mc^2}\right)^2 \cdot \frac{\omega^4}{\left(\omega_0^2 - \omega^2\right)^2}$$
(1.34)

Für $\omega \ll \omega_0$ nimmt σ mit ω^4 zu, bzw. mit λ^4 ab. Moleküle mit einer Resonanzfrequenz ω_0 im UV:

- stärkere Streuung von blauem Licht im Vergleich zu rotem Licht
- Blau des Himmels bei Tag
- Rot der auf-bzw. untergehenden Sonne
- 4. $\omega \approx \omega_0$: Resonanzstreuung
 - \rightarrow Der Streukoeffizient σ wird sehr groß.
- 5. $\omega \gg \omega_0$: THOMSON-Streuung, Limes-Betrachtung $\omega_0 \rightarrow 0$

$$\Rightarrow \ \sigma \ = \ \frac{8\pi}{3} \cdot \left(\frac{e^2}{4\pi\varepsilon_0 mc^2}\right)^2$$

Bemerkung:

- elastische Lichtstreuung $\Rightarrow \omega = \text{const.}$
- inelastische Lichtstreuugng $\Rightarrow \omega$ ändert sich; z.B.
 - RAMAN-Streuung an Molekülen
 - BRILLOUIN-Streuung an akustischen Wellen
 - COMPTON-Streuung an Elektronen

Experiment: TYNDALL-Streuung an kolloidaler Lösung

2 Geometrische Optik

- Behandlung eines makroskopischen Abbildungsvorgangs
 - Grenzen der MAXWELLschen Theorie
 - stark vereinfachte Beschreibung
 - geometrische Optik durch Grenzübergang $\lambda \to 0$
- Licht in Form von Strahlen (Strahlenoptik)
 - geradlinige Ausbreitung in homogenen Medien
 - Reflexionsgesetz
 - Brechungsgesetz
- Definition Lichtstrahl

2.1 FERMATsches Prinzip

- Lichtausbreitung in homogenen Medien
- Variationsprinzip nach FERMAT: Für die Lichtausbreitung gilt: Der optische Weg W ist so, dass der tatsächlich benutzte Pfad S_0 gegenüber Nachbarpfaden extremal ist, d.h. W für diesen Pfad S_0 maximal oder minimal ist.
- Betrachten eine Lichtquelle am Ort Q vom Beobachtungspunkt P

$$W(S) = \int_{S(Q \to P)} n(\vec{x}) \,\mathrm{d}s \tag{2.1}$$

Nach FERMAT muss dafür gelten:

$$\left(\frac{\delta W(S)}{\delta S}\right)_{S_0} = 0 \tag{2.2}$$

Bemerkung: FERMAT aus MAXWELL-Gleichungen: Licht auf verschiedenen Pfaden

- Aufsummieren am Beobachtungspunkt P
- Beachte: Phasenrichtig, d.h. benachbart liegende Pfade, die viel zur Intensität bei *P* beitragen: konstruktive Interferenz.
- bei kleiner Änderung von S nur unwesentliche Phasenänderung $\Delta \varphi$

(2.3)

• Extremum der Phasenänderung

2.1.1 Reflexionsgesetz

 $Q \to P$ über eine Spiegelfläche SP. Der Lichtweg ist $\overline{QX} + \overline{XP}$, X: Punkt auf der Spiegeloberfläche. Wir suchen einen minimalen Lichtweg. Vektorielle Formulierung über die drei Einheitsvektoren $\vec{s}_e, \vec{s}_r, \vec{u}_n$

 $\vec{s}_r = \vec{s}_e + 2\vec{u}_n \cos\theta_e = s_e - 2 \left\langle \vec{s}_e, \vec{u}_n \right\rangle \vec{u}_n$

2.1.2 Brechungsgesetz

nach FERMAT gilt

$$\frac{\mathrm{d}W}{\mathrm{d}x} = 0 = n_e \frac{x}{\sqrt{h_Q^2 + x^2}} - n_t \frac{A - x}{\sqrt{h_P^2 + (A - x)^2}} = n_e \sin\theta_e - n_t \sin\theta_t$$
$$n_e \sin\theta_e = n_t \sin\theta_t$$

Vektorielle Formulierung:

 \Rightarrow

$$n_t \vec{s}_t = n_e \vec{s}_e + (n_t \cos \theta_t - n_e \cos \theta_e) \vec{u}_n \quad \text{mit} \quad \cos \theta_e = \langle \vec{u}_n, \vec{s}_e \rangle$$
$$n_t \cos \theta_t = \sqrt{n_t^2 - n_e^2 + n_e^2 \cos^2 \theta_e}$$

2.2 Strahlablenkung durch Prisma

• Betrachten einen transparenten Prisma mit Scheitelwinkel α . Der ein-und ausfallende Strahl sei senkrecht zur Schnittline der beiden Prismaflächen.

$$\delta = \theta_{e1} - \alpha + \arcsin\left(\sin\alpha \cdot \sqrt{n^2 - \sin^2\theta_{e1}} - \sin\theta_{e1}\cos\alpha\right)$$
(2.4)

- bei symmetrischer Durchstrahlung ist $\theta_{e1} = \theta_{t2}$
- Ablenkwinkel δ minimal für $\delta = \delta_{\min}$:

$$\delta_{\min} = 2\theta_{e1} - \alpha$$

$$\sin\left(\frac{\delta_{\min} + \alpha}{2}\right) = n \sin\frac{\alpha}{2}$$

$$n = \frac{\sin\left(\frac{\delta_{\min} + \alpha}{2}\right)}{\sin\frac{\alpha}{2}}$$
(2.5)

 \Rightarrow Messung des Brechungsindex n

• Dispersion des Brechungsindex $n(\lambda) \Rightarrow$ Spektrale Zerlegung von Licht

2.3 Die optische Abbildung

- Abbildung im mathematischen Sinne: Ein Punkt im Objektraum wird eindeutig abgebildet auf genau einen Punkt im Bildraum.
- reale und nicht-triviale Abbildungen \Rightarrow Abbildungsfehler
- Betrachten zunächst nur Strahlen mit einem kleinen Winkel θ zu einem zentralen Strahl $\Rightarrow \tan \theta \approx \sin \theta \approx \theta$.
- Limit der paraxialen Optik

2.3.1 Reelle und virtuelle Abbildungen

Optisches Instrument: Abbildungen von einem Objektpunkt Q dergestallt, dass der Beobachter annimmt, dass Licht von einem Bildpunkt P kommt.

1. Reelle Abbildungen: Das abbildende Instrument befindet sich nicht zwischen Bildpunkt und Beobachter. Eine reelle Abbildung kann mit einem Schirm aufgefangen werden.

2. Virtuelle Abbildung: Das abbildende Instrument befindet sich zwischen Beobachter und Bildpunkt $P. \Rightarrow$ Lichtstrahlen schneiden sich nicht im Bildpunkt

2.3.2 Abbildung mit Kugelspiegel

Abbildung 2.1: Kugelspiegel; Quelle [2]

Bringen die Gegenstandsweite g, die Bildweite b und den Krümmungsradius r in folgende Beziehung:

$$\frac{1}{g} + \frac{1}{b} = \frac{2}{r} =: \frac{1}{f}$$
(2.6)

Abbildungsgleichung für Kugelspiegel:

$$f = \frac{r}{2}$$
 Brennweite (2.7)

Abbildung 2.2: Spiegel mit großer Öffnung, Abbildungsfehler für achsferne Strahlen, f' < f; Quelle [2]

2.3.3 Abbildung durch brechende Kugelflächen

• Kugelfläche trennt zwei homogene Medien mit Brechungsindizes n_1 , n_2 . Brechungsgesetz für kleine Winkel:

$$n_1 \sin \theta_e = n_2 \sin \theta_t$$

$$\Rightarrow n_1 \theta_e = n_2 \theta_t$$

Abbildung 2.3: Brechung an der Kugeloberfläche; Quelle [2]

Abbildungsgleichung für brechende Kugelfläche:

$$\frac{n_1}{g} + \frac{n_2}{b} = \frac{n_2 - n_1}{r} \tag{2.8}$$

• Die Vorzeichenkonvention ist wie folgt festgelegt:

	> 0	< 0
g	G links von S	G rechts von S
f_g	G links von S	G rechts von S
b	B rechts von S	B links von S
f_b	B rechts von S	B links von S
r	M rechts von S	M links von S

• Zwei brechende Kugelflächen bilden eine sog. "Linse".

- positive, bzw. konvexe, bzw. Sammellinse: im Zentrum dicker als am Rand
- negative, bzw. konkave, bzw. Zerstreuungslinse: im Zentrum dünner als am Rand

2.3.4 Abbildungsgleichung für eine dünne Linse

$$\frac{1}{g} + \frac{1}{b} = (n-1) \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right) = \frac{1}{f}$$
(2.9)

f: Brennweite der Linse

Abbildung 2.4: Dünne Linse; Quelle [2]

geometrische Konstruktion eines Bildes: Strahl I: Parallel zur optischen Achse, durch bildseitigen Brennpunkt. Strahl II: Strahl durch Linsenzentrum, nicht abgelenkt. Strahl III: Strahl durch gegenstandseitigen Brennpunkt, nach Linse parallel zur optischen Achse.

Abbildung 2.5: geometrische Konstruktion eines Bildes; Quelle [2]

2.3.5 Dicke Linsen und Linsensysteme

- Die Abbildung ist berechenbar über das Brechungsgesetz in paraxialer Näherung.
- Aber die geometrische Konstruktion ist möglich durch Einführung sog. Hauptebenen.

Abbildung 2.6: Linsensystem; Quelle [2]

2.4 Abschluss der Linearen Optik

Matrizen-Verfahren zur Berechnung der Ausbreitung paraxialer Strahlen

$$\overrightarrow{M} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \quad \overrightarrow{M}_{\text{dunn}} = \begin{pmatrix} 1 & -1/2 \\ 0 & 1 \end{pmatrix}, \quad \overrightarrow{S} = \begin{pmatrix} n\alpha \\ x \end{pmatrix}$$
(2.10)

Mit einer Strahlmatrix \overleftarrow{S} (α Winkel zur optischen Achse, x Abstand zur optischen Achse) kann die Strahlausbreitung durch Multiplikationen von gewissen Matrizen \overleftarrow{M} dargestellt werden.

Abbildungen Punkt \rightarrow Punkt

- 1. Chromatische Abberation
- 2. Monochromatische Abberation

Betrachtet man die Abbildungsgleichung

$$\frac{1}{f} = (n-1) \cdot \underbrace{\left(\frac{1}{r_1} - \frac{1}{r_2}\right)}_{\rho} = (n-1) \, \rho = (n(\lambda) - 1) \, \rho =: D$$
(2.11)

erkennt man, dass diese von der Wellenlänge abhängig ist.

- \Rightarrow Abbildungsfehler
- \Rightarrow Verwendung von Achromaten

Abbildung 2.7: Chromatische Aberration; Quelle [2]

Bsp.: Nehmen $\lambda_C = 656$ nm und $\lambda_F = 486$ nm

$$\Delta D_i = \Delta \left(\frac{1}{f_i}\right), \ i = 1, 2$$

Aus der Winkelnäherung erhält man

$$\Delta D_{i} = \frac{1}{\nu_{di}f_{di}}, \quad \nu_{di} = \frac{n_{di} - 1}{n_{Fi} - n_{Ci}} \quad \text{ABBE-Zahl}$$
$$D_{C} = D_{F}, \quad D_{C1} + D_{C2} = D_{F1} + D_{F2} \quad \Rightarrow \quad \Delta D_{1} + \Delta D_{2} = \frac{1}{\nu_{d1}f_{d1}} + \frac{1}{\nu_{d2}f_{d2}} = 0$$
$$\nu_{d1}f_{d1} + \nu_{d2}f_{d2} = 0$$

Abbildung 2.8: Chromatische Aberration einer einfacher Linse; Quelle [2]

Geringere Abberation kann auch durch "Umdrehen" der Linse erreicht werden (spärische Abberation).

Abbildung 2.9: Sphärische Aberration; Quelle [2]

- Bei großen Öffnungswinkeln kommt es zu Koma-Fehlern
- Astigmatismus bei kleinen Öffnungswinkeln

Begrenzung in optischen Systemen

Abbildung 2.10: Eintritts-und Austrittspupille; Quelle [2]

- 1. Eintrittspupille D_e , Eintrittswinkel $\varphi_e, \varphi_e \cong \frac{D}{g}$
- 2. Austrittspupille D_a , Öffnungswinkel φ_a

Führen die Bildhelligkeit *H* ein:

$$H \propto \frac{\varphi_e^2}{B^2} \propto \frac{D_e^2}{f^2} \quad \text{mit } g \gg f$$

$$F = \frac{f}{D} \quad f\text{-Zahl}$$
(2.12)

Konstruktion eines Scheinwerfers

Abbildung 2.11: Scheinwerfer erhitzt bei zu kurzer Entfernung die Linse

$$f_{\min} = 2r, \quad D < D_{\max} = 2r$$

Man sieht das D = f ungeeignet ist zur Konstruktion eines Scheinwerfers (zu nahe an der Lichtquelle, zu schwer). Abhilfe schafft die FRESNEL-Linse.

Abbildung 2.12: FRESNEL-Linse; Quelle [2]

Instrumente der geometrischen Optik

Abbildung 2.13: Projektor; Quelle [2]

• Bild der Glühwendel wird in die Linse abgebildet

Abbildung 2.14: Teleobjektiv; Quelle [2]

- Durch Verwendung von Linsenkombinationen kann das Objektiv kompakt gehalten werden.
- Die Abbildungsgleichung gilt für Punkt-Abbildungen. Pixel (einer Kamera oder Sehzellen des Auges) sind nicht punktförmig, sondern endlich ausgedehnt.

$$\frac{\Delta g}{g} \cong B_0 \frac{g}{fD} = \frac{B_0 g}{f^2} F \quad \text{relativer Schärfentiefenbereich}$$
(2.13)

Vergrößerung optischer Instrumente

Definieren Vergrößerung V

$$V = \frac{\text{Sehwinkel mit Instrument}}{\text{Sehwinkel ohne Instrument}} = \frac{\varepsilon_I}{\varepsilon_0}$$
(2.14)

und speziell die Vergrößerung einer Lupe mit

$$V = \frac{\text{Sehwinkel mit Instrument}}{\text{Sehwinkel im Abstand } S_0} = \frac{\varepsilon_I}{\varepsilon_0}$$
(2.15)

Wobei $S_0 = 25$ cm als der Abstand gewählt wird, bis der das Auge ein Objekt scharf erkennen kann.

$$V_{\text{Lupe}} = \frac{S_0}{f_L} = \frac{25\text{cm}}{f_L}$$
 (2.16)

Ein Okular dient dazu ein reelles Zwischenbild zu vergrößern und funktioniert wie eine Lupe.

Abbildung 2.15: Vereinfachte Darstellung eines Mikroskops; Quelle [2]

$$V_{\text{Mik}} = \frac{t \cdot S_0}{f_{\text{Ob}} \cdot f_{\text{Ok}}} = V_{\text{Ob}} \cdot V_{\text{Ok}}$$
(2.17)

mit der Tubuslänge t. Um die Beleuchtung zu verbessern benutzt man auch Immersionsobjektive.

Optik – Lichtstrahlen, Wellen, Photonen © Wolfgang Zinth

Abbildung 2.16: Immersionsobjektiv; Quelle [2]

Die Vergrößerung eines Fernrohrs ist gegeben durch

$$V_{\text{Fernrohr}} = \frac{\varepsilon_F}{\varepsilon_0} = \frac{f_{\text{Ob}}}{f_{\text{Ok}}}$$
(2.18)

Abbildung 2.17: links astronomisches Fernrohr, rechts terrestrisches Fernrohr (GALILEIsches Fernrohr); Quelle [2]

Das GALILEIsche Fernrohr korrigiert die Bild-Ausrichtung, beim astronomischen Fernrohr erscheint das Bild auf dem Kopf.

$$\underbrace{D_{\text{Ein}}^2 \frac{\pi}{4}}_{\text{Ein}}, \underbrace{D_{\text{Ein}}^2 \frac{\pi}{4} \cdot \frac{1}{V_{\text{Fernrohr}}^2}}_{\text{Aus}}$$
(2.19)

Flächenhelligkeit bleibt konstant, die Punkthelligkeit wird größer.

3 Wellenoptik

Wir machen ein Gedankenexperiment:

• Eine Blende mit $\emptyset \approx 10 \mathrm{cm}$

Abbildung 3.1: von der geometrischen Optik zur Wellenoptik; Quelle [2]

- Schirm 10m hinter der Blende: Erhalten ein paralleles Lichtbündel mit $\emptyset \approx 10 \text{cm}$
- Wählen $\lambda \approx 500$ nm, verkleinern den Blendendurchmesser:
 - bis $\emptyset \approx 1 \text{mm}$, Durchmesser des Lichtbündels am Schirm nimmt proportional ab.
 - Aber bei Durchmessern $D_0 \lesssim 1 \text{mm}$
 - \Rightarrow keine weitere Abnahme des Durchmesseres am Schirm
 - Bei $D < D_0$ treten Beugungsphänomene auf, Durchmesser am Schirm steigt sogar wieder an.
- Definition ,,Lichtstrahl" macht keinen Sinn mehr \rightarrow Wellennatur des Lichtes
 - Beugung an der Blende
 - Intensitätsmodulation durch Interferenz

3.1 Beugung: Qualitatives Bild

3.1.1 HUYGENsches Prinzip

- C. HUYGEN, 1680: Lichtausbreitung analog zur Schallausbreitung
- Jeder Punkt einer Wellenfront ist Quelle sekundärer Elementarwellen.
- Ausbreitung verhält sich gemäß der Dispersion im Medium.
- Fall des optisch homogenen Mediums: Kugelwellen

Optik – Lichtstrahlen, Wellen, Photonen © Wolfgang Zinth

Abbildung 3.2: HUYGENsches Prinzip; Quelle [2]

 \rightarrow Phänomene der Beugung: konstruktive und destruktive Interferenz der Elementarwellen: FRESNEL-HUYGENsches Prinzip

- Lichtfeld an Punkt P gebildet als Summe über alle Elementarwellen, unter Berücksichtigung von Amplitude und Phase
- Anfang des 19. Jahrhunderts wurde die Wellennatur des Lichtes allgemein akzeptiert.

3.1.2 FRESNELsche Beugung

- Beugungsbilder
 - beleuchtendes Licht der Wellenlänge λ
 - beugen des Lichts
 - Beobachtungsebene
- FRAUENHOFER-Beugung:
 - Einfall ebener Welle auf beugendes Objekt
 - Beobachtung in großer Entfernung $d \to \infty$
- FRESNEL Beugung: Beugung in endlichem Abstand vom Objekt, aber $d > \lambda$ (Für kleinere Entfernung ist man im Bereich des Dipol-Nahfeldes.)
- qualitative Behandlung: FRESNELsche Zonen
 - eindimensionales Beispiel
 - beugendes Objekt entlang der x-Achse
 - Beobachtungspunkt P bei $\vec{R} = (0, 0, R)$

Abbildung 3.3: FRESNEL Beugung; Quelle [2]

- Punkte in Beugungsebene z = 0: Elementarwellen
- P: Aufsummieren über alle Beiträge in Amplitude und Phase, bzw. mit Phasenfaktor e^{ikr}
- Der Weg vom Ursprung jeder Elementarwelle bestimmt Phasenfaktor.

- Abstand
$$r = \sqrt{x^2 + R^2}$$

- für
$$x = 0$$
 gilt $r = R$, $e^{ikr} = 1$

- Solange $r < R + \lambda/2$ ist gibt es einen konstruktiven Beitrag zur Intensität bei P.
- Für $R + \lambda/2 < r < r + \lambda$ ist der Beitrag destruktiv.
- Für $R + \lambda < r < R + 3/2 \lambda$ ist der Beitrag wieder positiv. \rightarrow FRESNELsche Zonen Z_i

Abbildung 3.4: FRESNEL Beugung; Quelle [2]

- Für große Werte von |x|, bzw. hohe Ordnungen von Z_i :
- Breiten benachbarter FRESNEL-Zonen werden immer ähnlicher
 ⇒ konstruktive und destruktive Interferenz heben sich auf.
- Intensität am Punkt P: Summation nur über Z_i niedriger Ordnung \Rightarrow Einführen der Kante von großem x her:
- Oszillationen der Intensität je nach Abdeckung positiver bzw. negativer FRESNEL-Zonen
- nach Kante: Hälfte aller Beiträge abgedeckt, bei x = 0 folgt daraus $I = I_0/4$
- danach kontinuierliche Intensitätsabnahme
- Intensitätsverlauf bei Bewegung der Kante

Optik – Lichtstrahlen, Wellen, Photonen

© Wolfgang Zinth

Abbildung 3.5: FRESNEL Beugung; Quelle [2]

- Versuch 1: FRESNEL Beugung an Kanten, Beugungsobjekt Rechteckblende
- Versuch 2: FRESNEL Beugung an Kreisblende

Optik - Lichtstrahlen, Wellen, Photonen

© Wolfgang Zinth

Abbildung 3.6: FRESNEL Beugung an Kreisblende; Quelle [2]

• Versuch 3: FRESNELsche Fokussierung mit FRESNELscher Zonenplatte

Optik – Lichtstrahlen, Wellen, Photonen

© Wolfgang Zinth

Abbildung 3.7: FRESNELsche Zonenplatte; Quelle [2]

3.2 Beugung: Mathematische Behandlung

3.2.1 FRESNEL-KIRCHHOFFsche Beugungstheorie

- Lichtquelle Q emittiert Licht der Wellenlänge λ
- Objekt mit Beugungsstruktur B
- Messen die Lichtintensität am Beobachtungspunkt P
- Beim allgemeinen Fall ist die Problemstellung nicht geschlossen lösbar.
- Näherungen:
 - skalares Lichtfeld $U \rightarrow$ vernachlässigen den Vektorcharakter vom Lichtfeld, bzw. Polaristationsrichtung
 - Lichtausbreitung von der Quelle zum Objekt sei ungestört
 - Objekt sei eben (zweidimensional)
 - \rightarrow einfallendes Lichtfeld $U_e(\xi, \eta)$
 - \rightarrow Transmissions funktion $\Omega(\xi,\eta)$ des beugenden Objekts
 - \rightarrow Lichtfeld $U_0(\xi,\eta)$ auf der rechten Seite der Blende

$$U_0(\xi,\eta) = \Omega(\xi,\eta) \cdot U_e(\xi,\eta)$$
(3.1)

- Spezialfall Ω entweder vollständig transparent mit $\Omega = 1$ oder absorbierend mit $\Omega = 0$
- Rückwirkung des beugendes Objekts auf Lichtquelle Q varnachlässigbar

Abbildung 3.8: Rückwirkung des Beugungsobjekts auf die Lichtquelle; Quelle [2]

Abbildung 3.9: Beugung an einer Blende; Quelle [2]

- mathematische Behandlung:
 - Feldverteilung $U_0(\xi,\eta)$ in der Blendenöffnung Ω
 - \rightarrow mit MAXWELL oder GREENscher Satz
 - \rightarrow Feldstärke $U_P(\vec{R})$ am Beobachtungsort $P = \vec{R} = (x, y, z)$
 - Berechnung: Flächenintegral über Ω
 - elementare Kugelwellen $E_K \sim \frac{1}{r} e^{ikr}$

$$U_P(\vec{R}) \sim \iint_{\Omega} U_0(\xi,\eta) \cdot \frac{e^{ikr}}{r} \,\mathrm{d}\xi \,\mathrm{d}\eta$$
 (3.2)

 \vec{r} Vektor zum Punkt (ξ,η) nach $P,\,\xi,\eta$ Koordinaten in Blendenebene $z=0,\,U_P(\vec{R})$ Integral über die offene Blendenfläche

$$U_P(\vec{R}) \sim e_0 \iint_{\Omega} \frac{\exp\left[ik\left(r+r_0\right)\right]}{rr_0} \,\mathrm{d}\xi \,\mathrm{d}\eta$$
 FRESNEL-KIRCHHOFFsche Beugung (3.3)

3.2.2 FRESNEL und FRAUNHOFER Beugung

- Für große Abstände $r, r_0 \gg \lambda$ vereinfacht sich die Formulierung
- Produkt von rr_0 ändert sich viel langsamer als $e^{ik(r+r_0)}$
 - \Rightarrow Ersetze $\frac{1}{rr_0}$ durch Wert am Koordinatenursprung $\frac{1}{RR_0}$

$$U_P(\vec{R}) \sim \frac{e_0}{RR_0} \iint_{\Omega} \exp\left[ik\left(r+r_0\right)\right] \,\mathrm{d}\xi \,\mathrm{d}\eta$$
 FRESNEL Beugung (3.4)

• Drücke r und r_0 durch folgende Koordinaten aus:

$$r = \sqrt{(x-\xi)^2 + (y-\eta)^2 + z^2} = R - \alpha\xi - \beta\eta + \mathcal{O}(\xi^2/R, \eta^2/R) + \dots$$

$$r_0 = R_0 + \alpha_0\xi + \beta\eta + \mathcal{O}(\xi^2/R_0, \eta^2/R_0) + \dots$$

mit α , β : Richtungs-Kosinus $\alpha = x/R$, $\beta = y/R$ und α_0 , β_0 : einfallende Strahlen $\alpha_0 = x_0/R_0$, $\beta_0 = y_0/R_0$ zu nehmen gegen $\xi(x)$ -Achse, bzw. $\eta(y)$ -Achse

• Die z-Komponente erhält man aus der Beziehung für k:

$$\begin{array}{rcl} k & = & \frac{2\pi}{\lambda} = \sqrt{k_x^2 + k_y^2 + k_z^2} \\ r + r_0 & = & R + R_0 - (\alpha - \alpha_0)\xi - (\beta - \beta_0)\eta + \psi \end{array}$$

wobei ψ alle höheren Terme der Entwicklung beschreibt.

- Limit der FRAUNHOFER Beugung: $R, R_0 \rightarrow \infty \Rightarrow \psi$ vernachlässigbar, $R, R_0 \gg \xi, \eta$
- Führen Proportionalitätskonstante ν_{P0} ein:

$$U_P(\alpha,\beta) = \nu_{P0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Omega(\xi,\eta) \cdot \exp\left[-ik\left(\alpha - \alpha_0\right)\xi - ik\left(\beta - \beta\right)\eta\right] \,\mathrm{d}\xi \,\mathrm{d}\eta$$

• bei senkrechtem Lichteinfall auf die Beugungsebene $\alpha_0 = \beta_0 = 0$

$$\Rightarrow U_P(\alpha,\beta) = \nu_{P0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Omega(\xi,\eta) \cdot \exp\left[-ik\alpha\xi - ik\beta\eta\right] d\xi d\eta$$
(3.5)

FRAUNHOFERsche Beugung bei senkrechtem Einfall

3.2.3 FRAUNHOFER Beugung in der Praxis

- Mit Ausnahme von Lasern: Kugelwellen im großen Abstand r, r_0 : verschwindende Intensität
- Abhilfe schafft die Abbildung mit Linsen:
 - Beobachtung der Beugungsfigur hinter dem Objekt mit Sammellinse L der Brennweite f
 - Beleuchtung der beugenden Eben
e Ω durch PunktlichtquelleQim Fokus einer Sammellins
eL'mit Brennweitef'

Abbildung 3.10: FRAUNHOFER Beugung unter der Verwendung von Sammellinsen L, L'; Quelle [2]

- Beobachtung durch Linse L: Richtungs-Kosinus (α, β)
 - \Rightarrow Abbildung in Brennebene von L auf Punkt $(X, Y) = (\alpha f, \beta f)$
 - \Rightarrow effektiv arbeiten mit ebenen Wellen für Beleuchtung und Beobachtung

Zusammenfassung:

- Fresnel Beugung: $r, r_0 \gg \lambda$
- zusätzlich für FRAUNHOFER Beugung: $r, r_0 \gg \xi, \eta \Rightarrow$ effektiv ebene Wellen

$$U_P(\alpha,\beta) = \nu_{P0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Omega(\xi,\eta) \cdot e^{-ik(\alpha\xi+\beta\eta)} \,\mathrm{d}\xi \,\mathrm{d}\eta$$
(3.6)

FRAUNHOFER Beugung: Beugungsbild $U_P(\alpha, \beta)$ ist zweidimensionale Fouriertransformierte des beugenden Objektes in den Ortsfrequenzen k_{α} , bzw. k_{β}

3.2.4 Das BABINETsche Prinzip

- Beugungsaufbau ohne beugendes Objekt \Rightarrow ungestörte Feldverteilung $E_0(X, Y)$
- Verwendung von Punktlichtquelle und abbildenden Linsen, wie im vorherigen Kapitel 3.2.3 ⇒ Helligkeit nur am Koordinatenursprung
- zwei komplementäre Blenden B_1 , bzw. B_2 , wobei B_1 transmittierend, wo B_2 absorbiert und exakt komplementär
- Beugungsbilder $E_1 + E_2 = E_0$
- außerhalb des Ursprungs gilt E₀ = 0
 ⇒ E₁(X, Y) = -E₂(X, Y)
 ⇒ I₁(X, Y) = I₂(X, Y)
 ⇒ Z.B. ist das Beugungsbild einer Lochblende in der Intensität identisch zu demjenigen einer Kreisscheibe.

3.3 Spezialfälle der FRAUNHOFER Beugung

3.3.1 Beugung an einem langen Spalt

• Betrachten senkrechten Lichteinfall.

- Spalt mit Breite *b* und Höhe $h \gg b$ \Rightarrow Transmissionsfunktion $\Omega_{\text{Spalt}}(\xi, \eta) = \Omega_{\text{Spalt}}(\eta)$
- Integration über ξ :

$$U_{P}(\alpha,\beta) = \nu_{P0} \int_{-\infty}^{\infty} e^{-ik\alpha\xi} \, \mathrm{d}\xi \cdot \int_{-\infty}^{\infty} \Omega_{\mathrm{Spalt}}(\eta) \cdot e^{-ik\beta\eta} \, \mathrm{d}\eta$$
$$= \nu_{P0} \cdot 2\pi\delta(k\alpha) \cdot \int_{-\infty}^{\infty} \Omega_{\mathrm{Spalt}}(\eta) \cdot e^{-ik\beta\eta} \, \mathrm{d}\eta$$

Spalt ist in ξ-Richtung unendlich ausgedehnt.
 ⇒ keine Ablenkung des Lichts in diese Richtung

$$\Omega_{\text{Spalt}}(\eta) = \begin{cases} 1 & -b/2 < \eta < b/2 \\ 0 & \text{sonst} \end{cases}$$

$$U_P \propto \int_{-\infty}^{\infty} \Omega_{\text{Spalt}}(\eta) e^{-ik\beta\eta} \, \mathrm{d}\eta = -\frac{1}{ik\beta} \left[e^{-ik\beta\frac{b}{2}} - e^{ik\beta\frac{b}{2}} \right]$$

$$= \frac{\sin\left(k\beta\frac{b}{2}\right)}{k\frac{\beta}{2}}$$
(3.7)

- Intensität ist $\propto |U_P|^2$
- normierte Intensität

$$I_{\text{Spalt}}(\beta = 0) \propto \lim_{\beta \to 0} \frac{\sin^2 \left(k\beta \frac{b}{2}\right)}{k^2 \frac{\beta^2}{4}} \stackrel{(*)}{=} b^2$$
$$\frac{I_{\text{Spalt}}(\beta)}{I_{\text{Spalt}}(0)} = \frac{\sin^2 \left(k\beta \frac{b}{2}\right)}{\left(k\beta \frac{b}{2}\right)} = \frac{\sin\left(\frac{\pi b \sin\theta}{\lambda}\right)}{\frac{\pi b \sin\theta}{\lambda}} = \left(\frac{\sin B}{B}\right)^2 \tag{3.8}$$

(*) Hier wurde zweimal der Satz von L'HOSPITAL angewendet. Dabei sind β der Richtungskosinus, θ der Ablenkwinkel in η -Richtung, $\beta = \sin \theta$, Wellenzahl $k = 2\pi/\lambda$

© Wolfgang Zinth

Abbildung 3.11: Beugungsbild am langen Spalt; Quelle[2]

Abbildung 3.12: Intensitätsverteilung; Quelle[2]

• Lage der Minima bei Beugung am Spalt

$$\sin B = \sin \left(\frac{\pi b \sin \theta}{\lambda}\right) = 0$$

$$\sin \theta_{\min} = \pm \frac{\lambda}{b}, \ \pm \frac{2\lambda}{b}, \ \dots, \ \frac{n\lambda}{b}, \ \text{mit} \ n = 1, 2, \dots$$
(3.9)

• Lage und Intensität der Maxima

$$\sin \theta_{\max} = \pm 1.43 \frac{\lambda}{b}, \ \pm 2.46 \frac{\lambda}{b}, \ \dots \tag{3.10}$$

$$\frac{I(\theta_{\max})}{I_0} = 0,047, 0,017, \dots$$
(3.11)

Definition: Fouriertransformierte FT einer Funktion ist definiert als

$$FT(f(x)) \propto \int_{-\infty}^{\infty} f(x) \cdot e^{-ikx} \, \mathrm{d}x = F(k)$$
(3.12)

3.3.2 Beugung an Rechteckblende

$$\frac{I(\alpha,\beta)}{I_0} = \frac{\sin^2 A}{A^2} \cdot \frac{\sin^2 B}{B^2}$$
(3.13)

mit
$$A = \frac{h}{2}k\alpha = \frac{h}{2}k\sin\phi$$
 (3.14)

$$B = \frac{b}{2}k\beta = \frac{b}{2}k\sin\theta \tag{3.15}$$

Abbildung 3.13: Beugung am zweidimensionalem Gitter; Quelle [2]

3.3.3 Beugung an Kreisblende

- praktische Bedeutung: kreisförmige Querschnitte von Linsensystemen zur optischen Abbildung
- kreisförmige Blende mit Durchmesser D

$$\Rightarrow I(r) \propto \left(\frac{J_1\left(\left(kD \cdot \sin \theta\right)/2\right)}{\left(kD \cdot \sin \theta\right)/2}\right)^2 \tag{3.16}$$

 J_1 : BESSEL-Funktion erster Gattung der Ordnung 1

• rotationssymmetrisches Beugungsbild

Abbildung 3.14: Intensitätsverteilung; Quelle [2]

Abbildung 3.15: Beugungsbilder Kreisblende; Quelle [2]

• Minima bei der Beugung an der Kreisblende:

$$\sin \theta_{\min} \cong 1,22 \frac{\lambda}{D}, \ 2,33 \frac{\lambda}{D}, \ \dots, \ \left(n+\frac{1}{4}\right) \frac{\lambda}{D}$$
 (3.17)

• Durchmesser des Hauptmaximums:

$$\Delta \theta = 1,22\frac{\lambda}{D} \tag{3.18}$$

- Abschätzung Beugungslimit des Auges:
 - Beleuchtung durch Punktlichtquelle im Abstand ∞
 - Pupillendurchmesser 1,5mm
 - Wellenlänge $\lambda = 600$ nm
 - Augenlänge $\approx 20 \mathrm{mm}$
 - Brechungsindex Glaskörper $\approx 1{,}33$

$$\Rightarrow \quad \Delta\theta = 1,22\frac{\lambda}{D} \tag{3.19}$$

– Durchmesser d des resultierenden Beugungsscheibchens: $d \approx 7 \mu m$ (vgl. Abb. 3.15)

3.3.4 Beugung am Doppelspalt

- Motivation: einfach zu behandelndes Interferometer
- Zwei lange Spalte mit Breite b und Abstand a
- FRAUNHOFERsche Beugung, senkrechter Einfall

Abbildung 3.16: FRAUNHOFERsche Beugung; Quelle [2]

- $\bullet \ mathematische \ Behandlung \rightarrow Fouriertransformation$
- Blendenöffnungsfunktion $\Omega_{\rm DS} = \Omega_{\rm DS}(\eta)$
- zwei Rechtecksfunktionen

$$\Omega_{1} = \begin{cases}
1 & \text{für } -\frac{a+b}{2} < \eta < \frac{a+b}{2} \\
0 & \text{sonst}
\end{cases}$$

$$\Omega_{2} = \begin{cases}
1 & \text{für } -\frac{a-b}{2} < \eta < \frac{a-b}{2} \\
0 & \text{sonst}
\end{cases}$$

$$\Omega_{DS}(\eta) = \Omega_{1}(\eta) - \Omega_{2}(\eta)$$

$$FT(\Omega_{DS}) = 2 \underbrace{\cos\left(k_{y}\frac{a}{2}\right)}_{(2)} \cdot \underbrace{\frac{\sin\left(k_{y}\frac{b}{2}\right)}{k_{y}/2}}_{(1)}$$
(3.20)

- Intensität ist proportional zu $|FT(\Omega_{\rm DS})|^2$
- Können normieren:

$$\frac{I_{\rm DS}}{I_{\rm DS}(0)} = \cos^2\left(k\beta\frac{a}{2}\right) \cdot \frac{\sin^2\left(k\beta\frac{b}{2}\right)}{\left(k\beta\frac{b}{2}\right)^2}$$
(3.21)

• $FT(\Omega_{DS}) = U(k_y)$: Feldamplitude im Beugungsbild \rightarrow Produkt aus zwei Fouriertransformationen

1. FT Einfachspalt

2. FT einer verschobenen δ -Funktion

$$\Omega_{\delta} = \delta(\eta - \frac{a}{2}) + \delta(\eta + \frac{a}{2})$$

• Es gilt daher:

$$FT(\Omega_{\rm DS}) = FT(\Omega_{\delta}) \cdot FT(\Omega_{\rm Spalt})$$
(3.22)

Optik – Lichtstrahlen, Wellen, Photonen

© Wolfgang Zinth

Abbildung 3.18: a) 1. Spalt mit b > 0, b) 2. Spalt mit $b \approx 2a$

• Faltungstheorem der Fouriertransformation:

$$FT(A \otimes B) = FT(A) \cdot FT(B) \tag{3.23}$$

wobei \otimes die Faltungsoperation ist:

$$A \otimes B = \int_{-\infty}^{\infty} A(x') \cdot B(x - x') \, \mathrm{d}x' \tag{3.24}$$

$$\Rightarrow \Omega_{\rm DS} = \Omega_{\delta} \otimes \Omega_{\rm Spalt} \tag{3.25}$$

Abbildung 3.19: Faltung bei der Beugung; Quelle [2]

3.3.5 Beugung am Gitter

- Betrachten N lange Spalte
- konstanter Abstand der Spalte: a Gitterkonstante

- Beugung: Beitrag durch periodische Wiederholung der Einzelspalten
- N sehr schmale Spalte mit b ≪ a ⇒ Anteil zur Transmissionsfunktion der Beugung Ω_{Gitter} ist darstellbar durch eine Serie von δ-Funktionen:

$$\Omega_{\text{Gitter}} = \sum_{m=0}^{N-1} \delta(\eta - m \cdot a)$$

• Für die Beugung betrachten wir die FT von Ω_{Gitter} :

$$FT(\Omega_{\text{Gitter}}) \propto U_{\text{Gitter}}(\beta) = U_0 \cdot \sum_{m=0}^{N-1} e^{-ik\beta ma} \stackrel{\text{(geom. Reihe)}}{= \dots =}$$
$$= U_0 \cdot \frac{\sin\left(Nk\beta\frac{a}{2}\right)}{\sin\left(k\beta\frac{a}{2}\right)} e^{-i(N-1)k\beta\frac{a}{2}}$$
(3.26)

Daraus können wir die Intensität bilden (normiert):

$$\frac{I_{\text{Gitter}}(\sin \theta)}{I_{\text{Gitter}}(0)} = \frac{\sin^2 \left(Nk\frac{a}{2}\sin\theta\right)}{N^2 \sin^2 \theta \left(k\frac{a}{2}\sin\theta\right)}$$
(3.27)

• Strichgitter bei senkrechtem Einfall, ebene Welle mit Wellenvektor \vec{k}

Abbildung 3.20: Schemazeichnung Beugung am Gitter; Quelle [2]

• all gemeiner Fall: Einfallswinkel $\theta_0 \Rightarrow$ Ersetze $\sin \theta$ durch $\sin \theta - \sin \theta_0$

Optik – Lichtstrahlen, Wellen, Photonen

© Wolfgang Zinth

Abbildung 3.21: Intensitätsverteilung bei Beugung am Gitter; Quelle [2]

• Lage der Hauptmaxima:

$$a\left(\sin\theta - \sin\theta_0\right) = \pm n\lambda \quad \text{mit} \ n = 0, 1, 2, \dots \tag{3.28}$$

- Hauptmaximum: Der Gangunterschied zwischen den Einzelspalten ist nλ ⇒ maximale konstruktive Interferenz
- Für $n \neq 0$ gibt es einen eindeutigen Zusammenhang zwischen dem Beugungswinkel θ , θ_0 und der Wellenlänge λ .
 - \Rightarrow Anwendung von Gittern zur Spektralanalyse

Abbildung 3.22: Aufspaltung in spektrale Bestandteile durch Beugung; Quelle [2]

• Am Gitter werden lange Wellenlängen λ stärker abgelenkt, Bsp.: Vergleich

He-Ne-Laser632,8nmfrequenzverdoppelter Nd:YAG-Laser532nm

- Prisma: Durch die Dispersion $n(\lambda)$ werden typischerweise kurze Wellenlängen λ stärker gebrochen.
- Eigenschaften des Beugungsbildes eines Gitters:
 - Nullstellen der Beugungsintensität

$$a\left(\sin\theta - \sin\theta_0\right) = \pm \frac{m}{N}\lambda \pm n\lambda \quad \text{mit} \ m = 1, 2, \dots, N - 1 \tag{3.29}$$

- $\Rightarrow N 1$ Nebenmaxima zwischen zwei Hauptmaxima.
- Volle Breite eines Hauptmaximums (volle Halbwertsbreite): FWHM (Full Width at Half Maximum)

$$\Delta \Sigma \approx 2,78 \frac{\lambda}{a\pi N} \approx 0,885 \frac{\lambda}{aN}$$
(3.30)

- + Grenze des Auflösungsvermögens ist gegeben durch $\Delta\lambda$
 - \Rightarrow Abstand der Hauptmaxima $\gtrsim \Delta \Sigma$

$$\Rightarrow \quad \frac{\Delta\lambda}{\lambda} = \frac{1}{nN} \tag{3.31}$$

3.3.6 Gitterspektrometer

- Anforderungen in der Praxis:
 - hohe spektrale Auflösung
 - hoher Lichtdurchsatz
 - Abwesenheit von Farbfehlern
 - \Rightarrow Spektrometer in Reflexionsoptik
- Gitterspektrometer:

Optik - Lichtstrahlen, Wellen, Photonen

© Wolfgang Zinth

Abbildung 3.23: Funktionsweise eines Gitterspektrometers; Quelle [2]

- Ein-und Austrittsspalt sollten gleich weit offen sein, da man ansonsten am schmalen Spalt nur an Intensität verliert, nicht aber an Auflösungsvermögen gewinnt.
- Spektrometer nicht aufmachen, Staub wirft Streulicht!
- Streulicht-Unterdrückung: Bei 1. Stufe 10³ bis 10⁴

• Abhilfe schaffen mehrere Stufen: Doppel-bzw. Dreifachmonochromator

Abbildung 3.24: Reflexionsgitter; Quelle [2]

 $2a\sin\theta = n\lambda$ BRAGG-Beziehung (3.32)

- Praxis: endliche Breite B_i von Eintritts-und Austrittsspalt
- Divergenz ist gegeben durch

$$\Delta \phi_e = \frac{B_e}{f}$$

• Haben eine endliche Spaltbreite $B_a = B_e = B$

$$\Rightarrow \quad \Delta \lambda \approx \frac{\mathrm{d}\lambda}{\mathrm{d}\theta} \Delta \phi_e = \frac{2a}{n} \cdot \frac{B}{f} \cos \theta \tag{3.33}$$

 \rightarrow apparative Wellenlängenauflösung. Beachte: $\Delta\lambda$ ist ferner begrenzt durch 3.31.

- Maximiere Beugungseffizienz bei bestimmten λ in Ordnung n:
- \rightarrow spiegelnde Reflexion vom Gitter in Übereinstimmung mit Beugungsrichtung \Rightarrow sog. Blaze-Winkel γ

Optik – Lichtstrahlen, Wellen, Photonen

© Wolfgang Zinth

Abbildung 3.25: Blaze-Winkel; Quelle [2]

3.4 Interferenz

- Überlagerung von zwei Wellen am gleichen Ort
 → Addition bzw. Subtraktion von Feldamplituden → Interferenzmuster
- Zwei identische Punktlichtquellen auf der *x*-Achse bei ±*x*₀:
 → Intensität am Koordinatenursprung *x* = *D*:

$$I_{\text{ges}}(x=0) = 4I_1$$

- Warum sind Interferenzmuster im Allgemeinen nicht beobachtet?
 - hohe Frequenz des Lichtes
 - kurze Kohärenzzeiten, über die die Emitter in Phase sind
 - \rightarrow Licht aus einer Quelle in Teilbündel aufspalten und wieder überlagern

3.4.1 Kohärenz von Lichtquellen

• Fourier-Transformation:

$$\Rightarrow \Delta \nu_F \cdot \Delta t_F \approx 1$$

mit $\Delta \nu_F$: spektrale Bandbreite

und Δt_F : endliche Zeitdauer "ungestörter" Emission: Kohärenzzeit t_c

• Abschätzung für Glühlampe

Abbildung 3.26: monochromatisches Licht aus klassischer Lichtquelle (links), Vergleich kohärentes/inkohärentes Licht (rechts); Quelle [2]

• Kohärenzlänge:

$$l_c = t_c \cdot c \tag{3.34}$$

• räumliche Kohärenz: Aussage über Phasenbeziehung von Licht aus unterschiedlichen Bereichen auf ausgedehnten Emittern.

3.4.2 Spezielle Interferometer

- Interferometer durch Ausfspalten der Wellenfront
 - YOUNGSCHER Doppelspalt (Abb. 3.27 (a))
 - FRESNELscher Biprisma (Abb. 3.27 (b))
 - FRESNELscher Doppelspiegel (Abb. 3.27 (c))

Abbildung 3.27: Interferometer; Quelle [2]

- \rightarrow Test laterale räumliche Kohärenz
- Interferenzen durch Aufspalten der Wellenamplitude
 - mithilfe teilreflektierender Spiegel
 - MICHELSON-Interferometer

Abbildung 3.28: MICHELSON-Interferometer; Quelle [2]

- Konstruktive bzw. destruktive Interferenz am Detektor je nach Gangunterschied der beiden Arme
 → genaue Längenmessung
 - \rightarrow Zähle dazu die Anzahl N von Hell-Dunkel-Durchgängen
 - \rightarrow Verschiebestrecke *D* eines Spiegels ist gegeben durch

$$D = \frac{N\lambda}{2} \tag{3.35}$$

- MICHELSON-MORLEY-Experiment
 - Äther-Theorie für Propagation von EM-Wellen ist falsch!
 - LORENTZsche Längenkontraktion
 - EINSTEINsche Relativitätstheorie
- Abwandlung: MACH-ZEHNDER-Interferometer
 - Symmetrische Interferometerarme sind identisch in Bezug auf Dispersion etc.

Abbildung 3.29: MACH-ZEHNDER-Interferometer; Quelle [2]

- Untersuchung der optischen Eigenschaften von transparenten Probeobjekten
- Interferenz ultrakurzer Lichtimpulse mit großer Bandbreite
- SAGNAC-Interferometer
 - Messung von Rotationsbewegungen: Verschiebung um ΔZ Interferenzstreifen

$$\Delta Z = \frac{4\omega F}{c\lambda} \tag{3.36}$$

- ω : Kreisfrequenz der Rotation
- F: Fläche des Interferometers
- λ : Wellenlänge des Lichtes
- Anwendung als Laser-Gyroskop

Abbildung 3.30: SAGNAC-Interferometer; Quelle [2]

3.4.3 Interferenz dünner Schichten

- Reflexion an der Vorder-und Rückseite
- Reflektivität gering, z.B. n_{ij} ≈ 1,5 ⇒ R ≈ 4%
 ⇒ Zweistrahl-Interferenz
- Dagegen, falls $R \rightarrow 100\%$: Vielstrahlinterferenzen
- FABRIT-PEROT-Interferometer → Übungsblatt!
- Interferenzen gleicher Neigung

Abbildung 3.31: Interferenz an dünnen Schichten; Quelle [2]

- Medium 1: Brechungsindex n_1 , oft Brechungsindex von Luft $n_1 = 1$, Einfallswinkel θ_1
- Dünne Schicht: Brechungsindex n_f , Brechwinkel θ_f
- Substrat: Brechungsindex n_2
- Beachte: Phasensprung um π bei Reflexion am dichteren Medium

$$\Delta \phi = \Delta \phi_1 - \Delta \phi_2$$

$$\Delta \phi = \begin{cases} \pi & \text{für } n_f < n_1 \text{ und } n_f < n_2 \\ -\pi & \text{für } n_f > n_1 \text{ und } n_f > n_2 \\ 0 & \text{ sonst} \end{cases}$$
(3.37)

• geometrischer Gangunterschied GU

$$GU = 2n_f b - n_1 x$$

$$a = 2d \cdot \tan \theta_f$$

$$n_1 \sin \theta_1 = n_f \sin \theta_f$$

$$\Rightarrow GU = 2n_f d \cdot \cos \theta_f$$
(3.38)

• Konstruktive Interferenz tritt auf bei

$$\frac{GU}{\lambda} - \frac{\Delta\phi}{2\pi} = m \text{ mit } m = 0, 1, 2, \dots$$

$$2n_f d \cdot \cos\theta_f = \left(m + \frac{\Delta\phi}{2\pi}\right) \lambda \text{ mit } m = 0, 1, 2, \dots$$
(3.39)

- Interferenzen gleicher Dicke
 - optische Dicke $n_f d$ und deren Variation von Bedeutung
 - z.B. Ölfilm $n_f \approx 1,5$ auf Wasser $n_2 = 1,33$
 - Bei senkrechtem Lichteinfall erhält man konstruktive Interferenz bei

$$\frac{2n_f d}{\lambda} = m + \frac{1}{2} \tag{3.40}$$

- Versuch: Interferenz an Glimmerplatte

- Beispiele:
 - Keilplatte (Abb. 3.32 (a))
 - NEWTONsche Ringe (Abb. 3.32 (b))
 - Testglas zur Untersuchung von Oberflächen (Abb. 3.32 (c))

Abbildung 3.32: Beispiele

- Dielektrische Schichten: Vergütung von Oberflächen bzw. Herstellung von dielektrischen Spiegeln
 - Vorder-und Rückseite mit gleicher Feldstärke reflektierend
 ⇒ Auslöschung bzw. verminderte Reflexion
 - Glasplatte mit Brechungsindex n_2

- Forderung von gleichen Amplituden:

$$\Rightarrow \frac{n_1 - n_f}{n_1 + n_f} = \frac{n_f - n_2}{n_f + n_2}$$

$$n_f = \sqrt{n_1 n_2} \text{ und } n_f d = \frac{\lambda}{4} \quad \text{Bedingung für Antireflexionsvergütung}$$
(3.41)

(3.42)

- Dielektrische Spiegel
 - möglichst hohe Reflexion!
 - paarweise $\lambda/4$ -Schichten mit abwechselnd hohem und niedrigem Brechungsindex

- Bsp.: SiO_2 mit $n_{f_1}\approx 2,4$ und TiO_2 mit $n_{f_2}=1,45$
- Die Differenz von n_{f_1} und n_{f_2} sollte möglichst groß sein, dadurch erhält man einen breiteren Bereich mit hoher Reflexion (vgl. Abb. 3.33 (a))

Abbildung 3.33: Reflexion an dünnen Schichten; Quelle [2]

3.5 Polarisation von Licht

- optisch isotrope Medien
- elektrisches Feld steht senkrecht auf dem Wellenvektor: $\vec{E} \perp \vec{k}$
- \vec{k} in \vec{e}_z -Richtung
- beliebige ebene Welle

$$\vec{E} = \vec{E}_x + \vec{E}_y = \begin{pmatrix} E_{x0} \cdot \cos\left(kz - \omega t\right) \\ E_{y0} \cdot \cos\left(kz - \omega t + \varepsilon\right) \\ 0 \end{pmatrix}$$

 \rightarrow Phasendifferenz ε zwischen transversalen Feldkomponenten

3.5.1 Polarisationszustände

• linear polarisiertes Licht mit $\varepsilon = 0$, bzw. allgemeiner $\varepsilon = n\pi$ mit n = 0, 1, 2, ...

$$\Rightarrow \vec{E} = \begin{pmatrix} E_{x0} \\ E_{y0} \\ 0 \end{pmatrix} \cdot \cos\left(kz - \omega t\right) = \vec{E}_0 \cdot \cos\left(kz - \omega t\right)$$

- zirkular polarisiertes Licht mit
 - Amplituden $E_{x0} = E_{y0} =: E_0$
 - $\varepsilon = \pi/2 + m\pi$ mit m = 0, 1, 2, ...
 - Betrag von E_0 ist zeitlich konstant
 - Ende von \vec{E} beschreibt eine Kreisbahn

$$\Rightarrow \vec{E} = E_0 \cdot \begin{pmatrix} \cos(kz - \omega t) \\ \cos(kz - \omega t + \pi/2 + m\pi) \\ 0 \end{pmatrix} = E_0 \cdot \begin{pmatrix} \cos(kz - \omega t) \\ \pm \sin(kz - \omega t) \\ 0 \end{pmatrix}$$

- Wert von m: Drehsinn des Feldvektors
- Definition: rechts-zirkular polarisiertes Licht, falls Beobachtung an Punkt z und Blickrichtung zur Quelle ⇒ Drehsinn von E im Uhrzeigersinn, bzw. falls E in Momentaufnahme zeitlich eingefroren Rechtsschraube beschreibt.

Optik - Lichtstrahlen, Wellen, Photonen

Abbildung 3.34: zirkular polarisiertes Licht; Quelle [2]

- zirkular polarisierte Welle: Superposition zweier linear polarisierter Wellen mit gleicher Amplitude und passender Phasenbeziehung
- Drehimpuls ΔL , der bei der Absorption einer zirkular polarisierten Lichtwelle übertragen wird:

$$\Delta L = \frac{\text{absorbierte Energie}}{\text{Kreisfrequenz der Welle}} = \frac{W}{\omega}$$
(3.43)

© Wolfgang Zinth

- elliptisch polarisiertes Licht
 - allgemeinster Fall
 - Endpunkt des \vec{E} -Vektors läuft in x-y-Ebene auf einer Ellipse
 - Orientierung der Achsen und Form der Ellipse

© Wolfgang Zinth

Abbildung 3.35: elliptische Polarisation; Quelle [2]

$$\tan \alpha = \frac{2E_{0x}E_{0y} \cdot \cos \varepsilon}{E_{0x}^2 E_{0y}^2}$$
(3.44)

• "natürliches" Licht: emittierende Atome regellos im Raum verteilt und inkohärent \rightarrow unpolarisiertes Licht

3.5.2 Polarisatoren

- Ein optisches Element, welches im allgemeinsten Fall aus unpolarisiertem Licht einen definierten Polarisationszustand selektiert.
 - \rightarrow optisch asymmetrische Komponente
 - Reflexion
 - Lichtstreuung
 - richtungsselektive Absorption
 - Doppelbrechung

Abbildung 3.36: Polarisator; Quelle [2]

• Polarisation durch Reflexion:

- FRESNELsche Gleichungen ⇒ unterschiedliche Reflexionskoeffizienten f
 ür Licht parallel, bzw. senkrecht zur Einfallsebene (p-Komponente), bzw. senkrecht zur Einfallsebene (s-Komponente)
- Extremfall: BREWSTER-Winkel

Abbildung 3.37: Drehung der Polarisationsebene durch Reflexion; Quelle [2]

3.5.3 Doppelbrechung

Abbildung 3.38: Doppelbrechung; Quelle [2]

• Allgemein: Beziehung zwischen der dielektrischen Verschiebung \vec{D} und dem elektrischen Feld \vec{E} über den Dielektrizitätstensor $\overleftarrow{\varepsilon}$:

$$\vec{D} = \varepsilon_0 \overleftarrow{\varepsilon} \vec{E} \tag{3.45}$$

 \rightarrow Transformation auf Hauptachsenform

$$D_i = \varepsilon_0 \varepsilon_i E_i, \qquad E_i = \frac{D_i}{\varepsilon_0 \varepsilon_i}$$
(3.46)

falls das Koordinatensystem auf die Hauptachsen angepasst ist. \rightarrow Symmetrie des Mediums!

- 1. Optisch isotrope Medien $\varepsilon_i = \varepsilon$ \rightarrow Gase, Flüssigkeiten, Gläser, Kristalle kubischer Symmetrie
- 2. optisch einachsige Kristalle $\varepsilon_x = \varepsilon_y = \varepsilon_{\perp}, \varepsilon_z = \varepsilon_{\parallel}$, optische Achse des Kristalls in $\vec{e_z}$ -Richtung
 - Für Lichtausbreitung parallel zur optischen Achse: keine Polarisationsabhängigkeit
 → SNELLIUSsches Brechungsgesetz gilt

- alle anderen Propagationsrichtungen: Abweichungen von SNELLIUS
 ⇒ "Doppelbrechung"
- Kristalle mit hexagonaler, tetragonaler oder rhomboedrischer Symmetrie
- 3. optisch zwei
achsige Kristalle $\varepsilon_x \neq \varepsilon_y \neq \varepsilon_z \neq \varepsilon_x$

 \rightarrow zwei optische Achsen, Lichtausbreitung in doppelbrechenden Medien allgemein: Ansatz ebener Wellen

$$\vec{E} = \vec{E}_0 \cdot e^{i\left(\omega t - \vec{k}\vec{x}\right)}$$

MAXWELLsche Gleichungen (mit $\mu = 1$):

$$\vec{\nabla} \vec{D} = 0 \qquad \Rightarrow \qquad \vec{k} \vec{D} = 0, \qquad \vec{D} \perp \vec{k}$$
$$\vec{\nabla} \vec{B} = 0 \qquad \Rightarrow \qquad \vec{k} \vec{B} = 0, \qquad \vec{B} \perp \vec{k}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \Rightarrow \qquad \vec{k} \times \vec{E} = \omega \vec{B}, \qquad \vec{B} \bot \vec{E}$$

$$ec{
abla} imes ec{B} = \mu_0 rac{\partial ec{D}}{\partial t} \qquad \Rightarrow \qquad ec{k} imes ec{B} = -\mu_0 \omega ec{D}, \qquad ec{B} ot ec{D}$$

$$\Rightarrow \vec{k} \times \left(\vec{k} \times \vec{E}\right) = -\frac{\omega^2}{\varepsilon_0 c^2} \vec{D}$$
(3.47)

• POYNTING-Vektor \vec{S} :

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \tag{3.48}$$

• Spezialfall

$$\varepsilon_y = \frac{\varepsilon_x}{2} = \frac{1}{2}$$

- $\Rightarrow \vec{D}$ für unterschiedlich orientierte \vec{E}
 - 1. $\vec{E} || \vec{e}_x \Rightarrow \vec{D} || \vec{E}$ 2. $\angle (\vec{E}, \vec{e}_x) = 45^\circ$

$$\Rightarrow \vec{D} = \varepsilon_0 \cdot \begin{pmatrix} \varepsilon_x & 0\\ 0 & \varepsilon_y \end{pmatrix} \begin{pmatrix} E_0/\sqrt{2}\\ E_0/\sqrt{2} \end{pmatrix} = \varepsilon_0 \varepsilon_x \cdot \begin{pmatrix} E_0\sqrt{2}\\ \frac{E_0}{2\sqrt{2}} \end{pmatrix}$$
(3.49)

 \Rightarrow Für beliebige Winkel $\varphi \neq 0^{\circ}, 90^{\circ}$ liegt die Spitze von \vec{D} auf einer durch Achsenabschnitte $\varepsilon_0 \varepsilon_x E_0$ und $\varepsilon_0 \varepsilon_y E_0$ gegebenen Ellipse mit $\vec{S} \perp \vec{E}$ und \vec{B} , sowie $\vec{k} \perp \vec{D}$ und \vec{B}

Abbildung 3.39: Zusammenhang zwischen \vec{E} und \vec{D} ; Quelle [2]

$$\vec{e}_k \times \left(\vec{e}_k \times \vec{E}\right) + \frac{1}{n^2} \overleftarrow{\varepsilon} \vec{E} \equiv \overleftarrow{G} \vec{E} = 0$$
(3.50)

- Ist das Gleichungssystem lösbar gilt det $\overleftarrow{G} = 0$.
 - \rightarrow Gleichung 2. Grades in n^2
 - \rightarrow zwei Werte n > 0 verknüpft mit zwei Polarisationsrichtungen
- Einachsige Kristalle: $\varepsilon_x = \varepsilon_y = \varepsilon_{\perp}, \varepsilon_z = \varepsilon_{\parallel}$

$$\det(G) = 0 \tag{3.51}$$

$$n_{\rm o} = \sqrt{\varepsilon_{\perp}}, \quad n_{\rm ao} = \sqrt{\varepsilon_{||}}$$
 (3.52)

$$\frac{1}{n_{\rm ao}(\theta)^2} = \frac{\cos^2 \theta}{\varepsilon_\perp} + \frac{\sin^2 \theta}{\varepsilon_{||}} \quad \text{und} \quad n_{\rm o} = \sqrt{\varepsilon_\perp}$$
(3.53)

Mit θ dem Winkel zwischen \vec{k} und der optischen Achse

Optik – Lichtstrahlen, Wellen, Photonen

Abbildung 3.40: Indexellipsoid; Quelle [2]

Optik – Lichtstrahlen, Wellen, Photonen

Abbildung 3.41: Brechung an doppelbrechendem Kristall; Quelle [2]

4 Thermische Physik

4.1 Einleitung

- Mechanik: Eine Bewegungsgleichung pro Freiheitsgrad zu lösen
 - \Rightarrow Verhalten des Systems

Makroskopische Körper sind aufgebaut aus ungefähr 10^{23} Elektronen und Kernen pro Kubikzentimeter. \Rightarrow Thermische Physik: Versuch möglichst viele mikroskopische Eigenschaften durch makroskopische, gemittelte Größen auszudrücken:

- Druck P
- Dichte ϱ
- Temperatur T
- spezifische Wärme
- Ausdehnungskoeffizient
- Wärmeleitfähigkeit
- Allgemein: beschreiben nur den räumlichen und zeitlichen Mittelwert
- Messungen mit hoher Auflösung: Fluktuationen
- Interessant sind Wahrscheinlichkeits-und Verteilungsfunktionen (mikroskopisch)
 - Aggregatzustand als Folge makroskopischer Größen
 - weitere Größen, welche aus dem Alltag weniger bekannt sind:
 - Entropie
 - freie Energie
 - Enthalpie
 - chemisches Potential
- statistische Physik (Master-Vorlesung): Erklärung thermodynamischer Beziehungen aus mikroskopischen Modellen.
- Thermodynamik: axiomatisch, postuliert 4 Hauptsätze, z.B.

0. Hauptsatz der Thermodynamik

"Befinden sich zwei Körper im sog. thermischen Gleichgewicht (GGW), mit einem dritten, so stehen sie auch untereinander im thermischen Gleichgewicht."

• Beispiel 1: Zwei Cu-Blöcke im Kontakt zueinander

• Beispiel 2: Verbindung zweier Gas-Volumina

• Beispiel 3: Zwei Cu-Blöcke in Wasser

4.2 Die Temperatur

- Messgerät sind div. Thermometer.
- Vorschlag PARACELSIUS, 1742: Glasrohr und Reservoir teilweise mit Hg gefüllt

• Annahme: Wärmeausdehnung des Hg ist linear mit der Temperatur T.

$$L(T) = L(0) \cdot (1 + \alpha T) \tag{4.1}$$

- $T = 100^{\circ}$ C: Siedepunkt von H₂O unter Normaldruck auf Meereshöhe P = 1013hPa
- Achtung: Abweichung durch nichtlineare Therme, z.B. bis $\approx 1^{\circ}$ C bei $\Delta T \approx 50^{\circ}$ C

4.2.1 Das GAY-LUSSAC-Thermometer

- bessere Linearität über weiten Bereich von T: Verwendung von Gasen, insbesondere Edelgase, am besten He
- bei konstantem Volumen V: Gasdruck P linear zur Temperatur T mit

$$P(T) = P_0 \cdot (1 + \gamma T) \quad \text{mit} \quad \gamma = \frac{1}{273, 16^{\circ} \text{C}}$$
 (4.2)

• Lord KELVIN: Einführung der KELVIN-Skala:

Abbildung 4.1: $P > 0 \Rightarrow T > 0$ K

- Experimentelle Beobachtung: P(T) verhält sich indirekt proportional zur sog. molaren Masse m, z.B.:
 - H₂: $m \approx 2 \text{g/mol}$ He: $m \approx 4 \mathrm{g/mol}$ $m \approx 40 \mathrm{g/mol}$ Ar:
- daraus folgt

$$\frac{P}{T} \propto \frac{1}{m} \quad \Rightarrow \quad \frac{P}{T} \propto N \quad \Rightarrow \quad P \propto NT \tag{4.4}$$

mit N: Anzahl Gasatome bzw. Moleküle

4.3 Das ideale Gas

4.3.1 Das ideale-Gas-Gesetz

• experimentell bei T = const. ergibt sich

$$P \propto \frac{1}{V}$$
 bzw. $PV = \text{const.}$

• Aus Gleichung 4.4 folgt das ideale-Gas-Gesetz:

$$PV = k_B NT \tag{4.5}$$

mit der BOLTZMANN-Konstante

$$k_B = 1,3807 \cdot 10^{-23} \frac{\mathrm{J}}{\mathrm{K}} \tag{4.6}$$

 k_BT : typische Energieskala für mikroskopisch fluktuierende Systeme

• molare Schreibweise:

 $N = N_A \cdot n$

mit N_A : AVOGADRO-Konstante, $N_A = 6,023 \cdot 10^{23}$ und *n*: Anzahl der Mole

$$\Rightarrow PV = \underbrace{k_B N_A}_R \cdot nT = RnT \tag{4.7}$$

mit der idealen Gaskonstante

$$R = 8,314 \frac{\mathrm{J}}{\mathrm{mol}\,\mathrm{K}}$$

mit molarem Volumen \bar{V} :

$$P\bar{V} = RT \tag{4.8}$$

• bei P = 1013hPa und T = 273,16K

$$\bar{V} = 22,41 \frac{\mathrm{l}}{\mathrm{mol}}$$

- Größenordnung der Dichte leichter Gase unter Normalbedingungen liegt bei etwa $1 \mathrm{kg/m^3}$
- mittlerer Abstand der Gasteilchen $\approx 2\text{-}3\text{nm}$
- Die Variablen p, T, V sind von der Stoffmenge unabhängig: "intensive Größen"
 Die Variablen V, n: "extensive Größen"
- in 4.8 sind nur intensive Größen vorhanden!
- Zustandsdiagramme für ideales Gas:

Abbildung 4.2: Isothermen (T = const.): Hyperbeln im $P \cdot \overline{V}$ -Diagramm

Abbildung 4.3: Isobaren (P = const.): Geraden im \overline{V} -T-Diagramm

Abbildung 4.4: Isochoren ($\overline{V} = \text{const.}$): Geraden im *P*-*T*-Diagramm

- Achtung: Für $T \to 0 \Rightarrow \overline{V} \to 0$ und $P \to 0$, aber
 - endliches Eigenvolumen der Gasteilchen $\Rightarrow \bar{V} \neq 0$
 - endliche Kräfte zwischen den Gasteilchen $\Rightarrow P \neq 0$
 - \Rightarrow Gleichung 4.5 gilt nicht für tiefe T, kleine \bar{V} , bzw. große P
- Gültigkeitsbereich ist abhängig vom Gas, z.B.:

• nicht berücksichtigt sind Phasenübergänge: Gas -> Flüssigkeit -> Festkörper (siehe Kapitel 4.4 bzw. 4.5)

4.3.2 Barometrische Höhenformel

• Versuch: TOURULLIsches U-Rohr

für $P_0 = 1013,25$ hPa = 1atm = 1013,25mbar \rightarrow mittlerer Luftdruck auf Meereshöhe!

• Gewicht der Atmosphäre \Rightarrow Luftdruck P

$$dP = P(h + dh) - P(h) = -\frac{m_L g}{A} = -\varrho A \cdot dh \cdot \frac{g}{A} = -\varrho g \cdot dh$$

ρ: Dichte des Gases, bzw. von Luft

• Wegen PV = const. für $T \stackrel{!}{=} \text{const.}$ (Annahme)

$$\Rightarrow \quad \frac{P}{\varrho} = \text{const.} = \frac{P_0}{\varrho_0} \quad \Rightarrow \quad \varrho = \varrho_0 \frac{P}{P_0}$$
$$\Rightarrow \quad \mathrm{d}P = -\frac{\varrho_0}{P_0} \cdot gP \cdot \mathrm{d}h$$

Integration von

$$\frac{\mathrm{d}P}{P} = -\frac{\varrho_0}{P_0}g \cdot \mathrm{d}h \quad \Rightarrow \quad \ln P = -\frac{\varrho_0}{P_0}gh + C$$

Mit $P(h = 0) = P_0$ folgt $C = \ln P_0$, also

$$\Rightarrow P = P_0 \cdot e^{-\frac{\varrho_0 g}{P_0}h}$$

= $P_0 \cdot e^{-\frac{h}{h_0}}$ Barometrische Höhenformel (4.9)

mit
$$h_0 = 8330$$
 m

Annahme T = const. ist unrealistisch! Real: Meistens gibt es eine Abnahme von T mit h. Bessere Näherung ist die "Standardatmosphäre" $T = 15^{\circ}$ C auf Meereshöhe mit dem Gradienten -6.5K/km.

4.3.3 Mikroskopisches Modell des idealen Gases

- erster vereinfachter Einblick in die sog. kinetische Gastheorie von MAXWELL und BOLTZMANN
- liefert mikroskopisches Modell f
 ür ideales Gas-Gesetz

 → Akzeptanz der "Atomhypothese"
- A) Mittlerer Druck $\langle P \rangle$, Modell:
 - ideales Gas besteht aus sehr kleinen, harten Kugeln mit Radius r_0

• Wechselwirkungspotential

$$V(r) = \begin{cases} \infty & \text{für } r < 2r_0 \\ 0 & \text{sonst} \end{cases}$$

• Annahme: $r \gg r_0$

 \Rightarrow Kugeln fliegen nahezu unbeeinflusst, statistisch verteilt durcheinander (typisch: $\langle r \rangle \approx 3$ nm, $r_0 \approx 0.1$ nm)

Kugeln stoßen nur mit den Wänden des Behälters
 → Reflexion

- Anzahldichte $n_0 = \frac{N}{V}$
- davon fliegen n_x mit v_x in Richtung dA
 ⇒ Reflexion und Impulsübertrag 2mv_x auf die Wand des Behälters
 ⇒ Druck P:

$$P = \frac{\mathrm{d}F}{\mathrm{d}A} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{2Zmv_x}{\mathrm{d}A}$$

mit $Z = \frac{\mathrm{Anzahl\ der\ Teilchen\ auf\ d}A}{\mathrm{Zeit}} = n_x v_x \cdot \mathrm{d}A \cdot \mathrm{d}t$
 $\Rightarrow P = 2mn_x v_x^2$

• Nur die normale Komponente v_x führt zu Impulsübertrag

• Isotropie des Systems:

$$\Rightarrow \quad \langle v_x \rangle = \langle v_y \rangle = \langle v_z \rangle = 0$$

mit $\quad \langle v_x \rangle := \frac{1}{N} \int_0^\infty N(v_x) v_x \, \mathrm{d} v_x$

 $N(\boldsymbol{v}_{\boldsymbol{x}})$: (Geschwindigkeits-) Verteilungs
funktion

71

• Beachte:

$$\left\langle v_x^2 \right\rangle = \frac{1}{N} \int_0^\infty N(v_x) v_x^2 \,\mathrm{d} v_x$$

Daraus folgt mittlerer Druck

$$\langle P \rangle \stackrel{(*)}{=} \frac{1}{2} n_0 \cdot 2m \left\langle v_x^2 \right\rangle = n_0 m \left\langle v_x^2 \right\rangle$$

(*) Faktor $\frac{1}{2}$: nur $v_x > 0$

$$v^2 = v_x^2 + v_y^2 + v_z^2 \quad \Rightarrow \quad \left\langle v^2 \right\rangle = \left\langle v_x^2 \right\rangle + \left\langle v_y^2 \right\rangle + \left\langle v_z^2 \right\rangle$$

Aus der Isotropie folgt:

$$\left\langle v_{x}^{2} \right\rangle = \left\langle v_{y}^{2} \right\rangle = \left\langle v_{z}^{2} \right\rangle \quad \mathrm{und} \quad \left\langle v_{x}^{2} \right\rangle = \frac{1}{3} \left\langle v^{2} \right\rangle$$

• Damit gilt:

$$\begin{split} \langle P \rangle &= \frac{1}{3} n_0 \cdot m \left\langle v^2 \right\rangle = \frac{2}{3} n_0 \cdot \frac{m}{2} \left\langle v^2 \right\rangle = \frac{2}{3} \frac{N}{V} \left\langle E_{\rm kin} \right\rangle \\ \Rightarrow & \frac{2}{3} N \left\langle E_{\rm kin} \right\rangle = \left\langle P \right\rangle V \end{split}$$

Vergleiche Zustandsgleichung ideales Gas:

$$Nk_BT = PV, \quad \langle P \rangle \equiv P$$

 $\Rightarrow \quad \langle E_{\rm kin} \rangle \equiv \frac{3}{2}k_BT$

mikroskopische Definition der Temperatur

- Wir hatten f = 3 Freiheitesgrade der Translation betrachtet.
- Aus der statistischen Physik folgt später allgemein pro Freiheitsgrad

$$\langle E_{\rm kin} \rangle = \frac{1}{2} k_B T$$
 Gleichverteilungssatz (4.10)

- Beispiel für Freiheitsgrade:
 - a) Translation, $E_i \rightarrow 0$
 - b) Rotation, $E_i \approx 1 \text{m}eV$
 - c) Schwingung, $E_i \approx 10 100 \text{meV}$
 - d) elektronische Anregung, $E_i \approx 1 e V$

- Komplikation bzw. Klärung durch die Quantenmechanik (IK4): Die Energie besitzt in mikroskopischen Systemen ein diskretes Spektrum E_i .
 - \Rightarrow keine thermische Anregung; Freiheitsgrad für $k_BT\ll E_i$
• Vergleiche dazu: $k_BT = 25 \text{meV}$ bei T = 300 K

B) MAXWELLsche Geschwindigkeitsverteilung(s-Funktion)

- Ziel: Berechnung der Anzahl dN_v von Teilchen im Geschwindigkeitsintervall (v, v + dv)
- Es sei dN_x die Anzahl der Teilchen mit x-Komponente der Geschwindigkeit aus $(v_x, v_x + dv_x)$
- Damit ist die Wahrscheinlichkeit ein bestimmtes Teilchen in $(v_x, v_X + dv_x)$ zu finden

$$\frac{\mathrm{d}N_x}{N} := p(v_x)\mathrm{d}v_x$$

mit p: Wahrscheinlichkeitsdichte bzw. Verteilungsfunktion

Symmetrieeigenschaften von p f
ür isotropes System: vx ist
äquivalent zu −vx.
 ⇒ Es existiert eine Funktion f mit

$$p(v_x)\mathrm{d}v_x = f(v_x^2)\mathrm{d}v_x, \quad p(v_y)\mathrm{d}v_y = f(v_y^2)\mathrm{d}v_y, \quad p(v_z)\mathrm{d}v_z = f(v_z^2)\mathrm{d}v_z$$

• Die Wahrscheinlichkeit, dass gleichzeitig alle drei Geschwindigkeitskomponenten in einem bestimmten Intervall liegen, ist

$$p(v_x, v_y, v_z) \, \mathrm{d}v_x \, \mathrm{d}v_y \, \mathrm{d}v_z = \frac{\mathrm{d}N_{xyz}}{N} = \frac{\mathrm{d}N_x}{N} \cdot \frac{\mathrm{d}N_y}{N} \cdot \frac{\mathrm{d}N_z}{N}$$
$$= f(v_x^2) \cdot f(v_y^2) \cdot f(v_z^2) \, \mathrm{d}v_x \, \mathrm{d}v_y \, \mathrm{d}v_z \tag{4.11}$$

mit N_{xyz} : Anzahl der Teilchen in Element dv des Geschwindigkeitsraumes

• Zweidimensionales Beispiel:

Jedes Teilchen hat einen Wert \vec{v} , der durch einen Punkt im *v*-Raum repräsentiert ist. \Rightarrow Anzahl der Punkte im Element $(v_x, v_x + dv_x) \times (v_y, v_y + dv_y)$:

$$\mathrm{d}N_{xy} = n \cdot f(v_x^2) f(v_y^2) \,\mathrm{d}v_x \,\mathrm{d}v_y$$

• Suche nach Funktion f; Trick: Drehung des Koordinatensystemsso, dass gilt

a)
$$v'_y = 0$$
 und

b) keine Änderung in dN_y

$$\Rightarrow f(v_x^2) \cdot f(v_y^2) = f(v_x'^2) \cdot f(v_y'^2)$$

$$v_x'^2 = v_x^2 + v_y^2 \quad \Rightarrow \quad f(v_x^2) \cdot f(v_y^2) = f(v_x^2 + v_y^2) \cdot f(0) \tag{4.12}$$

• Berechne *f*:

$$f(0) := \alpha, \quad x := v_x^2, \quad y := v_y^2 \quad \Rightarrow \quad \alpha f(x+y) = f(x) \cdot f(y)$$

Setzen $x + y := \xi$

$$\alpha f(\xi) = f(x) \cdot f(y)$$

Ableiten nach \boldsymbol{x}

$$\alpha \frac{\mathrm{d}f}{\mathrm{d}\xi} \frac{\mathrm{d}\xi}{\mathrm{d}x} = \alpha f'(\xi) = f'(x) \cdot f(y)$$

Ableiten nach y

$$\alpha \frac{\mathrm{d}f}{\mathrm{d}\xi} \frac{\mathrm{d}\xi}{\mathrm{d}y} = \alpha f'(\xi) = f(x) \cdot f'(y)$$

Gleichsetzen liefert

$$f(x) \cdot f'(y) = f'(x) \cdot f(y) \quad \Rightarrow \quad \frac{f'(x)}{f(x)} = \frac{f'(y)}{f(y)}$$

• v_x^2 unabhängig von v_y^2

$$\Rightarrow \frac{f'(x)}{f(x)} =: -\gamma = \text{const.}$$

$$\Rightarrow f(x) = f(0) \cdot e^{-\gamma x} = \alpha \cdot e^{-\gamma x}$$

$$f(v_x^2) = \alpha \cdot e^{-\gamma v_x^2}$$
(4.13)

Normierbarkeit von f falls γ > 0
 ⇒ Dichte der Teilchen im Intervall (v, v + dv):

$$\frac{\mathrm{d}N_{xyz}}{\mathrm{d}v_x\,\mathrm{d}v_y\,\mathrm{d}v_z} = N\alpha^3 \cdot \underbrace{e^{-\gamma(v_x^2 + v_y^2 + v_z^2)}}_{e^{-\gamma\vec{v}^2}} \tag{4.14}$$

• Isotropie des Systems:

$$p(\vec{v}) \,\mathrm{d}\vec{v} = \alpha^3 \cdot e^{-\gamma \vec{v}^2} \,\mathrm{d}\vec{v} \qquad 3\text{-Dimensionale GAUSS function} \tag{4.15}$$

• Anzahl N der Teilchen mit Geschwindigkeitsbetrag in (v, v + dv): $p(\vec{v}) d\vec{v} \cdot Volumen der Kugelschale mit Radius <math>|\vec{v}|$ und Dicke dv

$$dN_v = N\alpha^3 \cdot e^{-\gamma v^2} \cdot 4\pi v^2 dv$$

$$p(v) dv = 4\pi\alpha^3 v^2 \cdot e^{-\gamma v^2} dv$$

• Konstante α : Normierung!

$$N = \int dN_v = 4\pi N \alpha^3 \underbrace{\int_0^\infty dv \ v^2 \cdot e^{-\gamma v^2}}_{\frac{1}{4} \frac{\sqrt{\pi}}{\gamma^{3/2}}}$$

$$\Rightarrow \ \alpha^3 = \left(\frac{\gamma}{\pi}\right)^{3/2}$$
(4.16)

• Bestimmung der Konstante γ :

$$\langle E_{\rm kin} \rangle = \left\langle \frac{1}{2}mv^2 \right\rangle = \frac{1}{N} \int \frac{1}{2}mv^2 \, \mathrm{d}N_v = 2\pi\alpha^3 m \int_0^\infty \mathrm{d}v \, v^4 \cdot e^{-\gamma v^2}$$

$$\stackrel{(4.9)}{=} \frac{3}{2}k_B T$$

$$\Rightarrow \gamma = \frac{m}{2k_B T}$$

$$\Rightarrow \mathrm{d}N_v = 4\pi N \left(\frac{m}{2\pi k_B T}\right)^{3/2} \cdot e^{-\frac{mv^2}{2k_B T}} \cdot v^2 \, \mathrm{d}v$$

$$p(v) = 4\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2} \cdot e^{-\frac{mv^2}{2k_B T}} \cdot v^2 \, \mathrm{d}v$$

$$(4.17)$$

MAXWELLsche Gewschwindigkeitsverteilung

• Wahrscheinlichste Geschwindigkeit $\frac{dp}{dv} = 0$:

$$\Rightarrow v_W = \left(\frac{2k_BT}{m}\right)^{1/2} \tag{4.18}$$

• Mittlere Geschwindigkeit:

$$\bar{v} = \int_0^\infty v \cdot p(v) \, \mathrm{d}v = \sqrt{\frac{8k_B T}{\pi m}} = \frac{2v_W}{\sqrt{\pi}} \tag{4.19}$$

• Mittleres Geschwindigkeitsquadrat:

$$\overline{v^2} = \int_0^\infty v^2 \cdot p(v) \, \mathrm{d}v$$

$$\sqrt{\overline{v^2}} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3}{2}} v_W$$
(4.20)

- Bemerkung: $v_W < \bar{v} < \sqrt{v^2}$, da p(v) nicht symmetrisch um die wahrscheinlichste Geschwindigkeit v_W liegt, sondern hochenergetische Ausläufer besitzt.
- Beispiel: N_2 bei T = 300K

$$m(N_2) = 4.62 \cdot 10^{-26} \text{kg} \Rightarrow v_W = 422 \frac{\text{m}}{\text{s}}, \quad \bar{v} = 476 \frac{\text{m}}{\text{s}}, \quad \sqrt{\bar{v^2}} = 517 \frac{\text{m}}{\text{s}}$$

Vergleich mit der Schallgeschwindigkeit in Luft: $v_S = 330 \frac{\text{m}}{\text{s}}$

• Messung von p(v) im Experiment:

- Generation Molekularstrahl
- mechanischer Geschwindigkeitsselektor/-Filter

Abbildung 4.5: Prinzip des Geschwindigkeitsselektors; Quelle [3]

4.4 Reales Gas

Wie nehmen Gase aus beliebigen Anfangsbedingungen heraus ein thermisches GGW mit MAXWELLscher Geschwindigkeitsverteilung an? \Rightarrow Stöße zwischen Gasteilchen

4.4.1 Stoßquerschnitt und mittlere freie Weglänge

- Wie weit fliegt ein Teilchen im Mittel "ballistisch", bis es durch einen Stoß mit anderen Teilchen abgelenkt wird?
- Streuquerschnitt σ beim Stoß harter Kugeln: Stoß für $r < 2r_0$ und $\sigma = (2r_0)^2 \pi$

• verdünntes System (keine Abschattung) mit Dichte n \Rightarrow Gesamtfläche F_B der Targetteilchen im Volumen $V = F \cdot \Delta x$

$$F_B = \underbrace{n \,\Delta x \, F}_N \sigma \tag{4.21}$$

Damit ist die Stoßwahrscheinlichkeit auf dem Weg Δx :

$$\frac{F_B}{F}n\sigma\,\Delta x$$

• Anzahl ΔN der Teilchen, die einen Stoß erfahren haben:

$$\Delta N = Nn\sigma\,\Delta x$$

• Anzahl der Teilchen, die nicht gestreut wurden:

$$N(x) = N_0 \cdot e^{-n\sigma x} = N_0 \cdot e^{-\frac{x}{t}}$$

l: mittlere freie Weglänge

$$l = \frac{1}{n\sigma}$$

- Beispiel: N₂ bei T = 300K, $P = 10^5$ Pa $= 10^5 \frac{\text{N}}{\text{m}^2}$
 - $\Rightarrow n \approx 3 \cdot 10^{10} \text{cm}^{-3} \text{ mit } \sigma = 45 \cdot 10^{-16} \text{cm}^2, \ l = \frac{1}{n\sigma} = 70 \cdot 10^{-9} = 70 \text{nm}$ $\Rightarrow \text{ ballistische Flugzeit } \tau \approx 1.5 \cdot 10^{-10} \text{s} = 150 \text{ps}$

4.4.2 Diffusion als Beispiel für Transportprozess

• "Random Walk" der Gasteilchen

im GGW: Isotropie \Rightarrow keinen mittleren Massefluss \vec{j} in ausgezeichnete Richtung Jetzt: Die Dichte der Teilchen n = n(x) sei 1-dimensional ortsabhängig. \Rightarrow Massenstrom j_x durch fehlende Isotropie

• FICKsches Gesetz:

$$j_x = -\frac{l \langle v \rangle}{3} \cdot \frac{\mathrm{d}n}{\mathrm{d}x} = -D \cdot \frac{\mathrm{d}n}{\mathrm{d}x}$$
(4.22)
mit $D = \frac{l \langle v \rangle}{3}, \ l = \frac{1}{n\sigma}, \ \langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}}$

D: Diffusionskonstante

• Diffusionskonstante für reales Gas:

$$D = \frac{1}{n\sigma} \sqrt{\frac{8k_BT}{9\pi m}}$$

• Erhaltung der Gesamtmasse \Rightarrow Kontinuitätsgleichung

$$\frac{\partial n(x,t)}{\partial t} + \frac{\partial}{\partial x} j_x(t) = 0$$

$$\Rightarrow \quad \frac{\partial n(x,t)}{\partial t} = D \cdot \frac{\partial^2 n(x,t)}{\partial x^2} \quad \text{Diffusionsgleichung}$$
(4.23)

• analog für 3 Dimensionen:

FICKsches Gesetz:
$$\vec{j} = -D \cdot \operatorname{grad} n$$

Kontinuitätsgleichung: $\frac{\partial n}{\partial t} + \operatorname{div} \vec{j} = 0$
Diffusionsgleichung: $\frac{\partial n(\vec{r}, t)}{\partial t} = D \cdot \nabla^2 n(\vec{r}, t)$

4.4.3 VAN-DER-WAALSsche Zustandsgleichung

(siehe dazu auch [3, Kap.10.4.1])

- Gase bei hoher Dichte (z.B. bei hohem Druck oder tiefer Temperatur)
- I) Das Eigenvolumen der Gasmoleküle ist nicht mehr klein gegenüber V. \Rightarrow Korrekturgröße b in der Gleichung für ideales Gas:

$$P \cdot (\bar{V} - b) = RT$$

- b ist abhängig vom "Volumen" der Gasteilchen, bzw. physikalischer ausgedrückt von der Form und Stärke des (repulsiven) Kraftpotentials zwischen diesen.
 ⇒ spezifisch für jedes Gas
- Für das Modell harter, sphärischer Teilchen ist

$$b = 4NV_a$$
 mit $V_a = \frac{4}{3}\pi r_0^3$

- II) Die potentielle Energie der Teilchen durch gegenseitige Kraftwirkung ist nicht mehr vernachlässigbar im Vergleich zu $\langle E_{kin} \rangle$.
- im Inneren des Volumen kompensieren sich die Kraftwirkungen: $\sum_i \vec{F_i} = 0$

• Keine Kompensation an Begrenzungswand: $\sum_i \vec{F_i} \neq 0$

 \Rightarrow Korrekturterm in der idealen Gasgleichung durch sog. Binnendruck

$$(P+P_B)\cdot(V-b)=RT$$

• Binnenkraft auf einzelnes Teilchen an der Oberfläche

$$F_B \propto n_i F_i \propto \varrho$$

• Der Binnendruck ist proportional zu dieser Kraft auf ein einzelnes Teilchen und zur Teilchendichte ρ .

$$P_B \propto F_B \varrho \propto \varrho^2 \quad \Rightarrow \quad P_B = \frac{a}{\bar{V}^2}$$

mit Parameter a: Stoffkonstante abhängig von Art und Stärke der Wechselwirkung zwischen den Gasteilchen

 \Rightarrow VAN-DER-WAALS-Zustandsgleichung

$$\left(P + \frac{a}{\bar{V}^2}\right) \cdot \left(\bar{V} - b\right) = RT \tag{4.24}$$

• Verlauf der Isothermen P(V) für T = const. im VAN-DER-WAALS-Gas am Beispiel von CO₂

Abbildung 4.6: Isothermen von CO₂; Quelle [3]

- hohe Temperaturen (z.B. T = 370K): Verlauf der Isotherme nahe am idealen Gas
- $T_c = 300$ K: Plateau in der Isotherme bei $P_c, V_c \rightarrow ,$,kritischer Punkt"
- $T < T_c$: Bereich in VAN-DER-WAALS-Isotherme mit einer Ableitung $\frac{\partial P}{\partial V}|_{T=\text{const.}} > 0$ \rightarrow multistabil!?
- Experimentelle Bestimmung der Isothermen

- gehe zu $T < T_c$
- P steigt, von großen Volumina V kommend, kontinuierlich an, bis zum Punkt A
- bleibt dann konstant auf Plateau ABC
- Physik: Kondensation von Gas in Flüssigkeit
 - A: 100% Gas
 - C: 100% Flüssigkeit
 - B: Koexistenz der beiden Phasen

- für noch kleinere Volumina: sehr steiler Anstieg von P, wieder nahe an der VAN-DER-WAALS-Isothermen \rightarrow geringe Kompressibilität der Flüssigkeiten ($\bar{V} \rightarrow b$)
- erstes Beispiel für Phasenübergängen zwischen zwei Aggregatszuständen
- Möglichkeit der Phasensepparation als kritisches Phänomen, bzw. Instabilität, bzw. spontante Brechung der Symmetrie war nicht in unserem isotropen Modell vorgesehen!

4.5 Thermische Eigenschaften der Materie

4.5.1 Spezifische Wärme

- aus Kapitel 4.3.3: T ∝ ⟨E_{kin}⟩
 ⇒ Zur Erhöhung der Temperatur eines Körpers (Gas, Flüssigkeit, Festkörper) muss Energie zugeführt werden.
 - \rightarrow Wärme oder Wärmeenergie ΔQ
- Experimentell ergibt sich für einen Körper mit Masse M:

$$\Delta Q = cM \cdot \Delta T = cM \cdot (T_2 - T_1)$$

c: spezifische Wärme $C = c \cdot M_{mol}$: molare Wärmekapazität

 $c \cdot M$: Wärmekapazität

• Beachte: c ist eine Funktion der Temperatur, keine Materialkonstante.

$$c := \frac{1}{M} \cdot \frac{\mathrm{d}Q}{\mathrm{d}T}$$

- Die Energieform Wärme ist speziell, da wir keine mikroskopische Kontrolle über 10²³ Freiheitsgrade eines makroskopischen Körpers besitzen.
 - \Rightarrow Wärme kann nicht vollständig in andere Energieformen umgewandelt werden.
 - \rightarrow 2. Hauptsatz der Thermodynamik (Kapitel 4.8)

A) Spezifische Wärme für ein einatomiges Gas

• N Teilchen in Volumen V

$$\langle E_{\rm kin}\rangle = \frac{3}{2}Nk_BT$$

- innere Energie U: gesamte Energie der Teilchen $(E_{kin}, E_{rot}, E_{vib}, E_e, E_{pot})$
- ideales einatomiges Gas hat nur 3 Freiheitsgrade der kinetischen Energie

$$\Rightarrow U = \frac{3}{2}Nk_BT \tag{4.25}$$

Es gilt also in diesem Spezialfall dU = dQ

$$\Rightarrow c_V = \frac{1}{M} \cdot \left(\frac{\mathrm{d}U}{\mathrm{d}T}\right)_{V=\mathrm{const.}}$$
(4.26)

Spezifische Wärme eines idealen einatomigen Gases bei konstantem Volumen:

$$c_V = \frac{3}{2} \cdot \frac{Nk_B}{M}$$

$$\Rightarrow C_V = c_V \cdot M_{\text{mol}} = \frac{3}{2} \cdot \frac{M_{\text{mol}}}{M} \cdot \frac{N}{N_A} \cdot N_A k_B = \frac{3}{2} N_A k_B = \frac{3}{2} R \qquad (4.27)$$

Fazit: Molare Wärmekapazität eines idealen Gases ist nicht temperaturabhängig!

• Erwärmen ideales Gas unter konstantem Druck P = const.:

$$c_P = \frac{1}{M} \cdot \left(\frac{\mathrm{d}U}{\mathrm{d}T}\right)_{T=\mathrm{const.}}$$
(4.28)

Ideales Gasgesetz: $P\bar{V} = RT$

=

- $\Rightarrow \overline{V}$ steigt bei Zunahme von T unter P = const.
- \Rightarrow Das Gas muss Expansionsarbeit leisten, um \bar{V} gegen externen Druck P zu erhöhen.

$$|\Delta W| = |F \cdot \Delta x| = |AP \cdot \Delta x| = |P \cdot \Delta V|$$

 ΔW : Arbeit

• Konvention: Am System geleistete Arbeit ΔW sei positiv definiert.

$$\Rightarrow \Delta W = -P \cdot \Delta V \text{ mit } \Delta V > 0$$

$$\Rightarrow \Delta U = C_V \cdot \Delta T - \Delta W$$
(4.29)

• ΔW muss zusätzlich zu $C_V \Delta T$ als Wärmezugeführt werden $\Rightarrow C_P > C_V$

$$\Delta Q = C_V \cdot \Delta T + P \cdot \Delta V = \Delta U$$

$$P\bar{V} = RT \quad \Rightarrow \quad \Delta V = \frac{R}{P} \cdot \Delta T$$

$$\frac{\Delta U}{\Delta T} = C_V + R \cdot \frac{\Delta T}{\Delta T}$$

$$C_P = C_V + R \qquad (4.30)$$

• Definition Adiabatenexponent:

$$\kappa = \frac{C_P}{C_V}$$

- ideales Gas : $\kappa = 5/3$
- Allgemein gilt für ein System mit f Freiheitsgraden pro mikroskopischer Einheit $\kappa = \frac{f+2}{f}$
- B) Gase mit mehr als drei Freiheitsgraden, f > 3
- 1.) Kugel mit endlichem Radius : 3 FG der Translation + 3 FG der Rotation $\Rightarrow f = 6 \Rightarrow c_V = 3R$
- Beispiel He: $C_V = \frac{3}{2}R!?$

Translation: 3 FG Rotation: Bahnbewegung der Elektronen quantisiert! $E_i \approx 10 eV$ (siehe IK4) \Rightarrow Anregung bei 300K vernachlässigbar, weil $k_BT \approx 25 meV$

2.) Zweiatomige Moleküle (H₂, O₂, N₂)

Translation: $f_{\text{trans}} = 3$ Rotation: nur Rotation um y-bzw. z -Achse beinhaltet schwere Kerne \Rightarrow Quantisierungsenergie klein $\approx k_B T$

- Rotation um die x-Achse: Elektronen (siehe He) $\Rightarrow f_{rot} = 2$
- zusätzlich: Vibration, Schwingungen der Kerne relativ zueinander entlang der Bindungsachse x

FG des harmonischen Oszillators: 1 FG für $\langle E_{\rm kin} \rangle$ + 1 FG für $\langle E_{\rm pot} \rangle$ $\Rightarrow f_{\rm vib}=2$ Quantisierungsenergien moderat $\gtrsim k_BT$ @ 300K

• Beispiel C_V von N₂

- 3.) Mehratomige Moleküle
 - Beispiel NO₂: f = 12
- C) Festkörper
- geringe Kompressibilität $\Rightarrow C_V \approx C_P = c$
- alle Atome durch chemische Bindung fixiert ("Einkristall", regelmäßige Anordnung im Gitter)
 ⇒ keine thermischen Freiheitsgrade durch Translation bzw. Rotation (siehe IK1)
 - \Rightarrow nur Vibrationsfreiheitsgrade

• 3 Schwingungsrichtungen pro Atom

$$f = 2 \cdot 3 = 6 \Rightarrow C_V = 6\frac{R}{2} = 3R$$
 DULONG-PETIT-Gesetz (4.31)

• typische Quantisierungsenergie der Gitterschwingungen ("Phononen") $E_i \leq k_B T$ \Rightarrow Verlauf c(T) im dielektrischen Festkörper

- endliche Quantisierungsenergie
- 3. HS der Thermodynamik
- Versuch:

Bekommen $T_i = 21,7^{\circ}$ C und $T_{f,Cu} = 33,9^{\circ}$ C, $T_{f,Al} = 43,1^{\circ}$ C Erklärung: unterschiedliche Atmomassen $m_{Cu} \approx 64$ amu, $m_{Al} = 27$ amu $\Rightarrow c_{Cu} = 0,091R, c_{Al} = 0,214R$

4.5.2 Adiabatische Zustandsänderung des idealen Gases

• im thermischen GGW: $P\bar{V} = RT$

 \Rightarrow kanonische Zustandsänderung auf Fläche im *P-V-T*-Diagramm

- adiabatische Zustandsänderung: kein Wärmeaustausch mit der Umgebung: $\Delta Q = 0$
- realisierbar durch:
 - gute Isolation des Systems von der Außenwelt (z.B. DEWAR-Gefäß)
 - schnelle Zustandsänderung im Vergleich zu charakteristischer Zeit τ für Wärmeleitung (z.B. Verbrennungsmotor)
- gesamte Kompressionsarbeit $dW = P d\overline{V} \Rightarrow$ Erhöhung der inneren Energie dU

• einheitliche Temperatur des Gasvolumens durch schnelle Thermalisierung über Stöße

$$\Rightarrow dT = dQ = 0$$
$$dQ = P d\bar{V} + C_V dT$$
$$P d\bar{V} = -C_V dT$$

 \Rightarrow Erwärmung, falls dV < 0 gilt

$$P = \frac{RT}{\bar{V}} \quad \Rightarrow \quad C_V \cdot \frac{\mathrm{d}T}{T} = -R \cdot \frac{\mathrm{d}\bar{V}}{\bar{V}}$$

Integrieren liefert

$$C_V \cdot \ln T = -R \cdot \ln V + C$$
$$\ln \left(T^{C_V} \cdot \bar{V}^R \right) = \text{const.}$$

mit $R = C_P - C_V$:

$$\ln \left(T^{C_V} \cdot \bar{V}^{C_P - C_V} \right) = \text{const.}$$
$$T^{C_V} \cdot \bar{V}^{C_P - C_V} = \text{const.}$$
$$T\bar{V}^{\frac{C_P - C_V}{C_V}} = \text{const.}$$

mit $T = \frac{P\bar{V}}{R}$:

$$\begin{array}{ll} T\bar{V}^{\kappa-1} &= {\rm const.} \\ P\bar{V}^{\kappa} &= {\rm const.} \end{array} \right\} \ \Delta Q = 0 \qquad {\rm Adiabaten-Gleichung}$$
(4.32)

• Adiabate im P-V-Diagramm steiler als Isotherme

 \Rightarrow Bei adiabatischer Kompression steigt die Temperatur T, bei Dilatation fällt sie.

4.5.3 Anmerkungen zu Phasenübergängen

• verschiedene Aggregatzustände eines Stoffes: Phase

Festkörper Flüssigkeit	Oberflächen
Gas Plasma	keine definierten Oberflächen

- Innerhalb eines Aggregatzustandes können sich weitere Phasen ausbilden, die sich in weiteren physikalischen Eigenschaften unterscheiden, z.B.:
 - Kristallstruktur (kubisch-hexagonal)
 - Leitfähigkeit (Leiter-Supraleiter, Isolator-Leiter)
 - magnetische Suszeptibilität (paramagnetische Phase-ferromagnetische Phase)
 - Viskosität (viskose Flüssigkeit-Suprafluid)
- Ordnungsparameter: Für Zustand charakteristische Messgröße S(T, P, V)
- Phasenübergang: Sprung im Ordnungsparameter
- Beispiel 1: Isolator-Metall-Übergang in VO₂

- Beispiel 2: Schmelzen von Eis unter
 - konstantem Druck P = 1013hPa
 - konstanter Stoffmenge M
 - konstanter Energiezufuhr
 - Start $T = 250 \mathrm{K}$

- I) $T < T_c = 273,73$ K: Eis, inkompressibel, $C_V \approx C_P = 2300 \frac{\text{J}}{\text{kg K}}$
- II) Phasenübergang fest-flüssig mit Koexistenz bei T = const. \Rightarrow keine Änderung von $\langle E_{\text{kin}} \rangle$
 - \Rightarrow Erhöhung von $\langle E_{\text{pot}} \rangle$

latente Wärme (hier: Schmelzwärme für das Herausbrechen aller Moleküle aus dem Eiskristall)

$$Q_L = N \,\Delta E_{\rm pot} = 3.3 \cdot 10^5 \frac{\rm J}{\rm kg}$$

- III),IV) Flüssigkeit mit $C_P\approx C_V=4100\frac{\rm J}{\rm kg\,K}$
 - III) zwischen 0°C und 4°C: Abnahme des Volumens mit Zunahme der Temperatur! \rightarrow Anomalie des Wassers

- IV) normales Verhalten einer Flüssigkeit
- V) Phasenübergang Flüssigkeit-Gas ("Wasserdampf") am Siedepunkt bei $T_c = 373$ K mit latenter Wärme behaftet $Q_L = 2,3 \cdot 10^6 \frac{\text{J}}{\text{kg}}$; Faktor 7 höher als beim Schmelzen
- VI) Erwärmung von Wasserdampf \rightarrow VAN-DER-WAALS-Gleichung
 - Allgemeines Phasendiagramm: komplizierte Fläche im P-V-T-Raum
 - Ausgezeichnete Punkte im Phasendiagramm
 - kritischer Punkt: keine Unterscheidung zwischen Gas und Flüssigkeit möglich ($\langle E_{kin} \rangle \gg \langle E_{pot} \rangle$) \rightarrow "Fluid"
 - Tripelpunkt (bzw. Tripelline im *P*-*V*-*T*-Diagramm)

• Dampfdruckkurve:

- Ordnungen von Phasenübergängen
 - 1. Ordnung

-Sprunghafte Veränderung des Ordnungsparameters

-Koexistenz zweier Phasen möglich

-latente Wärme $Q_L \neq 0$

2. Ordnung -kontinuierliche Änderung des Ordnungsparameters -keine Koexistenz zweier Phasen -latente Wärme $Q_L = 0$

Abbildung 4.7: links: z.B. Schmelzen von Eis (1.Ord.); rechts: Flüssigkeit/Gas \rightarrow Fluid, $T > 374^{\circ}$ C (2.Ord.)

• Bsp.: Für Übergang 2. Ordnung: Ferromagnet — Paramagnet bei $T_c=1043 {\rm K}$ für Fe

ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	\vec{m}
ŕ	÷,	1	¢	ţ	×	\vec{m}

• Ursache für die Anomalie des Wassers sind Wasserstoffbrücken.

4.6 Die Hauptsätze der Thermodynamik

- Betrachten Thermodynamisches System und Umgebung
- Vgl. Erhaltungssätze in der Mechanik: Energie-, Impuls-, Drehimpulserhaltung → Erfahrungssätze
- Zustandsgrößen $P, V, T \rightarrow$ untersuchen GGW-Zustände
- U(P, V, T) innere Energie

$$(P_1, V_1, T_1) \xrightarrow{\Delta Q, \ \Delta W} ? (P_2, V_2, T_2) \longrightarrow (P_3, V_3, T_3)$$

4.6.1 1. Hauptsatz der Thermodynamik

• z.B. Volumenänderung bei P = const.:

$$\Delta W = -p \,\Delta V \quad \Rightarrow \quad W = -\int_{V_1}^{V_2} P(V) \,\mathrm{d}V$$

• Verschiedene Wege $Q1 \rightarrow Q2$

$$W_A = -\int_{V_1}^{V_1} P_A(V) \, \mathrm{d}V \neq W_B = \int_{V_1}^{V_2} P_B(V) \, \mathrm{d}V$$

- Kreisprozess: geschlossene Bahn, geleistete Arbeit $\Delta W = W_B W_A$
- 1. Hauptsatz der Thermodynamik:

$$\Delta U = U_2 - U_1 = \Delta Q + \Delta W \tag{4.33}$$

• Anfangs-und Endpunkt mit identischer Temperatur

$$\Delta U = 0 \quad \Rightarrow \quad W_B - W_A = Q$$

- Folge des 1. Hauptsatzes: Wärme ist konvertierbar in makroskopische mechanische Arbeit.
- Eine Maschine die einen Kreisprozess durchläuft, kann nicht mehr Arbeit leisten, als Wärme zugeführt wird.
 - \Rightarrow Es gibt kein "Perpetuum Mobile 1. Art"!
- Kreisprozess mit identischem Hin-und Rückweg

$$W_A = W_B \quad \Rightarrow \quad Q = 0$$

- Q = 0 : reversibler Prozesss: Keine Veränderung in der Umgebung
- $Q \neq 0$: Wärmeübertragung an Umgebung

4.6.2 2. Hauptsatz der Thermodynamik

Es gelten die äquivalenten Formulierungen

- 1. Wärme fließt immer vom wärmeren Körper zum kälteren, nie umgekehrt.
- 2. Ein geschlossenes System strebt immer dem GGW-Zustand zu. Dieser liegt auf Zustandsfläche.
- 3. Arbeit kann vollständig in Wärme umgewandelt werden, Wärme nur unvollständig in Arbeit.
- 4. Für den thermischen Wirkungsgrad η einer Wärmekraftmaschine gilt immer $\eta < 1$.
- 5. Die Entropie S eines geschlossenen Systems kann nur zunehmen oder gleichbleiben: $\Delta S \ge 0$
- Der 2. Hauptsatz ist nicht aus dem 1. Hauptsatz ableitbar.
- Erhalten weitere Zustandsgröße: Entropie $S \Rightarrow (P, V, T, S)$

- Kreisprozess: Rückkehr in den Ausgangszustand; (ir)reversibel: Dampfmaschine Automotor
 Reibung
- Gedankenexperiment zum Kreisprozess: 4 Schritte

- I) Isotherme Ausdehnung $(P_1, V_1, T_1) \rightarrow (P_2, V_2, T_1)$
- II) Adiabatische Ausdehnung (P_3, V_3, T_2)
- III) Isotherme Kompression $T = T_2$
- IV) Adiabatische Kompression
 - Energiebilanz:
 - I) $(1 \rightarrow 2)$ Ankopplung an ein Wärmereservoir

$$T = T_1 = \text{const.}, \quad U = \text{const.}, \quad dU = 0, \quad dU = dQ - dW, \quad dQ = pdV$$
$$\Delta Q = \int_{V_1}^{V_2} P \, dV = RT_1 \int_{V_1}^{V_2} \frac{dV}{V} = RT_1 \cdot \ln \frac{V_2}{V_1} = -\Delta W_{12}$$

Die Wärmemenge ΔQ wurde aufgenommen. Das Gas verrichtet Expansionsarbeit

II) $(2 \rightarrow 3)$ Zylinder ist wärmeisoliert

= 0,
$$dU = -dW = -PdV < 0$$
, $\Delta U = U(T_2) - U(T_1)$
 $\Delta W_{23} = -\Delta U = C_V \int_{T_1}^{T_2} dT = C_V (T_2 - T_1)$

Das Gas verrichtet mechanische Arbeit

 $\mathrm{d}Q$

III) $(3 \rightarrow 4)$

$$T = T_2 = \text{const.}, \quad \mathrm{d}U = 0 \quad \Rightarrow \quad \Delta Q_{34} = RT_2 \cdot \ln \frac{V_4}{V_3} = -\Delta W_{34}$$

Wegen $V_4 < V_3 \Rightarrow \Delta Q_{34} < 0$ geht Wärme verloren.

IV) $(4 \rightarrow 1)$ adiabatischer Prozess (Erwärmung)

$$\mathrm{d}Q = 0 \quad \Rightarrow \quad -C_V(T_2 - T_1)$$

• Gesamtbilanz:

$$\begin{split} \Delta W_{23} &= \Delta W_{41} \quad \Rightarrow \quad \Delta W_{\text{total}} = \Delta W_{12} + \Delta W_{34} = RT_1 \cdot \ln \frac{V_1}{V_2} + RT_2 \cdot \ln \frac{V_3}{V_4} \\ T_1 V_2^{\kappa - 1} &= T_2 V_3^{\kappa - 1} \\ T_2 V_4^{\kappa - 1} &= T_1 V_1^{\kappa - 1} \end{split} \quad \Rightarrow \quad \frac{T_2}{T_1} = \left(\frac{V_3}{V_2}\right)^{\kappa - 1} = \left(\frac{V_4}{V_1}\right)^{\kappa - 1} \quad \Rightarrow \quad \frac{V_2}{V_1} = \frac{V_3}{V_4} \\ \Delta W_{\text{total}} = R(T_1 - T_2) \cdot \ln \frac{V_1}{V_2} < 0 \end{split}$$

mit $V_1 < V_2$ und $T_1 > T_2$

Es wurde ΔQ_{12} entnommen und ΔW_{total} verrichtet.

$$\eta_C = \frac{R(T_1 - T_2) \cdot \ln \frac{V_1}{V_2}}{RT_1 \cdot \ln \frac{V_1}{V_2}} = \frac{T_1 - T_2}{T_1} = 1 - \frac{T_2}{T_1} < 1$$
(4.34)

- Ein Bruchteil der Wärmeenergie wird in Arbeit umgewandelt.
- Wirkungsgrad steigt mit steigender Temeperaturdifferenz. $T_2 = 0$ ist nicht erreichbar $\Rightarrow \eta_C < 1$
- Reversibel \rightarrow Prozess umgekehrt: Wärme vom kälteren Bad $T_2 \rightarrow$ Wärmebad T_1 ; "Wärmepumpe", "Kältemaschine" zugeführte Arbeit ΔW :

$$\Delta W = R(T_2 - T_1) \cdot \ln \frac{V_1}{V_2} \quad \Rightarrow \quad \varepsilon_{\rm WP} \stackrel{!}{=} \frac{\Delta Q_1}{\Delta W} = \frac{T_1}{T_1 - T_2} = \frac{1}{\eta_C} \tag{4.35}$$

• 2. Hauptsatz der Thermodynamik: Es gibt keine periodisch arbeitende Maschine mit $\eta > \eta_C$

Abbildung 4.8: Wundermaschine; Quelle [3]

$$|\Delta Q_1| = |\Delta Q_2| + |\Delta W|, \quad \eta > \eta_C \quad \Rightarrow \quad \Delta Q < \Delta Q_1$$

WM+CM: Erwärmung von Bad T_1 durch Abkühlen von Bad T_2 ohne äußere Energiezufuhr: Widerspruch zum 2. Hauptsatz!

 $\Rightarrow \eta_C$ maximaler Wirkungsgrad

• 2. Hauptsatz der Thermodynamik: Es gibt keine periodisch arbeitende Maschine, die ohne äußere Energiezufuhr ein Wärmereservoir abkühlt und die dabei gewonnene Energie vollständig in mechanische Arbeit umwandelt. "Es gibt kein Perpetuum Mobile 2. Art." • OTTO-Kreisprozess: Gas-Luftgemisch \rightarrow Zylinder

- $1 \rightarrow 2$: adiabatische Kompression
- $2 \rightarrow 3$: Zündung: Gas brennt, Q wird hinzugefügt
- $3 \rightarrow 4$: Gas expandient adiabatisch
- $4 \rightarrow 1$: Gas ausblasen (Q wird entfernt)

Effizienz:

$$e = 1 - \left(\frac{V_1}{V_2}\right)^{1-\kappa} \tag{4.36}$$

Vergleiche auch: https://home.zhaw.ch/ mau/Lehre/Wiki/carnot-prozess.swf

4.7 Irreversibilität und Entropie

4.7.1 Reversible und irreversible Prozesse

• Betrachten Stoßprozess zwischen zwei makorskopischen Teilchen mit Temperatur T

- elastischer Stoß: Erhaltung makroskopischer kinetischer Energie $\Rightarrow T = T'$, Prozess ist zeitlich umkehrbar \rightarrow Prozess reversibel
- inelastischer Stoß:

$$\frac{m_1 + m_2}{2} (v')^2 < \frac{m_1}{2} v_1^2 + \frac{m_2}{2} v_2^2 \quad \Rightarrow \quad T' > T$$

Umwandlung makroskopischer Energie E_{kin} in mikrosopische kinetische Energie (Wärme) \rightarrow Prozess irreversibel

- Irreversibilität folgt aus der Anregung von einem System mit vielen Freiheitsgraden.
 ⇒ viele Möglichkeiten für mikroskopischen Gesamtzustand ⇒ Die Wahrscheinlichkeit, dass ein Prozess rückwärts abläuft, ist verschwindend gering.
- Beispiel: Gasteilchen im Volumen V versammeln sich spontan in einem Halbraum V/2.

Abschätzung der Wahrscheinlichkeit $W_N(B) \approx (1/2)^N$. Die Zeit, nach der ein einzelnes Teilchen den Halbraum wechselt ist $\Delta \tau \approx \sqrt[3]{V}/\langle v \rangle$. Der Zeitraum Δt , in dem der Zustand B im Mittel einmal eingenommen wird, ist

$$\Delta t \approx \frac{\Delta \tau}{W_N(B)} = \frac{\sqrt[3]{V}}{\langle v \rangle} \cdot 2^N$$

mit V = 11, $\langle v \rangle = 400 \frac{\text{m}}{\text{s}}$, $N = 10^{23}$ ergibt sich $\Delta t \approx 10^{10^{22}}$ s. Vergleich: Alter des Universums: $\approx 5 \cdot 10^{17}$ s

 \rightarrow Prozess irreversibel

 \Rightarrow Wir brauchen ein quantitatives Maß für die Anzahl von Zuständen und damit als Kriterium für Irreversibilität.

- \rightarrow Entropie S
 - irreversible Prozesse: Entropie nimmt zu, $\Delta S > 0$
 - reversible Prozesse: Entropie bleibt konstant, $\Delta S = 0$

4.7.2 Entropie

• reversible Prozesse, z.B. CARNOT

- von 1 nach 3 über verschiedene Wege: $\begin{cases} 1 \to 2 \to 3 \\ 1 \to 4 \to 3 \end{cases}$
- $\frac{\mathrm{d}Q}{T}$: reduzierte Wärmemenge
- CARNOT-Prozess:

$$\Delta Q_{12} = RT_1 \cdot \ln \frac{V_2}{V_1}, \quad \Delta Q_{43} = RT_2 \cdot \ln \frac{V_3}{V_4}$$
$$\Rightarrow \quad \left| \frac{\Delta Q_{12}}{T_1} \right| = \left| \frac{\Delta Q_{43}}{T_2} \right|$$

- \Rightarrow Die reduzierte Wärmemenge ist unabhängig vom Weg.
- \rightarrow Definition $dS = \frac{dQ}{T}$ als Änderung der Entropie S
- \Rightarrow S ist Zustandsgröße
- CARNOT:

$$\Delta S = \frac{\Delta Q}{T} = \pm R \cdot \ln \frac{V_2}{V_1}$$

\Rightarrow insgesamt $\Delta S=0,$ bzw. $S={\rm const.}$ bei reversiblen Prozessen

- Erfahrung: Bei irreversiblen Prozessen in abgeschlossenen Systemen nimmt die Gesamtentropie S immer zu: $\Delta S > 0!$
- Beispiel 1: Zwei identische Körper mit T_1 und T_2

Wärme
mengen $Q_1 = mcT_1$ und $Q_2 = mcT_2$ gespeichert. Durch Wärmestrom nach Kontakt: mittlere Temperatur T_m aus

$$\begin{split} \Delta Q_1 &= mc(T_m - T_1) \quad \text{und} \quad \Delta Q_2 &= mc(T_2 - T_m) \\ \Delta Q_1 &= -\Delta Q_2 \quad \Rightarrow \quad T_m = \frac{T_1 + T_2}{2} \end{split}$$

• Entropieänderung:

$$\Delta S_{1} = \int_{T_{1}}^{T_{2}} \frac{\mathrm{d}Q_{1}}{T} = mc \int_{T_{1}}^{T_{m}} \frac{\mathrm{d}T}{T} = mc \cdot \ln \frac{T_{m}}{T_{1}} < 0$$

$$\Delta S_{2} = mc \cdot \ln \frac{T_{m}}{T_{2}} > 0$$

$$\Rightarrow \Delta S = \Delta S_{1} + \Delta S_{2} = mc \cdot \ln \frac{T_{m}^{2}}{T_{1}T_{2}} = mc \cdot \ln \frac{(T_{1} + T_{2})^{2}}{4T_{1}T_{2}} > 0$$
(4.37)

 \rightarrow irreversibler Prozess!

• Beispiel 2: (siehe auch Kapitel 4.7.1)

$$V_1$$
 V_2

• Entropieänderung nach Öffnen der Membran aus CARNOT:

$$\Delta S = R \cdot \ln \frac{V}{V_1} > 0$$

• Vergleiche die Wahrscheinlichkeit, nach dem Öffnen alle Teilchen in V_1 vorzufinden:

$$W_N(V_1) = \left(\frac{V_1}{V}\right)^N = \left(\frac{V_1}{V}\right)^{R/k_B}$$

für den Fall $N = N_A = R/k_B$ gilt

$$k_B \cdot \ln W_N = R \cdot \ln \frac{V_1}{V} = -R \cdot \ln \frac{V}{V_1} = -\Delta S$$

 \Rightarrow statische Interpretation der Entropieänderung:

$$\Delta S = -k_B \cdot \ln \frac{W_N(V_1)}{W_N(V)} = k_B \cdot \ln \frac{W_N(V)}{W_N(V_1)} = k_B \cdot \ln \frac{W_{\text{nachher}}}{W_{\text{vorher}}}$$

 ΔS ist ein logarithmisches Maß für die Wahrscheinlichkeit, dass ein System vom Zustand 1 (hier alle Teilchen in V_1) in Zustand 2 (alle Teilchen in V) übergeht. \Rightarrow absolute Definition der Entropie:

$$S := k_B \cdot \ln W \tag{4.38}$$

W: Anzahl der Realisierungsmöglichkeiten des Systems in einem Zustand, der durch die Entropie S charakterisiert ist.

4.7.3 3. Hauptsatz der Thermodynamik

• Definition absoluter Entropie als Funktion der reduzierten Wärme?

$$S(T) = \int_0^T \frac{dQ}{T} + S(0)$$
(4.39)

wobei S(0) = 0 für reine Systeme

Si			SiG	SiGe			SiGe						
0	0	0	0		0	0	0	•		0	0	٠	0
0	0	0	0		٠	0	0	0		0	•	0	0
					0	•	0	•		0	0	•	•
								Q _{lin}	$q_{\rm nks} = Q_{\rm re}$	echts			

- hier Axiom, Begründung mit Quantenmechanik
- äquivalente Formulierungen:
 - "Ein reines Stoffsystem (keine Mischungsentropie) besitzt bei T = 0 nur eine einzige Realisierungsmöglichkeit mit $W = 1. \Rightarrow S(0) = k_B \cdot \ln W = 0$ "
 - "Es ist prinzipiell unmöglich, den absoluten Temperaturnullpunkt T = 0 exakt zu erreichen."
 - "Die Wärmekapazität jedes realen Systems verschwindet mit Annäherung an den absoluten Nullpunkt: $\lim_{T\to 0} C_V = 0$ "

Literatur

- [1] ZINTH, Wolfgang und Ursula, *Optik Lichtstrahlen, Wellen, Photonen*, Oldenbourg Wissenschaftsverlag, 2009, 2. Auflage
- [2] Graphikmaterial zu [1]: http://www.bmo.physik.uni-muenchen.de/buecher/optik-lwp/Graphiken_2.html
- [3] DEMTRÖDER, Wolfgang, Experimentalphysik 1, Springer, 2008, 5. Auflage